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Tertiary lymphoid structures (TLS) are ectopic lymphoid aggregates that reflect lymphoid 
neogenesis occurring in tissues at sites of inflammation. They are detected in tumors 
where they orchestrate local and systemic anti-tumor responses. A correlation has been 
found between high densities of TLS and prolonged patient’s survival in more than 10 
different types of cancer. TLS can be regulated by the same set of chemokines and 
cytokines that orchestrate lymphoid organogenesis and by regulatory T cells. Thus, TLS 
offer a series of putative new targets that could be used to develop therapies aiming to 
increase the anti-tumor immune response.
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inTRODUCTiOn

Tertiary lymphoid structures (TLS) are transient ectopic lymphoid organizations that develop 
after birth in non-lymphoid tissues, in situations of chronic inflammation. They display an overall 
organization similar to that observed in canonical secondary lymphoid organs (SLOs), such 
as lymph nodes (LNs), with a T cell-rich area characterized by a T cell and mature DC-Lamp+ 
dendritic cell (DCs) cluster, a B-cell-rich area composed of a mantle of naïve B cells surround-
ing an active germinal center (GC) (1–3), the presence of high endothelial venules (HEVs), a 
particular type of blood vessels expressing peripheral node addressins (PNAd) and specialized in 
the extravasation of circulating immune cells, and the secretion of chemokines (CCL19, CCL21, 
CXCL10, CXCL12, and CXCL13) that are crucial for lymphocyte recruitment and entry into the 
LN (4–8). TLS have been detected in the tumor invasive margin and/or in the stroma of most 
cancers and their densities correlate with a favorable clinical outcome for the patients (Table 1). 
A series of studies performed by our group in non-small-cell lung cancer (NSCLC) demonstrated 
that TLS are important sites for the initiation and/or maintenance of the local and systemic T- and 
B-cell responses against tumors, in accordance with a specific signature of genes related to T and B 
cell lineage, chemotaxis, Th1 polarization, lymphocyte activation, and effector function associated 
with TLS presence (Table 2). They represent a privileged area for the recruitment of lymphocytes 
into tumors and the generation of central-memory T and B cells that circulate and limit cancer 
progression (5, 9, 10).
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TABLe 1 | Prognostic value of TLS in primary and metastatic tumors.

Criteria Cancer type Stages of the  
disease

no. of  
patients

TLS detection  
iHC

TLS detection  
gene expression

Prognostic 
value

Reference

Primary  
tumors

Breast carcinoma I–III 146 PNAd – Positive (8)
I–III 146 DC-Lamp – Positive (11)
I–III 794 – TFH, CXCL13 Positive (12)

Breast carcinoma  
(triple negative)

I–III 769 H&S – Positive (13)

Colorectal cancer I–IV 350 H&S – Positive (14)
ND 25 DC-Lamp – Positive (15)
I–IV 40 CD3, CD83 – Positive (16)
II 185 CD3 – Positive (17)
III 166 CD3 – No value (17)
0–IV-A 21 – 12-chemokine genes Positive (3)
I–IV 125 – CXCL13 and CD20 Positive (18)

Gastric cancer All without chemo 82 CD20 – Positive (19)
I–III 365 – both Th1 and B Positive (19)

NSCLC I–II 74 DC-Lamp – Positive (1)
I–IV 362 DC-Lamp – Positive (9)
III with neo-adj. chemo 122 DC-Lamp, CD20 – Positive (2)

Melanoma I-A–III-A 82 DC-Lamp – Positive (20)
IV 21 – 12-chemokine genes Positive (21)

Oral SCC All 80 CD3, CD20, CD21, 
BCL6, PNAd

– Positive (22)

Pancreatic cancer All 308 + 226 H&E – Positive (23)
RCC All 135 DC-Lamp – Positive (24)
Hepatocellular Cancer All 82 H&S 11-chemokine genes Negative (25)
Biliary tract cancer All 335 CD20 (TMA) – No value (26)

Metastatic  
tumors

Colorectal cancer (liver) All 14 + 51 CD20 – Positive (27)
Colorectal cancer (lung) ND 140 DC-Lamp – Positive (15)
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In this mini review, we summarize the available data in the 
literature regarding the prognostic value of TLS in human can-
cers, and discuss how these structures are controlled and could be 
manipulated in order to increase anti-tumor immune responses.

TLS AnD PROGnOSiS in CAnCeRS

In recent years, numerous publications have assessed the prog-
nosis associated with the presence of TLS in different types of 
tumors. Several strategies for their quantification have been 
used. Historically, the first method to measure the densities of 
TLS was the quantification of mature DCs (DC-Lamp+) within 
CD3+ T cell aggregates (1, 20). Although relatively challenging 
due to the relative low number of DC-Lamp+ DCs in some 
tumors (as compared to other immune populations), our group 
has described it as the most accurate marker for quantifying TLS 
(28, 29). Up-to-date, eight publications have found a positive 
association between increased densities of DC-Lamp+ DCs and 
prognosis, in several types of tumors, including NSCLC (1, 2, 9), 
melanoma (20), renal cell carcinoma [RCC (24)], breast (11), and 
colorectal cancer (15) (Table 1 and Figure 1).

The analysis of expression levels of TLS-related genes gives 
the possibility to rapidly assess the prognostic impact of these 
immune aggregates in large retrospective cohorts of tumors. So 
far, six studies have evaluated the prognostic impact of increased 
expression of TLS-related genes in cancer. Despite heterogene-
ity in the TLS-signatures, a significant correlation with good 
prognosis has been found in melanoma (21), colorectal (3, 18), 

and gastric (19) cancers (Table  1). Interestingly, TLS found in 
inflammatory zones from hepatocellular carcinoma (HCC) cor-
relate with increased risk for late recurrence and a trend toward 
decreased overall survival after HCC resection. This result could 
reflect an unexpected role for TLS, serving as niche for HCC pro-
genitor cells via local production of Lymphotoxin (LT)-β (25, 30).

Another approach that has been used to estimate the densi-
ties of TLS in cancers is the quantification of B-cell aggregates 
by immunohistochemistry (IHC) (CD20+ B-cell aggregates or 
islets). The majority of publications measuring CD20+ aggregates 
(four out of five), accounting for more than 349 analyzed tumors, 
has determined that increased densities of this population cor-
relate with good prognosis in several neoplasias, such as NSCLC 
(2), colorectal cancer liver metastasis (27), gastric (19), and oral 
(22) cancer (Table  1 and Figure  1). Most of the studies quan-
tifying the CD3+ T cell aggregates and immune-cell aggregates 
(after hematoxylin counterstaining) have also found a positive 
impact on patient’s prognosis. However, high numbers of B cell 
or T cell aggregates were found to have no impact on prognosis in 
biliary tract cancer and in stage III colorectal cancer, respectively. 
Further studies are needed to investigate whether it reflects that 
cell aggregates counting is not an accurate method to quantify 
TLS, or a functional impairment of TLS in these two cancer types 
(Table 1 and Figure 1).

Overall, despite the heterogeneity of methods used for 
quantifying TLS, most of the studies have consistently found a 
correlation between high densities of TLS and prolonged patient’s 
survival in more than 10 different types of cancer (Table  1). 
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TABLe 2 | expression of genes associated with TLS presence in human cancers.

name of 
the gene

Main names  
of the protein

Main immune functions and process Cluster of gene related 
to TLS presence

Reference

CCL2 CCL2, MCP-1, 
MCAF

Monocyte, immature DC and T cell chemotaxis, G-protein-coupled receptor signaling 
pathway, cell adhesion, JAK-STAT cascade, MAPK cascade, cellular calcium ion 
homeostasis, cellular response to IFN-γ, IL-1, and IL-6

Chemotaxis (3)

CCL3 CCL3, MIP-1α Monocyte and T cell chemotaxis, G-protein-coupled receptor signaling pathway, 
cell adhesion, MAPK cascade, calcium-mediated signaling, cell activation, cellular 
response to IFN-γ, TNF-α, and IL-1, eosinophil degranulation, inflammatory response

Chemotaxis (3)

CCL4 CCL4, MIP-1β, 
LAG1

Monocyte and neutrophil and T cell chemotaxis, G-protein-coupled receptor signaling 
pathway, cell adhesion, calcium-mediated signaling, cell activation, cellular response to 
IFN-γ, TNF-α, and IL-1, inflammatory response, positive regulation of ERK1 and ERK2 
cascade, positive regulation of GTPase activity

Chemotaxis (3)

CCL5 CCL5, RANTES Monocyte, neutrophil and T cell chemotaxis, G-protein-coupled receptor signaling 
pathway, calcium-mediated signaling, cellular response to IFN-γ, TNF-α, and IL-1, 
inflammatory response

Chemotaxis (3, 9)

CCL8 CCL8, MCP-2, 
HC14

Monocyte, neutrophil and T cell chemotaxis, G-protein-coupled receptor signaling 
pathway, cellular response to IFN-γ, TNF-α, and IL-1, chronic inflammatory response, 
positive regulation of ERK1 and ERK2 cascade, positive regulation of GTPase activity, 
negative regulation of leukocyte proliferation

Chemotaxis (3)

CCL17 CCL17, TARC, 
ABCD-2

Monocyte and T cell chemotaxis, G-protein-coupled receptor signaling pathway, 
cellular response to IFN-γ, TNF-α, and IL-1, inflammatory response, positive regulation 
of ERK1 and ERK2 cascade, positive regulation of GTPase activity

Chemotaxis/T cells (5)

CCL18 CCL18, PARC, 
MIP-4, AMAC-1, 
DC-CK1

Monocyte, neutrophil and T cell chemotaxis, G-protein-coupled receptor signaling 
pathway, cellular response to IFN-γ, TNF-α, and IL-1, inflammatory response, positive 
regulation of ERK1 and ERK2 cascade, positive regulation of GTPase activity

Chemotaxis (3)

CCL19 CCL19, MIP-3β, 
ELC

Mature DC and T cell chemotaxis, G-protein-coupled receptor signaling pathway, T cell 
costimulation, cell maturation, cellular response to IFN-γ, TNF-α, and IL-1, inflammatory 
response, activation of JUN kinase activity, establishment of T cell polarity, immunological 
synapse formation, inflammatory response, positive regulation of IL-1β, IL-12, and TNF-α 
secretion, positive regulation of ERK1 ERK2 JNK cascade, response to PGE

Chemotaxis,  
chemotaxis/T cells

(3, 5)

CCL20 MIP-3α, LARC, 
Exodus

Immature DC monocyte neutrophil and T cell chemotaxis, G-protein-coupled receptor 
signaling pathway, cellular response to IL-1, TNF-α, and LPS, inflammatory response, 
positive regulation of ERK1 and ERK2 cascade

Th1/B cells (19)

CCL21 CCL21, SLC, 
6Ckine, TCA4

Mature DC neutrophil and T cell chemotaxis, G-protein-coupled receptor signaling 
pathway, T cell costimulation, cell maturation, cellular response to IFN-γ, TNF-α, 
and IL-1, inflammatory response, cell maturation, establishment of T cell polarity, 
negative regulation of DC dendrite assembly, positive regulation of DC APC function, 
immunological synapse formation, inflammatory response, activation of GTPase 
activity, cellular response to IL-1 and TNF-α, positive regulation of ERK1 ERK2 JNK 
cascade, response to PGE

Chemotaxis, 
chemotaxis/T cells

(3, 5)

CCL22 CCL22, MDC, 
ABCD-1, 
DC/B-CK

Monocyte and T cell chemotaxis, G-protein-coupled receptor signaling pathway, 
cellular response to IFN-γ, TNF-α, and IL-1, inflammatory response, positive regulation 
of ERK1 and ERK2 cascade, positive regulation of GTPase activity

Chemotaxis/T cells (5)

CCR2 CCR2, CD192, 
CC-CKR2

Monocyte, immature DC and lymphocyte chemotaxis, G-protein-coupled receptor 
signaling pathway, positive regulation of inflammatory response, JAK–STAT cascade, 
negative regulation of eosinophil degranulation, positive regulation of Th1 immune 
response, negative regulation of Th2 immune response, positive regulation of IL-1β, 
IL-2, IL-6, and TNF production

Chemotaxis/Th1/
cytotoxicity/activation

(9)

CCR4 CCR4, CD194, 
ChemR13, 
CC-CKR4

Monocyte and lymphocyte chemotaxis, G-protein-coupled receptor signaling pathway, 
inflammatory response, tolerance induction

Chemotaxis/Th1/
cytotoxicity/activation

(9)

CCR5 CCR5, CD195 Myeloid and lymphocyte chemotaxis, G-protein-coupled receptor signaling pathway, 
inflammatory response, negative regulation of macrophage apoptotic process, positive 
regulation of IL-1, IL-6, and TNF production, co-receptor of HIV

Chemotaxis/Th1/
cytotoxicity/activation, 
Th1/B cells

(9, 19)

CCR7 CCR7, CD197, 
CMKBR7, 
CC-CKR7, BLR2, 
EBI1

Monocyte mature DC and lymphocyte chemotaxis, G-protein-coupled receptor 
signaling pathway, inflammatory response, positive regulation of ERK1 and ERK2 
cascade, positive regulation of GTPase activity, establishment of T cell polarity, negative 
thymic T cell selection, positive regulation of JNK cascade, positive regulation of T cell 
costimulation and TCR signaling pathway, positive regulation of APC function, positive 
regulation of humoral immunity, regulation of IFN-γ, IL-1β, and IL-12 production

Chemotaxis/Th1/
cytotoxicity/activation

(9)

(Continued)
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name of 
the gene

Main names  
of the protein

Main immune functions and process Cluster of gene related 
to TLS presence

Reference

CD3e CD3, TCRE, 
IMD18

T cell activation and costimulation, TCR signaling pathway, negative thymic T cell 
selection, positive regulation of T cell proliferation and anergy, positive regulation of IFN-
γ, IL-2, and IL-4 production

Chemotaxis/T cells, 
chemotaxis/Th1/
cytotoxicity/activation

(5, 9)

CD4 CD4 T cell activation, T cell differentiation, T cell selection, cytokine production Chemotaxis/Th1/
cytotoxicity/activation, 
Th1/B cells

(9, 19)

CD5 CD5, LEU1 T cell costimulation, apoptotic signaling pathway, cell proliferation, cell recognition, 
receptor-mediated endocytosis

Th1/B cells (19)

CD8A CD8A, Leu2, p32 T cell activation, T cell-mediated immunity, cell surface receptor signaling pathway, 
cytotoxic T cell differentiation, defense response to virus

Chemotaxis/Th1/
cytotoxicity/activation

(9)

CD19 CD19, B4, CVID3 B-cell receptor signaling pathway, cell surface receptor signaling pathway, cellular defense 
response, phosphatidylinositol-mediated signaling, regulation of immune response

Chemotaxis/Th1/
cytotoxicity/activation

(9)

CD20 CD20, MS4A1, 
LEU-16

B-cell lineage, B-cell proliferation, humoral immune response Th1/B cells (18, 19)

CD28 CD28, Tp44 T cell costimulation, TCR signaling pathway, negative thymic T cell selection, positive 
regulation of T cell proliferation, positive regulation of IL-2, IL-4, and IL-10 production, 
immunological synapse, positive regulation of isotype switching to IgG, humoral 
immune response

Chemotaxis/Th1/
cytotoxicity/activation

(9)

CD38 CD38, ADPRC1 T cell activation, positive regulation of B-cell proliferation, B-cell receptor signaling 
pathway, negative regulation of apoptotic process, cell adhesion, calcium signaling, 
response to IL-1

Chemotaxis/Th1/
cytotoxicity/activation, 
Th1/B cells

(9, 19)

CD40 CD40, TNFRSF5 B-cell proliferation, inflammatory response, positive regulation of B-cell proliferation, 
positive regulation of MAP kinase activity, positive regulation of IL-12 production, 
positive regulation of isotype switching to IgG, regulation of Ig secretion, TNF-mediated 
signaling pathway

Chemotaxis/Th1/
cytotoxicity/activation, 
Th1/B cells

(9, 19)

CD40L CD40 ligand, 
TRAP, CD154, 
HIGM1, TNFSF5, 
IGM

B-cell differentiation and proliferation, T cell costimulation, Ig secretion, isotype 
switching, negative regulation of apoptotic process, inflammatory response, positive 
regulation of NF-kappaB transcription factor activity, positive regulation of T cell 
proliferation, positive regulation of IL-4, IL-10, and IL-12 production, TNF-mediated 
signaling pathway

Chemotaxis/Th1/
cytotoxicity/activation

(9)

CD62L CD62L, 
L-selectin, 
LECAM1, LAM1

Cell adhesion, leukocyte migration, regulation of immune response Chemotaxis/Th1/
cytotoxicity/activation

(9)

CD68 CD68, LAMP4, 
GP110, SCARD1

Cellular response to organic substance Chemotaxis/Th1/
cytotoxicity/activation

(9)

CD80 CD80, B7, BB1, 
B7-1, CD28LG1

T cell activation, T cell costimulation, intracellular signal transduction, 
phosphatidylinositol-mediated signaling, positive regulation of Th1 cell differentiation, 
positive regulation of αβT cell proliferation, positive regulation of IL-2

Chemotaxis/Th1/
cytotoxicity/activation

(9)

CD86 CD86, B7-2, B70, 
CD28LG2

B and T cell activation, T cell costimulation, cellular response to cytokine stimulus, DC 
activation, negative regulation of T cell anergy, phosphatidylinositol-mediated signaling, 
positive regulation of Th2 differentiation and T cell proliferation, positive regulation 
of IL-2 and IL-4 biosynthetic process, positive regulation of transcription and DNA-
templated, response to IFN-γ, TLR3 signaling pathway

Chemotaxis/Th1/
cytotoxicity/activation

(9)

CD200 CD200, OX-2 Regulation of immune response, negative regulation of macrophage activation, cell 
recognition

Tfh cells (12)

CSF2 CSF2, GM-CSF DC differentiation, macrophage activation, MAPK cascade, negative regulation of 
cytolysis, positive regulation of cell proliferation, positive regulation of IL-23 production, 
positive regulation of gene expression

Th1/B cells (19)

CTLA-4 CTLA-4, CD152, 
IDDM12, ALPS5, 
GSE

T cell costimulation, negative regulation of Treg differentiation, negative regulator of 
B-cell proliferation, B-cell receptor signaling pathway, positive regulation of apoptotic 
process

Chemotaxis/Th1/
cytotoxicity/activation

(9)

CXCL9 CXCL9, MIG, 
CMK

Neutrophil and T cell chemotaxis, Th1 polarization, G-protein-coupled receptor 
signaling pathway, inflammatory response, regulation of cell proliferation

Chemotaxis, Th1 
orientation

(3)

CXCL10 CXCL10, IP10 Neutrophil monocyte and T cell chemotaxis, Th1 polarization, G-protein-coupled 
receptor signaling pathway, inflammatory response, positive regulation of cell proliferation

Chemotaxis, chemotaxis/
Th1/cytotoxicity/
activation

(3, 9)

(Continued)

TABLe 2 | Continued
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name of 
the gene

Main names  
of the protein

Main immune functions and process Cluster of gene related 
to TLS presence

Reference

CXCL11 CXCL11, IP9, 
I-TAC

T cell chemotaxis, Th1 polarization, G-protein-coupled receptor signaling pathway, 
inflammatory response, positive regulation of cell proliferation

Chemotaxis, chemotaxis/
Th1/cytotoxicity/
activation

(3, 9)

CXCL13 CXCL13, BLC, 
BCA1, SCYB13

B and Tfh cell chemotaxis, germinal center formation, lymph node development, 
regulation of humoral immunity, regulation of cell proliferation

Chemotaxis, chemotaxis/ 
T cells, Tfh cells

(3, 5, 12, 
18, 19)

CXCR3 CXCR3, CD182, 
CD183, GPR9

Neutrophil and T cell chemotaxis, Th1 polarization, G-protein-coupled receptor 
signaling pathway, inflammatory response, apoptotic process, cell adhesion, calcium-
mediated signaling

Chemotaxis/Th1/
cytotoxicity/activation

(9)

FasLG Fas ligand, FASL, 
APTL, CD178, 
CD95L, TNFSF6, 
TNLG1A

T cell apoptotic process, activation of cysteine-type endopeptidase activity 
involved in apoptotic process, inflammatory cell apoptotic process, necroptotic 
signaling pathway, positive regulation of I-kappaB kinase/NK-kappaB signaling, 
positive regulation of cell proliferation, response to growth factor, transcription and 
DNA-templated

Chemotaxis/Th1/
cytotoxicity/activation

(9)

FBLN7 FBLN7, Fibulin-7, 
TM14

Cell adhesion Tfh cells (12)

GF11 GF11 Regulation of transcription Th1/B cells (19)

GNLY Granulysin, LAG2, 
NKG5

Cellular defense response, defense response to bacterium fungus, killing of cells of 
other organism

Chemotaxis/Th1/
cytotoxicity/activation

(9)

HLA-DRA HLA-DRA T cell costimulation, TCR signaling pathway, antigen processing and presentation 
of exogenous peptide or polysaccharide antigen via MHC class II, IFN-γ-mediated 
signaling pathway, immune response

Chemotaxis/Th1/
cytotoxicity/activation

(9)

ICAM-3 ICAM-3, CD50, 
ICAM-R

Cell adhesion, extracellular matrix organization, phagocytosis, regulation of immune 
response, stimulatory C-type lectin receptor signaling pathway

Chemotaxis/T cells (5)

ICOS ICOS, CD278 T cell costimulation, T cell tolerance induction, immune response Chemotaxis/Th1/
cytotoxicity/activation, 
Tfh cells

(9, 12)

IFN-γ IFN-γ T cell receptor signaling pathway, Th1-related cytokine Chemotaxis/Th1/
cytotoxicity/activation

(9)

IGSF6 IGSF6, DORA Cell surface receptor signaling pathway, immune response Th1/B cells (19)

IL1R1 IL1RA, IL1R, 
CD121A

Cell surface receptor signaling pathway, IL-1-mediated signaling pathway, regulation of 
inflammatory response, response to TGF-β

Th1/B cells (19)

IL1R2 IL1R2, CD121b, 
IL1RB

Inflammatory response, cytokine-mediated signaling pathway Th1/B cells (19)

IL-2 IL-2, lymphokine, 
TCGF

MAPK cascade, T cell differentiation, adaptive immune response, extrinsic apoptosis 
signaling pathway in absence of ligand, NK cell activation, negative regulation of 
B-cell apoptotic process, positive regulation of B and activated T cell proliferation, 
positive regulation of Ig secretion, positive regulation of IFN-γ and IL-17 production, 
positive regulation of isotype switching to IgG, positive regulation of Treg differentiation, 
regulation of T cell homeostatic proliferation

Chemotaxis/Th1/
cytotoxicity/activation

(9)

IL2RA IL2RA, CD25, 
IL2R, p55

Activation-induced cell death of T cells, positive regulation of activated T cell 
proliferation, positive regulation of T cell differentiation, inflammatory response, IL-2-
mediated signaling pathway, regulation of T cell tolerance induction

Th1/B cells (19)

IL-10 IL-10, TGIF, 
GVHDS, CSIF

B-cell differentiation, inflammatory response, negative regulation of T- and B-cell 
proliferation, negative regulation of apoptotic process, negative regulation of cytokine 
activity, negative regulation of IFN-γ, IL-1, IL-12, IL-18, IL-6, IL-8, and TNF production, 
negative regulation of myeloid DC activation, positive regulation of JAK-STAT cascade, 
regulation of isotype switching, Th3/Tr1/regulatory immune responses

Chemotaxis/Th1/
cytotoxicity/activation, 
Th1/B cells

(9, 19)

IL-12B IL12B, CLMF, 
NKSF, IMD28, 
IMD29

Positive regulation of Th1 and Th17 immune responses, Th differentiation, cellular 
response to IFN-γ, defense response to virus, positive regulation of NK and T cell 
activation, positive regulation of memory T cell differentiation, regulation of IL-10, IL-12, 
IL-17, TNF-α, and GM-CSF production, positive regulation of NK T cell activation and 
proliferation, positive regulation of T cell-mediated cytotoxicity, regulation of tyrosine 
phosphorylation of STAT1

Chemotaxis/Th1/
cytotoxicity/activation

(9)

IL-15 IL-15 NK T cell proliferation, extra-thymic T cell selection, inflammatory response, LN 
development, positive regulation of NK and T cell proliferation, positive regulation of 
IL-17 production, signal transduction, tyrosine phosphorylation of STAT5

Chemotaxis/Th1/
cytotoxicity/activation

(9)

(Continued)

TABLe 2 | Continued
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name of 
the gene

Main names  
of the protein

Main immune functions and process Cluster of gene related 
to TLS presence

Reference

IL-16 IL-16, LCF, NIL16 Immune response, induction of positive chemotaxis, regulation of transcription and 
DNA-templated

Chemotaxis/T cells (5)

IL-18 IL-18, IGIF, IL1γ, 
IL1F4

MAPK cascade, Th1/Th2 immune response, GM-CSF biosynthetic process, 
inflammatory response, IFN-γ, IL-2, and IL-13 biosynthetic process, NK cell activation 
and proliferation, positive regulation of IL-17 and IFN-γ production, positive regulation 
of tyrosine phosphorylation of STAT3

Chemotaxis/Th1/
cytotoxicity/activation

(9)

IRF4 IRF4, MUM1, 
LSIRF

T cell activation, Th17 cell lineage commitment, IFN-γ-mediated signaling pathway, 
positive regulation of IL-10, IL-13, IL-2, and IL-4 biosynthetic process, regulation of Th 
cell differentiation, Type-I IFN signaling pathway, positive regulation of transcription

Th1/B cells (19)

ITGAL ITGAL, CD11A, 
LFA-1

Extracellular matrix organization, T cell activation via TCR contact with antigen bound 
to MHC molecule on APC, leukocyte migration, heterotypic cell–cell adhesion, immune 
response, integrin-mediated signaling pathway, inflammatory response, phagocytosis, 
regulation of immune response

Chemotaxis/T cells (5)

ITGAD ITGAD, ADB2, 
CD11D

Extracellular matrix organization, heterotypic cell–cell adhesion, immune response, 
integrin-mediated signaling pathway

Chemotaxis/T cells (5)

ITGA4 ITGA4, CD49D B-cell differentiation, cell-matrix adhesion, diapedesis, extracellular matrix organization, 
heterotypic cell–cell adhesion, integrin-mediated signaling pathway, leukocyte migration 
tethering or rolling, regulation of immune response

Chemotaxis/T cells (5)

LTA LTA, Lymphotoxin 
α, TNFB, TNFSF1

Positive regulation of apoptotic process, cell–cell signaling, positive regulation of 
humoral immune response mediated by circulating Ig, LN development, positive 
regulation of IFN-γ production, TNF-mediated signaling pathway

Chemotaxis/Th1/
cytotoxicity/activation

(9)

MADCAM1 MADCAM1 Cell–matrix adhesion, extracellular matrix organization, heterotypic cell–cell adhesion, 
integrin-mediated signaling pathway, leukocyte tethering or rolling, receptor clustering, 
regulation of immune response, signal transduction

Chemotaxis/T cells (5)

PDCD1 PD-1 T cell costimulation, humoral immune response, positive regulator of T cell apoptotic 
process

Tfh cells (12)

PRF1 Perforin, PFP, 
FLH2, PFN1

Apoptotic process, cellular defense response, cytolysis, defense response to tumor 
cell, immunological synapse formation, transmembrane transport

Chemotaxis/Th1/
cytotoxicity/activation

(9)

SDC1 SDC, CD138, 
syndecan

Cell migration, inflammatory response, canonical Wnt signaling pathway Th1/B cells (19)

SGPP2 SGPP2, Spp2, 
SPPase2

Regulation of immune response, positive regulation of signal transduction, positive 
regulation of NK-mediated cytotoxicity

Tfh cells (12)

SH2D1A Signal transduction of T- and B-cell activation Tfh cells (12)

STAT5A STAT5A, MGF JAK–STAT cascade, peptidyl-tyrosine phosphorylation, regulator of transcription Th1/B cells (19)

TBX21 T-Bet, TBLYM T cell differentiation, lymphocyte migration, positive regulation of transcription and 
DNA-templated, positive regulation of isotype switching to IgG

Chemotaxis/Th1/
cytotoxicity/activation

(9)

TIGIT TIGIT, VSTM3, 
VSIG9

T cell co-inhibitory receptor, negative regulation of IL-12 production, positive regulation 
of IL-10 production

Tfh cells (12)

TNF-α TNF-α, DIF, 
TNFSF2

I-kappaB kinase/NF-kappaB signaling, JNK cascade, MAPK cascade, activation of 
MAPK and MAPKKK activities, humoral immune response, inflammatory response, 
necroptotic signaling pathway, negative regulation of cytokine secretion, negative 
regulation of cytokine and chemokine production, negative regulation of transcription 
and DNA-templated, positive regulation of ERK1 and ERK2 cascade, positive 
regulation of I-kappaB kinase/NF-kappaB signaling, positive regulation of JUN and 
MAP kinase activity, positive regulation of apoptotic process, positive regulation of 
humoral response and Ig secretion

Chemotaxis/Th1/
cytotoxicity/activation

(9)

TRAF6 TRAF6, RNF85 FcE receptor signaling pathway, JNK cascade, MyD88-dependent TLR signaling 
pathway, MyD88-independent TLR signaling pathway, TCR signaling pathway, Th1 
immune response, activation of MAPK activity, Ag processing and presentation 
of exogenous peptide Ag, myeloid DC differentiation, positive regulation of T cell 
activation proliferation and cytokine production, positive regulation of IL-12 production, 
response to IL-1, TLR signaling pathway

Th1/B cells (19)

VCAM-1 VCAM-1, CD106 B-cell differentiation, acute inflammatory response, cell–matrix adhesion, cellular 
response to TNF-α and VEGF, IFN-γ-mediated signaling pathway, leukocyte tethering 
or rolling, positive regulation of T cell proliferation, regulation of immune response, 
response to hypoxia

Chemotaxis/T cells (5)

Genes selectively overexpressed in tumors having high density of TLS in cancer patients.

TABLe 2 | Continued
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Further efforts should be made to optimize TLS-quantifying 
methods. Indeed the use of multicolor IHC will facilitate their 
characterization, by allowing the simultaneous detection of all 
major cell types and providing an extensive analysis of their 
cellular complexity.

TLS neOGeneSiS

The cellular composition and spatial organization of TLS share 
many similarities with those of SLO. Indeed, an increasing 
number of studies performed in a large variety of inflammatory 
disorders, in mice and in humans, suggest that their formation 
and regulation involve the same set of chemokines than those 
acting in lymphoid organogenesis.

Positive Regulators
Lymphotoxin, CCL21, and CXCL13 were shown to play a major 
role during TLS neogenesis, and are related to TLS presence in 
human tumors (Table 2). In a mouse model of atherosclerosis, 
the activation of LTβR+ medial smooth muscle cells in the 
abdominal aorta by LT produced by CD11c+ CD68+ Ly6Clo 
monocytes leads to the expression of CCL19, CCL21, CXCL13, 
and CXCL16 chemokines, which in turn trigger the recruitment 
of lymphocytes to the adventitia and the development of TLS 
(31). The same observation was made by Thaunat et al. in a rat 
model of chronic allograft rejection, in which M1-macrophages 
behaved as LTi cells in diseased arteries by expressing high levels 
of LTα and TNF-α (32). In human NSCLC, a TLS-related gene 
signature was identified, including CCL19, CCL21, IL-16, and 
CXCL13 (5) (Table 2). Interestingly, Matsuda et al. recently sug-
gested in a mouse intrapulmonary tracheal transplant model that 
lymphoid neogenesis was dependent on spleen tyrosine kinase 
(Syk)-signaling. Decreased expression of CXCL12, CXCL13, and 
VEGF-α, lower B-cell recruitment into allograft, and smaller 

lymphoid aggregate area were observed in Syk-deficient recipient 
mice as compared to controls (33).

The generation of HEVs is also a critical step in TLS 
neogenesis. HEV endothelial cells express LTβR, and the con-
tinuous engagement of LTβR on HEVs by LT+ CD11c+ DCs 
is critical for the induction and maintenance of the mature 
HEV phenotype required for the extravasation of blood lym-
phocyte into LNs (34–37). In addition, CD11c+ DCs can be 
sources of proangiogenic factors, such as VEGF, favoring the 
development of HEVs, and ultimately lymphocyte entry into 
LN (38–41). Consistently, LTβ expression correlates with that 
of HEV-associated chemokines in human breast cancer, and 
DC-Lamp+ DC density correlates with HEV density, lymphocyte 
infiltration, and favorable clinical outcome (11). Other cell types 
were shown to favor the development of HEV. For instance, 
ectopic expression of CCL21 in the thyroid gives rise first to 
the recruitment of CD3+ CD4+ T cells followed by DC, and this 
DC-T cross-talk is required for the local development of both 
TLS and mature HEV (42). Tumor-infiltrating CD8+ T cells and 
NK cells were also shown to drive the de novo development of 
PNAd+ TNFRI+ CCL21+ HEV-like blood vessels through the 
production of LT and IFN-γ (43).

Th17 cells share many developmental and effector markers 
with LTi cells, including the nuclear hormone receptor retinoic 
acid-related orphan receptor γt (RORγt), which promotes not 
only the production of IL-17 and IL-22 by Th17 cells, LTi cells, 
and other RORγt+ innate lymphoid cells (ILCs), but also cell 
membrane expression of LT [reviewed in Ref. (44)]. In mice lungs, 
the formation of TLS [called here induced-bronchus-associated 
lymphoid tissues (i-BALT)] following LPS sensitization was 
dependent of IL-17 production by T cells, including Th17 and 
γδ T cells (45). This observation was also observed in a mouse 
experimental autoimmune encephalomyelitis (EAE) model of 
multiple sclerosis (46). Similarly, IL-17α-deficient mice exposed 
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to cigarette smoke displayed decreased number of ectopic lym-
phoid follicles and decreased expression of CXCL12 as compared 
to wild-type mice in a model of chronic obstructive lung disease 
(47). It has also been suggested that Th17 cells, and IL-17 and 
IL-21 secretion by these cells can promote TLS neogenesis within 
human renal grafts, and are associated with the presence of active 
GC B cells and fast chronic rejection (48).

Other inflammatory cytokines also seem to promote TLS 
neogenesis. In rheumatoid arthritis (RA), high protein levels of 
IL-23 and IL-17F were detected in the synovial fluid of patients 
displaying ectopic lymphoid follicles, and a positive correlation 
was observed between CD21L mRNA (as a TLS marker) and 
IL-23 but also IL-17F, IL-21, and IL-22 mRNAs (49). IL-22 was 
also proposed to favor TLS induction (50). In a mouse model 
of virus-induced autoantibody formation in the salivary glands, 
it was shown that the ligation of IL-22R expressed by epithelial 
cells and fibroblasts leads to CXCL12 and CXCL13 production, 
allowing B-cell recruitment and TLS organization. In that case, 
IL-22 was mainly produced by γδ T cells and to a lesser extent by 
ILCs and NK cells during the early phase post-infection, and then 
by αβ T cells later after infection.

negative Regulators
On the opposite, IL-27, a cytokine known to inhibit effector 
Th17 responses was recently suggested to negatively regulate the 
development of ectopic lymphoid-like structures in the synovial 
tissues of RA patients. While patients having a high density 
of TLS displayed high synovial levels of IL-17 and IL-21, high 
levels of IL-27 were observed in patients devoid of any TLS, and 
IL-27 expression was inversely correlated with CD3+ and CD20+ 
infiltrates and with synovitis. This observation was confirmed in 
a mouse model of RA (51).

Among the immune cells infiltrating tumors are regulatory 
T cells (Tregs), which have been considered in many reports as 
a marker of poor prognosis in cancer (52, 53). Tregs have been 
reported to negatively interfere with BALT development. Indeed 
in CCR7-deficient mice, BALTs developed spontaneously in the 
absence of infection, an event that is directly reverted by the 
adoptive transfer of wild-type Tregs but not CCR7−/− Tregs (54). 
In human breast cancer, Tregs were detected in lymphoid aggre-
gates surrounding tumor nests, and their presence was linked 
with the poor clinical outcome of patients (55). In mice bearing 
breast tumors, Treg depletion led to an increased density of HEV 
within the tumor, facilitated T cell recruitment from the blood, 
and ultimately induced tumor destruction (56). This observation 
is in accordance with a human study showing that HEVhigh breast 
tumors correlated with a high LT-β expression, a high density 
of tumor-infiltrating mature DC, and a decreased FoxP3+/CD3+ 
T cell ratio (11).

More recently, a new mechanism involving regulation of 
TLS formation by Tregs was found, by dampening neutrophilic 
inflammation (57). The presence of neutrophils seemed to be 
critical for the neogenesis and the humoral immune function 
of i-BALT by enhancing B-cell activation and survival, Ig class 
switching to IgA as well as plasma cell survival (57).

Regulatory T cells have been shown to dampen the effec-
tor T  cell response promoted within tumor-associated TLS. 

Treg  depletion causes immune-mediated tumor destruction 
associated with an increased expression of co-stimulatory 
ligands by DCs and proliferation of T cells in a murine model 
of lung adenocarcinoma (58). Further studies should be carried 
out to analyze the prognostic importance of Tregs and their 
immunosuppressive potential in cancer patients according to 
their localization.

Altogether, TLS neogenesis and lymphoid organogenesis 
share many common mechanisms. On the one hand, the produc-
tion of inflammatory cytokines (LT, IL-17, IL-22, and IL-23) and 
lymphoid chemokines (CCL21, CXCL12, and CXCL13), HEV 
development as well as the activation of DCs, B, and effector 
cells seem to be crucial events leading to TLS neogenesis under 
inflammatory conditions, such as cancers. On the other hand, the 
presence of Tregs appears to negatively impact TLS formation and 
TLS-associated T cell responses.

MAniPULATiOn OF TLS FOR 
A THeRAPeUTiC inTeRvenTiOn 
in CAnCeR

A series of studies suggest that TLS are sites for generation and 
maintenance of adaptive anti-tumor responses (10). Therefore, 
TLS induction could be used as a therapeutic intervention for a 
better tumor control and prolonged survival of cancer patients. 
Since LN and TLS share many similarities in terms of cellular 
composition and organization, deciphering the mechanisms of 
lymphoid organogenesis enables to first highlight some putative 
key molecules that can support TLS neogenesis.

Targeting Molecules involved in Lymphoid 
Organogenesis
The key cross-talk between LTi cells and lymphoid tissue organ-
izer cells (LTo cells that are cells of mesenchymal origin) occur-
ring during LN development involves several molecules along 
with RANK and its ligand, which lead to LTβR signaling (59). 
Therefore, targeting RANK/LT pathway may modulate TLS devel-
opment through the activation of LTo cells. Currently, antagonists 
of LTα (Pateclizumab NCT01225393), LTβR (Baminercept, 
NCT01552681) and RANK signaling (NCT01973569) are under 
investigation in several inflammatory situations. A special atten-
tion should be made in cancer setting where these antagonists 
might block TLS formation and, hence, reduce survival. The use 
of agonists might rather present a benefit to cancer patients but 
no drugs have been developed so far.

Activation of LTβR signaling pathway in LTo cells induces 
VCAM-1 and ICAM-1 upregulation, and ultimately leukocyte 
infiltration (60). Because both molecules are known to be induced 
by inflammation, an ICAM-1 antagonist called Alicaforsen 
has been tested in autoimmune diseases (NCT00048113, 
NCT00063830). We can speculate that the development of 
VCAM-1/ICAM-1 agonists would promote LTi-like cells-LTo 
clusterings and improve the leukocyte recruitment in order to 
generate cancer-associated TLS.

IL-7 receptor (CD127) signaling has been reported as a 
key pathway for TLS neogenesis (61). IL-7 is not only crucial 
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for the survival and proliferation of LTi cells but also for GC 
formation and Tfh differentiation (62). To date, only one phar-
macologic agent (IL-7R) is under investigation in NOD mice to 
deplete autoreactive T cells and to regulate pro-inflammatory 
 mediators (63).

Altogether, as a counterpart of autoimmune diseases, devel-
opment of agonist molecules targeting lymphoid organogenesis 
might be a promising strategy for the initiation and the mainte-
nance of TLS in cancers.

Modulation of Chemokine and Cytokine 
networks
Lymphoid chemokines represent a good therapeutic target for 
the modulation of TLS (Table  2). The CCL19–CCL21/CCR7 
and CXCL13/CXCR5 couples are induced after LT-βR signaling 
during lymphoid genesis (60). They are overexpressed in TLS 
of melanoma (21), colorectal (3), and lung (5) cancer patients. 
Using lymphoid chemokines or their agonists could be a promis-
ing strategy to induce TLS neogenesis in cancers. For example, 
CCL21 has been shown to attract circulating naïve T cells and 
DCs in tumors, and contribute to the control of tumor growth 
(64–66). A Phase I clinical trial is currently under investigation 
in NSCLC patients receiving intra-tumoral injections of CCL21-
transduced autologous DCs (NCT00601094, NCT01574222). It is 
tempting to speculate that this vaccine therapy would boost TLS 
formation in tumors associated with an influx of lymphocytes, an 
effective anti-tumor immune response, and a reduction of tumor 
burden.

IL-21, which is mainly secreted by Th17 cells and neutro-
phils, represents also an interesting molecular target. First, this 
cytokine has been shown to promote TLS neogenesis in lungs 
after acute LPS exposure and IL-21−/− mice exhibit fewer TLS in 
allografts than the control group (57). Second, IL-21 can enhance 
B and plasma cell survival as well as B-cell-dependent immunity, 
and induce conventional T cells to become refractory to Treg 
immunosuppression (48, 57, 67). Even if IL-21 can block IL-2 
production with deleterious consequences in terms of Treg dif-
ferentiation, IL-21 can substitute for IL-2 as a T cell growth factor 
(68). Recombinant IL-21 is currently tested in many clinical 
trials, alone or in combination with chemotherapy, therapeutic 
antibodies or tyrosine kinase inhibitors (e.g., NCT00617253, 
NCT00389285, NCT00095108, NCT01629758, NCT00336986, 
and NCT01489059). Altogether, it is likely that IL-21 could 
promote a robust anti-tumor immunity in a TLS-dependent 
manner.

COnCLUSiOn AnD PeRSPeCTiveS

By facilitating the direct entry of CCR7+ naïve T cells and 
CXCR5+ B cells into tumors through HEVs, TLS allow T cells 
to differentiate into effector cells upon contact with mature DCs 
and B cells to form GC, protected from the immunosuppressive 
milieu of the tumor microenvironment. Therefore, TLS represent 
sites for the induction and maintenance of the local and systemic 
anti-tumor responses, which confer long-term protection against 
metastasis and, hence, correlate with good prognosis for the 
patients. Indeed, therapies aiming to increase TLS formation may 
allow generating anti-tumor responses directly in situ and would 
be beneficial in patients with high mutational load. TLS may also 
constitute biomarkers of anti-tumor response in patients under-
going immunotherapies. Thus, TLS induction was observed in 
cervical cancer patients vaccinated with HPV DNA (69) or with 
G-VAX (70), and one may speculate that TLS signature could be 
used to evidence response to therapies that unlock the adaptive 
immune responses.
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