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Fas and Fas Ligand (FasL) are two molecules involved in the regulation of cell death. 
Their interaction leads to apoptosis of thymocytes that fail to rearrange correctly their 
T cell receptor (TCR) genes and of those that recognize self-antigens, a process called 
negative selection; moreover, Fas–FasL interaction leads to activation-induced cell death, 
a form of apoptosis induced by repeated TCR stimulation, responsible for the peripheral 
deletion of activated T cells. Both control mechanisms are particularly relevant in the 
context of autoimmune diseases, such as multiple sclerosis (MS), where T cells exert 
an immune response against self-antigens. This concept is well demonstrated by the 
development of autoimmune diseases in mice and humans with defects in Fas or FasL. 
In recent years, several new aspects of T cell functions in MS have been elucidated, such 
as the pathogenic role of T helper (Th) 17 cells and the protective role of T regulatory 
(Treg) cells. Thus, in this review, we summarize the role of the Fas–FasL pathway, with 
particular focus on its involvement in MS. We then discuss recent advances concerning 
the role of Fas–FasL in regulating Th17 and Treg cells’ functions, in the context of MS.
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inTRODUCTiOn

Fas and Fas Ligand (FasL) are members of the tumor necrosis factor (TNF)-receptor and TNF family, 
respectively. The ligation of Fas with FasL results in the activation of a caspase cascade that initiates 
apoptosis (1–5).

Apoptosis mediated by Fas–FasL is an important mechanism for the maintenance of immune 
homeostasis. During a physiological immune response, programed cell death (apoptosis) has the 
important role to delete potentially pathogenic autoreactive lymphocytes from the circulation and 
tissues, limiting tissue damage inevitably caused by immune responses (6). In fact, T cell receptor 
(TCR) restimulation of previously activated and expanded T cells in the absence of appropriate 
co-stimulation induces activation-induced cell death (AICD) (7–9), an important mechanism for 
removal of overly activated T cells, such as autoreactive T cells in autoimmune diseases. Multiple 
sclerosis (MS) is an autoimmune disease characterized by the accumulation of CD4 and CD8 T cells 
in the central nervous system (CNS) compartment (10, 11). CD8 T cells expand clonally and by tar-
geting specific antigens they are accountable for oligodendrocyte loss, demyelination, and neuronal 
damage. Although CD4 T cell responses have less substantial clonal features than CD8 T cells, they 
do expand and accumulate in the brain (10, 12) where they play a critical role in inflammation and in 
priming CD8 and B cells. The control of the potentially limitless expansion of these cells is achieved 
also by Fas–FasL-mediated apoptosis, and its therapeutic enhancement could be useful to reduce 
pathogenic T cells in MS.
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FiGURe 1 | Schematic representation of the Fas–FasL pathway. Binding of the Fas leads to recruitment and activation by the protein adaptor FADD of 
procaspase-8 and formation of the death-inducing signalling complex (DISC). Active caspase-8 directly cleaves caspase-3 and initiates the caspase cascade, which 
ultimately leads to cell death. Soluble Fas and soluble FasL bind to the respective ligands inhibiting activation of the pathway. FLIP inhibits activation of caspase-8 
and is thus a major anti-apoptotic protein.
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ACTivATiOn AnD ReGULATiOn  
OF THe Fas–FasL PATHwAY

Fas (also called CD95 or APO-1 or TNFRSF6) is a type I trans-
membrane protein (2), containing a death domain (DD) in its 
cytoplasmic region, which is essential for the induction of apopto-
sis (13). The induction of apoptosis is triggered by the interaction 
of Fas with its ligand (FasL), a 40-kDa membrane protein (14) 
allowing recruitment of the adaptor protein Fas-associated death 
domain (FADD) (15) and binding of procaspase-8, resulting in 
the formation of the death-inducing signaling complex (DISC) 
(16, 17), which finally leads to the activation of effector caspase-3 
by active Caspase-8 (Figure 1).

The membrane-bound form (mFasL) can be cleaved from the 
cell surface by metalloproteinases to produce a truncated soluble 
product (sFasL) of 26 kDa derived from the extracellular domain 
(14). In the mouse, sFasL can also be generated by alternative 
splicing (18).

However, it is not clear what triggers sFasL release, but it is 
plausible that abnormal or excessive activation of T cells causes 
the production of sFasL, with deleterious systemic effects.

However, sFasL does not activate Fas, and it competes with 
mFasL reducing its cytotoxic activity (19, 20). This is due to the 
fact that sFasL binds Fas, but it is unable to induce its oligomeri-
zation, thus preventing activation of the proapoptotic signaling 
pathway by mFasL (21–23) (Figure 1).

Similar to FasL, a membrane and soluble isoform with 
opposite functions have also been described for Fas: the isoform 

skipped of exon 6, that encodes the transmembrane region, leads 
to the synthesis of an mRNA that codes for a soluble form of the 
receptor known to repress apoptosis (24, 25), and the Ewing 
sarcoma protein (EWS), which has been recently described as 
responsible for the Fas splicing event (26). Notably, the anti-
apoptotic protein caspase-8 (FLICE)-like inhibitory protein 
(FLIP) is another potent inhibitor of Fas signaling that may 
block Fas-mediated apoptosis by disturbing the formation of 
the DISC (27) (Figure 1).

The activation of the Fas–FasL pathway is finely regulated by 
several mechanisms, including formation of Fas microclusters 
(21, 28–31), actin reorganization (31), inducible or constitutive 
association with membrane rafts (32–36), and acid sphingomy-
elinase-mediated ceramide production (37).

Moreover, another important mechanism of regulation of cell 
death mediated by Fas–FasL is the transcriptional control of FasL 
gene expression. Indeed, while Fas is ubiquitously expressed in a 
variety of tissues and with particular abundance in the thymus, 
liver, and kidney (38), FasL expression is controlled by specific 
protein-DNA interactions at the FasL promoter. Several factors 
have been identified, which regulate FasL gene expression, such 
as specificity protein-1 (Sp1); Ets-1 (the homolog of viral Ets); 
interferon regulatory factor (IRF) 1 and 2; inducible cAMP early 
repressor (ICER); nuclear factor in activated T cells (NFAT); 
nuclear factor-kappa B (NF-kB); activator protein-1 (AP-1); 
early growth factor (EGR) 1, 2, and 3; and c-Myc (KAVURMA). 
Moreover, the modulation of these transcription factors is strictly 
dependent on environmental cues, including cytotoxic stress, 
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FiGURe 2 | Fas–FasL-mediated T cell death in immune response and in MS. The Fas–FasL pathways are not only involved in deletion of autoreactive 
lymphocytes during the immune system’s development in the thymus and in the periphery (negative selection) but also in the deletion of lymphocytes activated 
during an immune response (activation-induced cell death). In autoimmune disorders, such as multiple sclerosis (MS), alteration of these processes may lead to a 
defective deletion and an accumulation of autoreactive and activated T cells. Pathogenic T helper (Th) 1 and Th17 cells are abundant in MS, while protective T 
regulatory (Treg) cells are less frequent. Moreover, high expression of FasL in Th1, high expression of FLIP by Th17 cells, and low expression of Fas by Tregs lead to 
a differential cell death sensitivity by Th1, Th17, and Treg cells.
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DNA-damaging agents, and interleukin (IL)-2, which promote 
FasL expression, IL-6, transforming growth factor-beta (TGF-β), 
retinoic acid, nitric oxide, and Vitamin D3 that repress FasL 
expression (39).

THe Fas–FasL ACTivATiOn PATHwAY  
in iMMUne ReSPOnSeS

The Fas–FasL-mediated death plays a major role in immune 
homeostasis: it is required for the deletion of autoreactive 
lymphocytes during the immune system’s development (nega-
tive selection); this process is defined as central tolerance in 
the thymus (40) and peripheral tolerance in the periphery 
(41), and it is also required for the control of the number of 
lymphocytes activated during an immune response against a 
pathogen, leading to the contraction of the ongoing immune 
response (42) (Figure 2).

Moreover, the Fas–FasL pathway is required not only for death 
of T cells (43) but also for deletion of autoreactive B cells (44, 

45), B cell somatic hypermutation (46), cytotoxicity of NK and 
CD8 T cells (47, 48), apoptosis of endothelial cells (49), regula-
tion of myeloid suppressor cells’ turnover (50), and activation of 
macrophages’ functions against infections (51).

The Fas–FasL interaction was also described as an important 
mechanism leading to immune privilege in specialized tissues, 
such as the CNS, eye, testis, ovary, pregnant uterus, and placenta, 
through the induction of apoptosis in infiltrating inflammatory 
cells (52–54).

However, the CNS is no longer considered an immune privi-
leged site in a strict sense and indeed immune cells, especially 
T cells can be detected in the CNS under normal conditions 
(55, 56). In this view, the only element protecting the CNS 
from immune-mediated attacks is the presence of an intact 
blood–brain barrier (BBB) and the absence of an immune-com-
petent population of tissue macrophages/tissue dendritic cells. 
Therefore, the expression of FasL by microvascular endothelial 
cells and astrocytic foot processes, major constituents of the 
BBB, favors an immune-suppressive environment within the 
CNS (57).
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THe Fas–FasL ACTivATiOn PATHwAY  
in DiSeASeS

Given the crucial role of the Fas–FasL pathway in regulat-
ing the balance between cell survival and cell death, it is also 
implicated in the protection from transplant rejection, tumors, 
and autoimmunity. The discovery that mice defective in Fas 
or FasL develop a lymphoproliferation phenotype (lpr) or a 
generalized-lymphoproliferative-disease phenotype (gld) (1, 5, 
58), definitely associated the Fas–FasL pathway to pathology. In 
humans, patients with mutations in the DD of Fas (Canale–Smith 
syndrome or autoimmune lymphoproliferative syndrome) have 
increased numbers of circulating double-negative T cells (>20%), 
lymphadenopathy, and signs of autoimmunity, such as hemolytic 
anemia, thrombocytopenia (59), and expansion of autoantibody-
secreting plasma cells (46).

However, given the multiple roles of Fas–FasL in immune 
responses and diseases, therapeutic targeting of the Fas/FasL 
pathway might not only fail to protect against a specific disease 
but could also potentially affect the behavior of different cell 
targets thus influencing the outcome for the patient.

For instance, in tumors, activation of Fas has antagonistic 
effects: it can lead to tumor apoptosis (60–62) or to tumor cell 
survival (63, 64). Indeed, although Fas activation can lead to the 
killing of tumor cells, it can also lead to apoptosis of infiltrating 
lymphocytes. In this context, there are several evidences that 
show that the constitutive expression of FasL by tumor cells can 
be used as a mechanism of immune evasion (65) by directly lead-
ing to apoptosis of infiltrating Fas positive lymphocytes (66, 67).

It is becoming clear that a potential therapy targeting the 
Fas–FasL pathway in disease should consider the direct targeting 
of the pathogenic cells for specific diseases, such as tumor cells for 
cancer and immune cells for autoimmunity.

THe Fas–FasL PATHwAY in MULTiPLe 
SCLeROSiS

Multiple sclerosis is an autoimmune disease of the CNS charac-
terized by demyelination and axon damage caused by infiltration 
of inflammatory cells, including autoreactive lymphocytes and 
macrophages (68). The first evidence for a role of Fas–FasL system 
in MS stems from the observation that Fas and FasL are expressed 
in brain lesions of MS patients. In particular, FasL is expressed 
by astrocytes, oligodendrocytes, and macrophages, while Fas is 
mainly expressed by macrophages, T cells, and oligodendrocytes 
(69, 70).

Several studies have addressed the role of the Fas–FasL sys-
tem in experimental autoimmune encephalomyelitis (EAE), the 
murine model of MS (71–75). Mice carrying mutations in Fas 
(lpr) or FasL (gld) generally show a milder disease course, despite 
persistence of immune cell infiltrates into the CNS. Fas expres-
sion by neural cells, particularly oligodendrocytes, seems to be 
important for disease progression, and lpr mice show fewer cells 
undergoing apoptosis in the CNS (74); on the other hand, lack 
of FasL on pathogenic lymphocytes transferred for the induction 
of EAE determines attenuated (71, 75) and monophasic (72) 
disease. Moreover, FasL-deficient mice develop prolonged signs 

of EAE when immunized with wild-type autoreactive T cells, 
indicating that in autoreactive T cells, the Fas–FasL system plays a 
regulatory role during the recovery from EAE. Thus, the Fas–FasL 
pathway is involved in the development and/or progression of 
autoimmunity in the CNS.

Further studies investigating the role of the Fas–FasL system in 
MS have been performed in human samples through the analysis 
of peripheral blood cells, serum, and cerebrospinal fluid (CSF) 
from MS patients. Serum levels of soluble Fas are significantly 
elevated in patients with relapsing remitting MS (76), indicat-
ing that it could contribute to inhibit apoptosis in this disease. 
Consistent with these results, it has been reported that Fas tran-
script is decreased in the active phase of MS patients (77), and Fas 
expression on the surface of CD4+ CCR5+ T cells, a T cell subset 
implicated in MS (78, 79), is decreased in MS patients compared 
to healthy donors (HD) (80). Moreover, the inhibitor protein FLIP 
is overexpressed in intrathecal and blood lymphocytes from MS 
patients (81, 82). These results suggest that the Fas–FasL pathway 
is affected in MS, and this phenomenon could lead to defective 
cell death and thus to increased survival of pathogenic cells. This 
hypothesis was confirmed by functional studies that revealed a 
defective sensitivity to apoptosis of blood T cells derived from MS 
patients compared to cells from HD (83, 84).

In contrast, it is not clear whether FasL expression is increased 
or decreased in activated peripheral blood mononuclear cells from 
MS patients compared to HD, as reported by two studies describing 
conflicting results (85, 86). However, studies on peripheral blood 
mononuclear cells should focus on distinct cell subsets rather than 
on the bulk population of lymphocytes, particularly when the cells 
of interest are present at low frequency. Failing to do so may explain 
the reported discordant results on levels of FasL expression, since 
comparative studies between individuals may be affected by dif-
ferential representation of functionally distinct subsets.

Differential expression of Fas and FasL could also be a result of 
a differential genetic regulation in MS and HD. However, genetic 
studies consistently demonstrate only a weak association between 
MS and Fas polymorphisms (87–89).

Fas–FasL PATHwAY in T CeLLS wiTH 
PATHOGeniC ROLe in MS

The T cell population includes a variety of T cell subsets. In recent 
years, two subsets emerged as particularly relevant in MS disease: 
T helper (Th) 17 that produce IL-17 (90–92) and T regulatory 
(Treg) cells that suppress the functions of effector T cells (93).

In particular, the increased expression of IL-17 produced by 
Th17 cells has been associated with MS (94), and its inhibition 
or deletion in the corresponding animal model has provided 
varying degrees of protection (95). In contrast, Treg cells are 
present at lower frequency in patients with MS and are defective 
in their suppressor functions in  vitro (96, 97). Indeed, there is 
a functional antagonism between Th17 and Treg cells, and the 
increase of Th17 cells and a decrease of Treg cells observed in MS 
patients compared to HD indicate an important role of the Th17/
Treg balance in the modulation of MS disease. Thus, the impact 
of the Fas–FasL system could differentially regulate MS disease, 
depending on the T cell target (Figure 2).
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Several studies have demonstrated that murine Th17 cells 
are more resistant to AICD than another Th subset called Th1, 
characterized by predominant and abundant interferon (IFN)-γ 
production (98–100). Th1 cells have a pathogenic role in MS 
(101), particularly in the initiation of the inflammatory response, 
through the activation of macrophages (102) and the induction 
of increased vascular adherence that facilitates access in the CNS 
of the critical effector cells sustaining tissue damage, such as Th17 
cells (103).

Interestingly, differential cell death sensitivity between Th1 
and Th17 cells is also confirmed in cells derived from MS patients 
(100). Since the homeostatic regulation of cell expansion by cell 
death is similar in HD and MS patients, the persistence of Th17 
cells in MS disease may be due to altered mechanisms of Th17 
cell generation in MS patients compared to HD. Thus, this pro-
cess could be responsible for the impaired apoptotic deletion of 
polyclonal and myelin-specific T cells derived from MS patients’ 
blood (83). In fact, the impaired apoptotic deletion observed in 
MS could be related to the higher frequency of apoptosis-resistant 
cell subsets in MS compared to HD (104).

Similar to Th17 cells, Th1/17 (coproducing IL-17 and IFN-γ) 
cells resist to AICD, suggesting that this mechanism could also 
be responsible for the persistence of cells producing both IL-17 
and IFN-γ, emerging as potentially relevant in the pathogenesis 
of MS (105).

Interestingly, low FasL and FLIP expression in Th17 cells 
compared to Th1 cells are the major mechanisms regulating their 
differential cell death sensitivity (98–100) (Figure 2). Recently, it 
has been demonstrated that low levels of mitogen-activated protein 
kinases (MAPKs), such as Erk1/2 and p38α, upon TCR stimula-
tion, alter FasL expression and AICD sensitivity of Th17 cells (106).

In MS, the involvement of FasL has been largely investigated in 
several studies as mentioned above, but contrasting results have 
been reported (85, 86). Thus, the differences in Th subset represen-
tation reported in those studies may explain the discordant results 
on the level of FasL expression in total lymphocytes from HD and 
MS patients. The lack of expression of FasL by Th17 and Th1/17 
cells suggests that where generation of IL-17-producing cells is 
favored or increased, as in MS, accumulation of FasL negative cells 
in inflammatory sites may preclude interactions with FasL express-
ing cells, determining an escape from homeostatic containment.

Another important source of IL-17 in MS is the CD161+ CD8+ 
T cell population, called mucosal-associated invariant T (MAIT) 
cells, which have been recently identified also within MS lesions 
(107, 108). There are evidences showing that these cells resist to 
cell death induced by chemotherapy due to the high levels of the 
multidrug receptor ABCB1 (also called P-gp, MDR1, and PGY1), 
which can rapidly efflux xenobiotics (109). MAIT cells express 
high levels of Fas (108), indicating their potential susceptibility to 
Fas-mediated cell death. However, investigations on the function-
ality of Fas–FasL pathways in these cells need to be performed.

Fas–FasL PATHwAY in T CeLLS wiTH 
PROTeCTive ROLe in MS

Fas–FasL is also involved in the regulation of cells known 
to have a protective role in MS, such as Treg cells (96, 97). In 

particular, apoptosis mediates homeostasis of Treg cells and Treg 
cell-mediated suppression (110). Treg cells with a CD4+ CD25high 
Forkhead box P3 (Foxp3)+ phenotype include a distinct subset of 
lymphocytes programed in the thymus (called naturally occur-
ring Tregs) and adaptive Treg cells generated from naive CD4 T 
cells in the periphery (111).

The study of the expression of surface molecules involved 
in apoptosis revealed that FasL is expressed at low levels in 
human and murine Treg cells upon stimulation (112), and that 
Fas is present at particularly low levels in a small subset of 
Tregs expressing CD45RA, a hallmark of resting/naive T cells 
(113, 114), which are thus resistant to apoptosis induced by 
exogenous Fas stimulation (115) (Figure  2). However, these 
cells are sensitive to FasL-induced apoptosis in the absence of 
TCR stimulation (116). In the site of inflammation, the sensi-
tivity to apoptosis of Treg cells is modulated by several factors, 
including proliferation, cytokine environment, and antigenic 
stimulation (110, 117). For instance, activation-associated 
proliferation renders T effector cells more susceptible to AICD 
than Treg cells; IL-2 promotes AICD through the induction of 
FasL expression in activated T effector cells but does not sen-
sitize Treg cells to AICD (117); TGF-β produced by Treg cells 
protects them from apoptotic death (118); and TCR engage-
ment and CD3 cross-linking induce cell death in T effector cells 
and not in Treg cells (116).

The different expression patterns of Fas and FasL of Treg cells 
compared to conventional effector lymphocytes might be due to 
regulation by Foxp3, the master transcription factor of Treg cells, 
which negatively regulates AICD and FasL expression. Indeed, 
in human Treg cells, knockdown of Foxp3 partially rescues 
FasL expression and AICD, and in mouse, Foxp3-mutant Treg 
cells from Scurfy mice express FasL at levels similar to those of 
conventional T cells (112). Interestingly, a genome-wide screen 
for Foxp3 target genes revealed a binding of Foxp3 in proximity to 
the FasL gene, but its direct interaction remains to be determined 
(119, 120).

The Fas–FasL pathway in Treg cells obtained from MS patients 
has never been investigated; however, in another human chronic 
inflammatory disease, acute coronary syndrome, an alteration in 
the Fas/FasL pathway in Treg cells was described: here, in fact, 
Treg but not Th17 cells are sensitive to Fas-mediated apoptosis, 
and this could determine an imbalance between these two 
subsets, favoring inflammation (120). It was also shown that 
Treg cells infiltrating the inflamed liver express high levels of Fas 
and are particularly susceptible to apoptosis, consistent with the 
observed Treg dysfunction in inflamed tissues. Further studies 
are expected to shed light on the susceptibility of Treg cells to 
apoptosis in distinct disease models, to better understand how 
the experimental conditions affect their susceptibility to apop-
tosis, and to establish potential differences between thymic and 
adaptative Treg cells.

COnCLUSiOn

The Fas–FasL pathway regulates cell death of several cell types, 
and given the broad expression of this pathway, it is important 
to define the specific role of each cell type in specific diseases. 
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In particular, Fas–FasL regulates T cell functions and certainly 
contributes to diseases where T cells play a major role, as MS. 
However, several T cell subsets have been described, and in MS, 
they may have antagonistic roles: Th17 play a pathogenic role, 
while Treg cells exert a protective role by suppressing pathogenic 
effector T cells. The low FasL expression in Th17 cells indicates 
that these cells have evolved a mechanism to escape the programed 
cell death and to persist in inflamed sites. FasL is expressed at 
low levels also by Treg cells, possibly to enable their prolonged 
survival necessary to dampen immune reactions once the inflam-
matory stimulus has subsided.

Consequently, an intriguing challenge for reducing inflamma-
tory responses in MS would be to find a strategy to simultane-
ously induce specific cell killing of Th17 cells and to potentiate 
cell survival of protective Treg cells.
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