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It has become increasingly clear that circulating immune cells in the body have a major 
impact on cancer development, progression, and outcome. The role of both platelets and 
neutrophils as independent regulators of various processes in cancer has been known 
for long, but it has quite recently emerged that the platelet–neutrophil interplay is yet a 
critical component to take into account during malignant disease. It was reported a few 
years ago that neutrophils in mice with cancer have increased propensity to form neutro-
phil extracellular traps (NETs) – web-like structures formed by externalized chromatin and 
secreted proteases. The initial finding describing this as a cell death-associated process 
has been followed by reports of additional mechanisms for NET formation (NETosis), and 
it has been shown that similar structures can be formed also without lysis and neutrophil 
cell death as a consequence. Furthermore, presence of NETs in humans with cancer has 
been verified in a few recent studies, indicating that tumor-induced NETosis is clinically 
relevant. Several reports have also described that NETs contribute to cancer-associ-
ated pathology, by promoting processes responsible for cancer-related death such as 
thrombosis, systemic inflammation, and relapse of the disease. This review summarizes 
current knowledge about NETosis in cancer, including the role of platelets as regulators 
of tumor-induced NETosis. It has been shown that platelets can serve as inducers of 
NETosis, and the platelet–neutrophil interface can therefore be an important issue to 
consider when designing therapies targeting cancer-associated pathology in the future.

Keywords: cancer, neutrophil extracellular traps, neutrophils, platelets

TUMOR-inDUCeD MAniPULATiOn OF THe iMMUne SYSTeM

Cancer development and progression is driven by complex interactions between neoplastic cells and 
non-malignant host cells. The tumor-promoting effects of the host cells often represent normal, or 
even essential, physiological functions that have been “hi-jacked” by the tumor microenvironment. 
A prominent example is platelet activation, which is required for wound healing and to prevent 
bleeding due to injury, while the same mechanism contributes to disease progression and mor-
tality in individuals with cancer (1). Similarly, cells of the innate immune system that normally 
serve as an essential defense against infections can be modulated during malignancy to become 
promoters of disease. This phenomenon has been extensively studied especially for macrophages, 
where tumor progression is paralleled with a phenotypic switch from a tumor-suppressing classical 
M1-like subtype to a tumor-promoting M2-like macrophage. These M2 macrophages often represent 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2016.00373&domain=pdf&date_stamp=2016-09-21
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2016.00373
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:jessica.cedervall@imbim.uu.se
http://dx.doi.org/10.3389/fimmu.2016.00373
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00373/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00373/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00373/abstract
http://loop.frontiersin.org/people/348020/overview
http://loop.frontiersin.org/people/361503/overview


2

Olsson and Cedervall NETosis in Cancer

Frontiers in Immunology | www.frontiersin.org September 2016 | Volume 7 | Article 373

the majority of immune cells in a solid tumor and contribute to 
tumor progression by immunosuppressive and pro-angiogenic 
mechanisms (2). Novel data indicate that neutrophil function is 
altered in a similar way during malignant disease. Neutrophils 
have an indispensible role as a first-line defense to combat 
infectious disease, a function mediated by phagocytosis and 
secretion of antimicrobial peptides (3). However, in individuals 
with cancer, neutrophils may instead become prominent disease 
promoters, contributing to important steps during tumor pro-
gression such as angiogenesis and metastasis (4). In addition to 
the classical antimicrobial roles of neutrophils mentioned above, 
formation of neutrophil extracellular traps (NETs) was described 
approximately a decade ago as a novel defense mechanism during 
severe bacterial infections (5). NETs are formed when activated 
neutrophils externalize their chromatin and granular content 
and form a meshwork of DNA strands that function as a trap 
for microbes. In fact, a cell death process in neutrophils different 
from apoptosis and necrosis, and similar to what we today refer to 
as NETosis, was described already 1996 (6). The initial description 
of NET formation (NETosis) as a response to bacterial infections 
has now been followed by reports of NETs in infections caused by 
viruses and fungi (7–20) but also in sterile inflammation during 
conditions such as atherosclerosis, diabetes, and systemic lupus 
erythematosus (SLE) (21–24). Interestingly, NETosis was also 
detected in individuals with cancer for the first time a few years 
ago (25, 26), and the consequences are only beginning to emerge. 
Platelets have been found to play an essential role as inducers 
of intravascular NETosis in response to lipopolysaccharide (LPS) 
(27, 28). Conversely, NETs provide a strong activation signal for 
platelets due to the externalized DNA and associated histones, 
promoting platelet aggregation and thrombosis (29). This review 
describes mechanisms behind tumor-induced NETosis with a 
special focus on neutrophil–platelet interactions in an individual 
with cancer. Furthermore, consequences of tumor-induced 
NETosis and possible therapeutic approaches to target NETs in 
cancer patients will be discussed.

MeCHAniSMS OF neTosis

During NETosis, activated neutrophils release their chromatin 
and granular content and form a web-like structure from 
strands of DNA that functions as a trap for infectious agents in 
the circulation (30). Secretion of neutrophil-derived proteases, 
such as neutrophil elastase (NE) and myeloperoxidase (MPO), 
contributes to a locally elevated concentration of antimicrobial 
substances and hence enables efficient destruction of pathogens. 
Both nucleic acids and the associated histones are potent induc-
ers of platelet activation and therefore exert a prothrombotic 
effect with platelet aggregation and fibrin deposition as a result. 
So how can neutrophils form these extracellular traps? Current 
knowledge suggests that NETosis can occur either as a cell 
death-associated mechanism or in a vesicular-dependent man-
ner where the neutrophil survives and continues to function 
after NET formation (referred to as “vital NETosis”). In the case 
where NETosis results in neutrophil death, the suggested process 
is dependent on chromatin decondensation, degradation of the 
nuclear membrane, and cellular lysis with associated release of 

chromatin and granular contents into the extracellular space. 
Nuclear decondensation is initiated by epigenetic modifications 
of histones, citrullination (i.e., arginine converted into citrulline), 
mediated by the enzyme peptidyl arginine deiminase 4 (PAD4). 
PAD4 has proven to be required for NETosis to be initiated and 
neutrophils in PAD4-deficient mice lack ability to form NETs 
(31, 32). Degradation of the nuclear membrane is driven by NE, 
which has to be translocated to the nucleus for this purpose (33). 
Furthermore, isolated neutrophils deficient in MPO fail to form 
NETs, suggesting that MPO is required for NETosis (34). In 
contrast to vital NETosis, which has been described as a quick 
event, the process of lytic NETosis takes several hours to complete 
(30). In addition, a recently identified process of programmed 
cell death, necroptosis, was earlier this year implicated as an 
additional mechanism for NETosis (35). Necroptosis is associ-
ated with inflammation and has been suggested to be involved 
in inflammatory conditions such as Crohn’s disease (36). The 
mechanism for necroptosis-associated NETosis was shown to 
depend on activation of the mixed lineage kinase domain-like 
protein (MLKL) for membrane degradation and subsequent cell 
death (35). The process of vital NETosis was first described a few 
years ago (30, 37). During infectious conditions, vital NETosis 
occurs upon stimulation of TLRs by both gram-negative and 
gram-positive bacteria, and involves nuclear envelope blebbing 
and vesicular trafficking of DNA to the extracellular space (37). 
The process leaves the cell membrane intact and allows the neu-
trophil to continuously exert its classical function via protease 
release and phagocytosis. Whether both cell death-associated and 
vital NETosis occur in individuals with cancer is still not clear.

It has been reported that only a fraction of all neutrophils are 
capable of forming NETs (30). How to distinguish these specific 
neutrophils with capacity for NETosis is still not clear. It has been 
suggested that the ability to form NETs is related to aging of the 
neutrophil, a process paralleled with upregulation of CXCR4 on 
the cell surface (38). Interestingly, the same study demonstrates 
that the aged neutrophil population is expanded under patho-
logical conditions. It was recently suggested that the lifespan of a 
neutrophil may be significantly longer than previously reported 
and that the average human neutrophil remains in the circulation 
for more than 5 days (39). Therefore, the population of neutro-
phils that form NETs may be larger than previously expected. 
However, the finding of an extended lifespan of neutrophils 
beyond 1 or 2  days has been questioned (40). A vast amount 
of studies further support that neutrophils indeed are more 
heterogeneous than earlier presumed. For example, migration of 
neutrophils has previously been described as a one-way transfer 
from the circulation into the tissue. However, several publications 
now report observations of reversed migration of tissue-resident 
neutrophils back into the vasculature (41–43). Furthermore, a 
polarization similar to that of macrophages has been suggested 
for neutrophils with a division into antitumorigenic neutrophils 
(N1) and protumorigenic neutrophils (N2) (44). Sagiv and col-
leagues recently demonstrated that cancer is associated with a 
switch in neutrophil phenotype towards a low-density neutrophil 
type with more immature appearance and less lobulated nuclei 
(45). This subpopulation of neutrophils was suggested to be 
protumorigenic, as compared to high-density neutrophils with 
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FiGURe 1 | Platelet–neutrophil crosstalk in tumor-induced neTosis. Tumor cells can directly induce NETosis in an individual with cancer by secretion of 
factors such as G-CSF and IL-8. Tumors furthermore promote platelet activation, for example, by production of tissue factor (TF). Activated platelets function as 
inducers of NETosis. This effect is mediated via direct binding of P-selectin on activated platelets and PSGL-1 on neutrophils. Stimulation of platelets via toll-like 
receptor 4 (TLR4), by LPS during infectious disease or tumor-derived factors, possibly fibronectin ED-A, may further contribute to platelet-induced NETosis. NETs 
further stimulate platelet activation and thrombosis due to externalized chromatin and localization of TF and factor XII.
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an antitumorigenic function. How this relates to NETosis was 
not discussed in the paper. However, low-density neutrophils 
have previously been isolated from patient with SLE, an autoim-
mune disease characterized by NETosis (46, 47). These cells were 
further verified to be highly prone to undergo NET formation 
(48), suggesting that the protumorigenic neutrophils identified 
by Sagiv and colleagues are indeed a potential source of NETs. 
Studies of NETosis in autoimmune disease have suggested a role 
for proteinase 3 (PR3) in NET induction (49). In small-vessel 
vasculitis, antineutrophil cytosplasmic antibodies (ANCA), and 
specifically those directed against PR3, were demonstrated to 
induce NETosis (50). Whether PR3 stimulation mediates NETosis 
also in malignant disease is not yet known.

THe ROLe OF PLATeLeTS in neTosis

LPS, a component of the cell wall in bacteria, is an inducer of 
NETosis during infectious disease (27). However, bacteria-
derived LPS is not a general cause of NETosis in individuals 
with cancer, unless the patient suffers from bacterial infection. 

So how can a tumor induce NETosis? While some mechanisms 
for tumor-induced NETosis have been described, there are pos-
sibly others that remain to be identified. A summary of identi-
fied mechanisms can be found in Figure 1. The first report of 
NETs in cancer appeared a few years ago and demonstrated that 
presence of a tumor primed neutrophils to undergo NETosis 
(25). The authors suggested that G-CSF was a critical factor for 
tumor-induced NETosis in mice with cancer. The importance 
of G-CSF was recently confirmed in another study, where 
tumors expressing high levels of G-CSF were demonstrated as 
more powerful inducers of NETosis than tumors expressing 
low levels of G-CSF (51). Furthermore, inhibition of G-CSF by 
injection of anti-G-CSF antibodies efficiently suppressed NET-
induced vascular dysfunction in distant organs of mice with 
mammary carcinoma. It is however likely that additional factors 
are involved in induction of tumor-associated NETosis. The 
cytokine IL-8, frequently expressed by various tumor cells, has, 
for example, been described as a NET-inducing factor and was 
recently demonstrated to be crucial for tumor-induced NETosis 
(5, 52).
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As mentioned, activated platelets can regulate NET induc-
tion, although NETosis can also occur independent of platelet 
interaction, as exemplified by PMA stimulation. An important 
interaction for this effect seems to be the binding of P-selectin 
on activated platelets to PSGL-1 on neutrophils. It was recently 
demonstrated that platelets from P-selectin-deficient mice failed 
to induce NETosis, while platelets from mice with increased 
P-selectin levels were more prone to induce NETs upon co-culture 
with neutrophils (53). Platelets have previously been described as 
sensors during infectious disease for the severity of an infection, 
where LPS binding to TLR4 on the platelet surface is essential to 
determine whether NETosis should be initiated (27). Although 
LPS-induced TLR4 activation does not take place as a result of a 
tumor, it is possible that other tumor-derived factors can activate 
platelets via TLR4. For example, it has been shown that a tumor-
associated splice variant of fibronectin, extradomain A (ED-A), 
can bind to TLR4 (54). Interestingly, studies in mice recently 
demonstrated that signaling via TLR4 on platelets by fibronectin 
ED-A promotes platelet aggregation and arterial thrombosis (55). 
Whether this effect is mediated via NETosis was not addressed, 
but the possibility is briefly discussed in the paper. Furthermore, 
these studies were not performed in a cancer setting, and the 
relevance of fibronectin ED-A for cancer-associated thrombosis 
still remains to be determined.

The importance of platelets for NET induction is obviously 
not a tumor-specific phenomenon. However, it has been known 
for more than a century that individuals with cancer suffer from 
increased risk for thrombotic disease – a fatal consequence of 
enhanced platelet activation (56, 57). The hyperactive state of 
platelets in malignant disease has been attributed to the fact 
that many tumors express Tissue Factor (TF), which leads to 
thrombin formation, coagulation, and platelet activation (58). 
Enhanced platelet activation in cancer patients does not only 
contribute to thrombosis but also to malignant progression by 
promoting processes such as tumor angiogenesis and metastasis 
(59). The increased platelet activation in cancer patients could 
therefore be a contributing factor to enhanced NETosis during 
malignant disease.

OTHeR TYPeS OF PLATeLeT–
neUTROPHiL inTeRACTiOnS

While the specific interplay between platelets and neutrophils in 
formation of NETs was quite recently discovered, interactions 
between platelets and neutrophils were described much earlier. 
Already 50 years ago, the phenomenon of platelets adhering to 
neutrophils was described and referred to as platelet satellitism 
(60–64). These platelet–neutrophil complexes were observed in a 
number of pathological conditions, but their contribution to dis-
ease was not clear. Interestingly, a case study from 1975 described 
platelet–neutrophil aggregation in a patient with invasive prostate 
cancer, but the cause or significance of the finding was not further 
explored (65). Today, complex formation between platelets and 
neutrophils are known to occur and contribute to a wide variety of 
pathological conditions, such as asthma, ulcerative colitis, sepsis, 
rheumatoid arthritis, and acute coronary syndrome (66–75). By 

which mechanism do platelet–neutrophil complexes form? Initial 
platelet–neutrophil aggregation is mediated mainly by binding of 
the surface receptor P-selectin on activated platelets to neutro-
phil PSGL-1 and results in activation of the neutrophil (76–79). 
Thereafter, integrin receptors are important for continuous 
platelet–neutrophil interactions. For example, Gp1b-IX-V and 
alpha-IIb-beta-3 (GpIIb/IIIa), via fibrinogen, mediate binding to 
integrin alpha-M-beta-2 (Mac-1) on the neutrophil, while integ-
rin alpha-L-beta-2 (LFA-1) on neutrophils can adhere to platelets 
via ICAM-2 (80–83). Platelets also facilitate leukocyte adherence 
to the endothelium via the same interactions, for example, upon 
damage to the vessel wall when direct adherence of leukocytes 
to endothelial cells is compromised and platelets function as a 
bridging factor (81). The ability of platelets to regulate neutrophil 
function is not limited to NETosis. It has been demonstrated 
that platelets promote initiation of inflammation by regulating 
neutrophil crawling, an effect dependent on signaling via PSGL-1 
(84). Activated platelets can also promote neutrophil degranula-
tion and phagocytosis (27, 85). Moreover, platelet-derived soluble 
CD40L promotes formation of reactive oxygen species (ROS) in 
neutrophils, which contributes further to the antimicrobial effect 
(86). There are also evidence showing that interaction between 
platelets and neutrophils promote metastasis by formation of an 
early metastatic niche (87). This study by Labelle et al. demon-
strated that granulocyte recruitment to the metastatic site is medi-
ated by platelet-derived CXCL5 induced by contact with tumor 
cells and signaling via the CXCR2 receptor on granulocytes. If the 
interaction between platelets and granulocytes is blocked with 
a CXCR2 antibody, metastatic seeding is significantly impaired. 
This study further highlights the importance of platelets as critical 
regulators of neutrophil function.

COnSeQUenCeS OF TUMOR-inDUCeD 
neTosis

What are the consequences of NETosis in individuals with 
cancer? The data presented so far suggest that tumor-induced 
NETosis may be a promoter of cancer-associated pathology. 
A couple of studies show that NETs may directly contribute 
to malignant progression. For example, Cools-Lartigue and 
colleagues showed that infection-induced NETs contribute to 
metastasis by sequestration of tumor cells in the circulation of 
mice with cancer (88). This suggests an increased risk for metas-
tasis if cancer patients are affected by infectious disease. Recently, 
direct cancer-promoting effects were further demonstrated in a 
study where NETs were suggested to contribute to tumor relapse 
after surgery in patients with metastatic colorectal cancer. While 
this study did not address tumor-induced NETosis directly but 
rather NETosis induced by surgical stress, it still highlights the 
possibility that NETs could contribute to tumor progression and 
relapse (89). This finding is in line with an earlier study, sug-
gesting that presence of NETs in tumor biopsies correlated with 
relapse in patients with Ewing sarcoma (26). Besides direct effects 
on malignant progression, tumor-induced NETosis further con-
tributes to systemic pathological effects of cancer. For example, 
NETs have been suggested to promote cancer-associated deep 
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vein thrombosis (25). Hence, the interaction between neutrophils 
and platelets in NETosis is not limited to platelet-induced of NET 
formation, but NETs can also stimulate platelet activation – add-
ing yet an important aspect to the complex interplay between 
platelets and neutrophils. The procoagulant effect of NETs is 
primarily mediated via the negatively charged DNA inducing the 
intrinsic pathway of coagulation (90) and by histones contribut-
ing to thrombin formation (91). Moreover, both TF and factor 
XII, inducers of the extrinsic and intrinsic coagulation pathways, 
respectively, can be found in NETs (92–94). Furthermore, it was 
recently demonstrated that NETosis contributes to impaired vas-
cular function and systemic inflammation in organs that are not 
sites for tumor growth, such as heart and kidneys, in mice with 
mammary carcinoma and insulinoma (51). When mice were 
treated with DNase I to dissolve NETs, vascular function was 
restored and inflammation abolished. Hypoperfusion of the renal 
vasculature and associated inflammation are indicators of renal 
insufficiency – a frequent issue in cancer patients with mortal 
consequences (95–97). Whether suppression of NETosis could 
prevent renal insufficiency in individuals with cancer remains 
to be explored. NETosis was connected to both thrombosis and 
vascular dysfunction in a study published earlier this year (98). 
Analysis of blood and post-mortem tissues from ischemic stroke 
patients revealed that a high number was affected by known or 
occult cancer and that this could be associated with formation of 
arterial microthrombi with presence of NETs in various organs. 
Altogether, these studies suggest that tumor-induced NETosis 
is connected to poor prognosis in cancer patients. It is however 
likely that the consequences of tumor-induced NETosis are not 
limited to those described today, but more reports on this phe-
nomenon should be expected.

THeRAPeUTiC TARGeTinG OF neTosis in 
inDiviDUALS wiTH CAnCeR – wHAT ARe 
THe OPTiOnS?

The role of tumor-induced NETs as potential promoters of 
malignancy and associated complications, such as thrombosis 
and systemic inflammation, suggests that therapeutic approaches 
to suppress NETosis might be beneficial for cancer patients. 
Several potential strategies could be considered for this purpose. 
Treatment with DNase I, a strategy to degrade extracellular DNA 
strands, would be an option to dissolve already formed NETs. 

DNase I is already in clinical use for treatment of patients with 
cystic fibrosis, which indicates its safety as a drug (99). Another 
option would be to prevent NETosis by inhibition of PAD4, an 
enzyme required for initiation of NETosis (32). Specific PAD4 
inhibitors, with capacity to prevent formation of NETs from both 
human and murine neutrophils, were recently developed (100). 
A third alternative approach would be treatment with heparin, 
which function to destabilize NETs by extraction of histones (29). 
Heparin has long been used in the clinic for its anticoagulative 
effects and is therefore well established as a therapeutic method. 
Based on current knowledge about NET induction described in 
this review, intervening with the P-selectin/PSGL-1 interaction 
could be yet a potential therapeutic strategy. An important issue 
to address to enable clinical use of NET targeting approaches is 
whether there are risks with NET inhibition. A few studies per-
formed in mice lacking PAD4 and hence unable to form NETs 
have been published but with various results. While increased 
susceptibility to bacterial infection was described as a consequence 
of PAD4 deficiency in one study, other studies reported that mice 
lacking PAD4 are not more sensitive to infections. Instead, it was 
suggested that PAD4-deficient mice are protected against septic 
chock (31, 32, 101). Further research is needed to fully explore 
the potential risks with therapeutic approaches targeting NETs.

The existing data on tumor-induced NETosis strongly indicate 
that targeting NETs could be beneficial for cancer patients. NETs, 
originally identified as a defense against severe infectious disease, 
seem rather to have a negative influence during malignant disease 
by promoting mortal processes such as thrombosis, systemic 
inflammation, and cancer relapse. With this in mind, NETs 
could provide excellent targets for future anticancer therapies, 
with capacity to suppress processes contributing to the absolute 
majority of cancer-related deaths.
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