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The Fas/FasL system is known, first and foremost, as a potent apoptosis activator. 
While its proapoptotic features have been studied extensively, evidence that the Fas/
FasL system can elicit non-death signals has also accumulated. These non-death 
signals can promote survival, proliferation, migration, and invasion of cells. The key 
molecular mechanism that determines the shift from cell death to non-death signals 
had remained unclear until the recent identification of the tyrosine phosphorylation in the 
death domain of Fas as the reversible signaling switch. In this review, we present the 
connection between the recent findings regarding the control of Fas multi-signals and 
the context-dependent signaling choices. This information can help explain variable roles 
of Fas signaling pathway in different pathologies.
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inTRODUCTiOn

Fas (TNFRSF6/CD95) belongs to the tumor necrosis factor receptor superfamily. When bound to 
Fas ligand (FasL) or agonistic antibodies, Fas can recruit Fas-associated death domain-containing 
protein (FADD), procaspase-8, procaspase-10, and cellular FLICE inhibitory proteins (c-FLIPs). 
This leads to the formation of the death-inducing signaling complex (DISC), the caspase cascade 
and ultimately apoptosis (1, 2). Apoptosis mediated by the Fas/FasL system is essential for shut-
ting down chronic immune responses (3–5) and preventing autoimmunity and cancer (6). The 
downregulation of Fas in some cancers prompted the opinion that it was a tumor suppressor. 
However, while Fas is often downregulated in cancer, it rarely is completely lost (7). Moreover, Fas 
also mediates cell survival, proliferation, and motility, which can promote autoimmunity, cancer 
growth, and metastasis (7–12).

Current Fas-targeting therapies aim to activate or inhibit Fas signaling (13, 14). However, without 
understanding when and why Fas assumes different roles in different pathological contexts, these 
therapies face a major challenge.

Physiologically, the presence of different FasL forms is an important extrinsic factor that can influ-
ence Fas signaling modes. Membrane-bound FasL is essential for activating Fas-mediated apoptosis 
and thus instrumental in the safeguard against autoimmunity and cancer. Meanwhile, excess soluble 
FasL (sFasL) may promote autoimmunity and tumorigenesis through non-apoptotic activities (6). 
However, knowing the different functions of FasL does not sufficiently describe how Fas ultimately 
takes the apoptotic or non-apoptotic role.
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Fas possesses the protein-interacting domain, death domain 
(DD) (15, 16). Fas multi-signaling requires an efficient molecular 
switch in DD allowing different signaling complex formations. 
This agrees with the observation that most disease-causing muta-
tions are in DD (17, 18). This review discusses the regulation of 
Fas multi-signaling at DD level by tyrosine phosphorylation and 
implications in human pathologies.

DeATH DOMAin

Unbound human Fas (hFas) DD comprises six α-helices (19) 
(Figure 1A). Fas DD can interact with many adaptors, includ-
ing FADD (20–23). Resolved structures of Fas/FADD complex 
have identified some amino acids whose mutations could have 
pathological consequences (24–26). However, challenges remain 
in determining DD-mediated complex structure since the full-
length receptor and the post-translational modifications, such as 
DD tyrosine phosphorylation, have yet to be taken into account.

DeATH DOMAin TYROSine 
PHOSPHORYLATiOn

While structural studies shed light into the DISC formation, an 
important question remained: “What gives the cue for Fas DD 
to form the DISC or a non-death-inducing signaling complex 
(NDISC)?” Because tyrosine Y232 and Y291 in hFas DD are 
phosphorylable (24), tyrosine phosphorylation is a prime 
candidate for the mechanism that determines when and which 
signaling complex is formed. Earlier studies reported that the 
Y291 of overexpressed hFas inhibited survival signals in mouse 
neutrophil (25). In the rat, whose Fas lacks the equivalent of Y291 
of hFas (Figure  1A), Fas tyrosine phosphorylation associated 
with apoptosis in hepatocytes (26, 28). For nearly 20 years after 
the first report of hFas phosphotyrosine (pY), whether Y232 and/
or Y291 phosphorylation was a switch for hFas multi-signaling 
had remained unclear, and the functions of each DD tyrosine had 
also remained unknown. The lag was due to the lack of practical 
pY mimetics for functional analyses and site-specific hFas pY 
detection.

Our recent study based on the analysis of evolution-guided Fas 
pY proxies and site-specific pY detection has revealed that DD 
tyrosine phosphorylation of hFas is the reversible antiapoptotic/
pro-survival multi-signaling switch, namely, the DD tyrosine 
phosphorylation turns off the proapoptotic signal and turns 
on the pro-survival signals by dominantly inhibiting the DISC 
formation and apoptosis (Figure  1B) while promoting FasL-
induced cell proliferation and migration (Figure 1C). We have 
also shown that pY232 and pY291 are regulated distinctly in some 
cancers (27).

THe ROLeS OF Fas DeATH DOMAin 
TYROSine PHOSPHORYLATiOn in 
DiSeASe eTiOLOGY

That Fas DD pY dominantly inhibits Fas apoptotic signal and 
activates pro-survival signals invites a reassessment of our view 

about how Fas exerts its action in pathologies, such as cancer. 
A current opinion suggests that Fas signaling requires at least 
one wild-type FAS allele and that the signal transition from 
non-apoptotic to apoptotic signaling occurs when the Fas signal 
strength, exhibited by wild-type Fas protein, exceeds a threshold. 
This opinion is based on two reasons: (1) a mutated FAS allele 
that causes the loss of apoptotic function is often considered com-
pletely non-functional and (2) when Fas mutations are detected, 
tumors rarely have the loss of heterozygosity (18).

The threshold-based switch notion suggests that apoptotic 
signal requires two wild-type FAS alleles (strong signal) to reach 
its high threshold, while the threshold for the non-apoptotic 
signal is so low that it is attainable with one wild-type FAS allele 
(29). Based on the recent findings, the intermolecular and intra-
molecular “death-off ” dominant inhibitory function of DD pY 
and its activating function for survival signals (27) suggest that 
the DD tyrosine phosphorylation is a highly efficient “on-off ” 
multi-signaling switch. This information extends our views on 
Fas multi-signaling in diseases from threshold-based signaling 
switch to cover the concept that the apoptotic signal requires con-
ditions that favor double dephosphorylation of the DD tyrosines, 
and the pro-survival signal is achievable in conditions that favor 
the phosphorylation of least one DD tyrosine.

ReGULATORS OF Fas DeATH DOMAin 
TYROSine PHOSPHORYLATiOn

Src-Family Kinases
Src-family kinases (SFKs), including Src, Yes, Fyn, Blk, Yrk, Fgr, 
Hck, Lck, and Lyn, are protein tyrosine kinases that are prefer-
entially expressed in different tissues (30, 31). Data from rodent 
models indirectly implied the role of Fyn and Yes as positive 
regulators of Fas-mediated apoptosis (32–36). Although, while 
some SFKs might play a proapoptotic role, they may not directly 
participate in Fas tyrosine phosphorylation. For example, the 
activation of human eosinophils led to a transient Fas tyrosine 
phosphorylation, followed by Lyn activation, which occurred 
concomitantly with Fas dephosphorylation (37). In fact, the 
phosphorylation of Fas by SFKs in cells had not been demon-
strated till recently.

Studies of hFas in human colorectal cancer (CRC) cells have 
shown that Src and Yes play an important antiapoptotic and 
pro-survival roles in hFas signaling by phosphorylating hFas at 
Y232 and Y291 (27). The phosphorylation of Fas DD by Src and 
Yes leads to an inhibition of apoptosis and the enhanced cancer 
cell proliferation and migration, which are consistent with the 
oncogenic roles of these SFKs often reported in human cancers 
(38). The findings that (1) the levels of pY232 and pY291 increase 
in several types of cancer, including breast, ovarian, and colon 
cancers and (2) pY232 and pY291 levels appear to correlate 
with CRC progression (27) are in line with observations that the 
elevated Src and Yes levels correlate with advanced stages and 
metastatic potential of tumors and poor prognosis (39–42). In 
human glioblastoma multiforme (GBM), the Fas–Yes interaction 
and subsequent activation of PI3K/Akt pathway mediate glio-
blastoma invasion, and the Yes expression and phosphorylation 
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FiGURe 1 | Regulation of Fas multi-signaling by death domain tyrosine phosphorylation and pathologies.  
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(A) Fas death domain structural model demonstrating six antiparallel α-helices (PDB: 1DDF) (19) with the side chains of Y232 and Y291 indicated (left) and amino 
acid sequences of human Fas and rat Fas encompassing the death domain with positions of each helix indicated (right; α, α-helix). Tyrosine phosphorylation sites in 
hFas and corresponding residues in rat Fas are highlighted. Amino acid numbering is according to UniProt entries P25445 and Q63199. (B) A diagram depicting 
different states of Fas, with respect to its ability to transmit apoptotic signal, as affected by its death domain phosphorylation [adapted from Ref. (27)]. The 
proapoptotic state is allowed when both DD tyrosines are dephosphorylated. The dominant proapoptotic state takes place when Y232 and/or Y291 is 
phosphorylated (some examples of possible dominant-negative scenarios are given). (C) A simplified illustration of Fas multi-signaling regulation by tyrosine 
phosphorylation switch. The non-death signaling triggered by activators such as soluble FasL (sFasL) is mediated by Src or Yes phosphorylation of the death 
domain tyrosines. The death signaling triggered by activators such as cross-linked FasL (cFasL) or membrane FasL (mFasL) is permitted by the dephosphorylation 
of the death domain tyrosines by SHP-1. (D) A diagram outlining pathologically relevant parameters leading to contexts that define the role of Fas signaling in human 
diseases (see text).

FiGURe 1 | Continued
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of SFKs are present along with increased FasL expression in the 
tumor/host interaction zone in tumors of GBM patients (43). 
Additionally, Fas–Yes association leads to the activation of PI3K/
Akt pathway and cell migration in human triple-negative breast 
cancer model (44). These observations support the role of SFKs 
in the Fas phosphorylation and tumor malignancy.

A point to keep in mind is the context under consideration. 
The roles of SFKs in Fas signaling and even the identity of the 
SFKs involved may differ appreciably in different tissues, disor-
ders, or disease stages since expression profiles of kinases can 
vary significantly from one setting to another. For instance, while 
Src and Yes are key regulators of hFas phosphorylation in some 
solid tumors, this may not hold true for some hematopoietic 
malignancies where other oncogenic SFKs, such as Lck or Fgr 
are prominently present. Additionally, divergence in terms of 
regulatory specificity exists among model systems. For example, 
a non-conservative tyrosine phosphorylation site in Fas DD 
among primates and rodents (27) suggests diverse roles and 
identities of kinases that regulate Fas phosphorylation in differ-
ent species. Therefore, extrapolating the regulation of Fas tyrosine 
phosphorylation switch from one species to another is likely to be 
inappropriate. Thus far, current information supports the notion 
that oncogenic SFKs, such as Src and Yes, are responsible for the 
tyrosine phosphorylation of DD of hFas and hence are positive 
regulators of Fas survival signals and negative regulators of Fas 
apoptotic signal.

Src Homology Domain 2-Containing 
Tyrosine Phosphatase-1
Src homology domain 2 (SH2)-containing tyrosine phosphatase-1 
(SHP-1), a protein tyrosine phosphatase, is predominantly 
present in hematopoietic cells and to a lesser extent in other cell 
types, including epithelial cells (45–48). Human SHP-1 appears 
to be a positive regulator of Fas-mediated apoptosis (27, 49) and 
a negative regulator of survival (25, 50), proliferation (51), and 
epithelial–mesenchymal transition (52). SHP-1 binding to hFas 
requires Y291 of Fas DD (25). In human CRC cells, it function-
ally opposes the effects of Src and Yes by dephosphorylating both 
pY232 and pY291, switching Fas from the antiapoptotic state to 
the proapoptotic/anti-proliferative state (Figure 1C) (27).

Notably, the rodent models demonstrate that the roles of 
SHP-1 depend on contexts, including tissues, diseases, and spe-
cies. For example, Fas-mediated apoptosis was defective in the 
lymphoid organs but not in hepatocytes and thymocytes from 
SHP-1-deficient mice (49, 53). In mouse B cells, SHP-1 negatively 

regulates the DISC formation through its phosphatase activity 
on Vav1 (54). In rat granulocytes, SHP-1-CEACAM1 binding is 
important for downregulating FasL-induced apoptosis (53). The 
fact that rat Fas lacks the tyrosine shown to be the SHP-1-binding 
site in hFas (25) implies its distinct requirement for interacting 
with SHP-1 that may explain the different roles of rodent SHP-1 in 
Fas signaling. Like SFKs, identifying phosphatases and evaluating 
their roles in the regulation of Fas phosphorylation and signaling 
require a careful consideration of the contexts since the details 
of the signaling regulation can differ appreciably among species, 
tissues, disorders, or disease stages.

Other Actors
Besides its cognate ligand and agonistic antibodies, other activa-
tors, including anticancer drugs and cytokines, can also activate 
Fas signaling (55–59). As we continue to unveil the control of 
pY-based mechanism of Fas multi-signaling switch, the roles 
of other molecules that may directly or indirectly influence the 
phosphorylation process of hFas DD, and the downstream Fas 
signaling will be clarified. For example, besides regulating the 
phosphorylation and non-death signaling of Fas (27), Yes also 
links Fas to EGFR and the PI3K/Akt pathways (44, 60), and thus 
PP2A (61). These actors, among others, are likely to participate in 
the mode of Fas signaling, at least indirectly. Further studies into 
the cross-talks between Fas and such actors, which are also drug 
targets (62–65), will not only further reinforce our understanding 
of context-dependent Fas signaling in human diseases but also aid 
in the design of efficient combinatorial therapies against diseases 
in which Fas is involved (66–68).

TYROSine PHOSPHORYLATiOn SwiTCH 
SYSTeM OF Fas/FasL SiGnALinG 
PATHwAYS: A BiGGeR PiCTURe

The involvement of tyrosine phosphorylation in Fas signaling has 
been well appreciated. In fact, the pY-based survival/apoptotic 
switch system also applies to other actors in Fas signaling net-
work, with an important example being Caspase-8.

Caspase-8
Human Caspase-8 (hCaspase-8) has at least three tyrosine 
phosphorylation sites. Phosphorylation of Y310, Y397, and/
or Y465 (Y293, Y380, and/or Y488, respectively, in isoform 
B) suppresses Fas-mediated apoptosis (69–72). Additionally, 
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TABLe 1 | examples of Fas/FasL-targeting drugs.

Drug name Design, target, and mode of action Product stage Companies

APO-010 APO-010 consists of three hFasL extracellular domains linked to a protein 
backbone comprising the dimer-forming collagen domain of human 
adiponectin. It targets cell surface Fas with an aim to induce Fas-mediated 
apoptosis of cancer cells (80)

 – Phase I (completed): dose-finding study 
in patients with solid tumors (81)

 – Patient screening for Phase II is in 
progress for multiple myeloma (82, 83)

Oncology Venture 
ApS

ARG-098 (DE-098) ARG-098 is a mouse/human chimeric monoclonal IgM antibody against hFas. 
It targets the Fas molecule, leading to apoptosis in synoviocytes (84)

Phase I/II for rheumatoid arthritis (85) Janssen Biotech
Santen

Novotarg Novatarg is a bispecific antibody targeting CD20 and Fas. It is intended for 
inducing Fas-mediated apoptosis only in cells expressing CD20, which is an 
established target antigen for antibody-based immunotherapy in cancer (such 
as lymphoma) and B-cell-mediated autoimmune disease (86, 87)

Preclinical Baliopharm 

MOTI-1001 MOTI-1001 consists of the anticancer drug, paclitaxel, loaded in particles 
(Oncojans™) which are coated with Fas extracellular domain. It binds to FasL 
which often overexpressed on some cancerous cells. The binding can inhibit 
the invasion or proliferation, induced by FasL and trigger an active intracellular 
uptake process akin to phagocytosis. The ingested drug carrier forms a local 
drug reservoir inside the cancer cells and slowly releases paclitaxel, which 
binds to tubulin and interferes with the cell’s cytoskeleton (88, 89)

Preclinical study for ovarian cancer (89) Biomoti

APG 101 
(Apocept)

APG101 consists of the extracellular domain of hFas linked to the Fc domain of 
human IgG1 (Fas-Fc). It binds FasL and therefore inhibits the activation of Fas 
signaling (90, 91)

 – Phase II (completed) for glioblastoma (90)
 – Phase I (completed) for myelodysplastic 

syndromes (MDS)

Apogenix
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prosurvival activators such as EGF can induce the phospho-
rylation of Caspase-8, which mediates its interaction with PI3K 
and cell adhesion and motility (73) and protects the cells from 
Fas-mediated apoptosis (69). The Caspase-8-mediated cell 
migration depends on pY380 but not the Caspase-8 activity or 
the death effector domain (74), thus separating non-apoptotic 
function of Caspase-8 from that of the receptor-mediated DISC 
formation path. Caspase-8 tyrosine phosphorylation may also 
participate in a positive feedback loop of caspase-8-induced 
Src activation and further promotes survival pathways (75). 
Additionally, pY310 of Caspase-8 promotes its interaction 
with SHP-1, which dephosphorylates Caspase-8, permitting its 
proapoptotic function (71).

Notably, Caspase-8 in rodents, including mouse, rat, guinea 
pig, and Chinese hamster lacks tyrosines at the positions equiv-
alent to Y310 and Y380 in hCaspase-8. In mouse and guinea 
pig, it also lacks the tyrosine at the position equivalent to Y465 
in hCaspase-8. Therefore, Caspase-8 multi-signaling regulation 
in rodents is likely to differ significantly from that of human, 
particularly regarding the dependence on tyrosine phospho-
rylation switch. Similar to Fas, this highlights the importance 
of careful consideration when applying the observed regulation 
and functions of Caspase-8 from one species to another. The 
lack of a tyrosine at the position equivalent to Y310 (SHP-1-
binding site) of hCaspase-8 in rodent SHP-1 coincides with 
the observation that it participates in Fas signaling differently 
from human SHP-1. Thus, it is quite probable that, in differ-
ent species, distinct sets of kinases and phosphatases regulate 
Fas multimode signaling system. This observation, along with 
other species-based variations in immune-related signaling 
(76, 77), serves as a reminder that, while the value of animal 
models is appreciable, particular attention should be given 
to the species-dependent details especially when designing 
targeted therapies. Notably, although the functional outcome 

among species may seem the same, the underlying mechanism 
might be very different.

That the SFK/SHP-1 phosphorylation-dephosphorylation 
mechanism applies to both Fas and Caspase-8, the main DISC 
components, based on information from human cells, suggests 
at least one common “survival-ON/death-OFF” switch system in 
the Fas signaling network and can help explain some observation 
of Fas-mediated outcome in human pathologies. For instance, 
hyperactivated Src and/or downregulation of SHP-1, such as in 
some cancers, may favor Fas DD and Caspase-8 tyrosine phos-
phorylation and thus the antiapoptotic/survival mode of Fas 
signaling.

OUTLOOKS

Interrupted apoptotic/non-apoptotic balance begets pathologies. 
Too little or too much of Fas-mediated apoptosis, as well as the 
rampant non-apoptotic activity of Fas can cause autoimmune dis-
eases and cancer (3, 4, 12, 17, 43, 78, 79). Thus, several Fas-targeting 
therapeutics have been designed based on various strategies and 
are currently in different stages of development and clinical trials 
(Table 1). Understanding the apoptotic/non-apoptotic switch of 
Fas, which helps explain its pathological roles can help identify 
appropriate therapeutic choices. That said, how the apoptotic/
non-apoptotic switch is set depends not only on modifications of 
the FAS gene but also on an intricate signaling network involving 
not only different forms of its ligand but also direct and indirect 
regulators, which varies according to genetic background. In 
the clinical aspect, parameters governing Fas multi-signaling 
may be divided into two main groups: Fas mutation-influenced 
parameters (MIPs) and regulator-influenced parameters (RIPs) 
(Figure  1D). Following examples illustrate the MIPs and RIPs 
in pathologies and their implications in context-dependent 
therapeutic design.
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Autoimmune Lymphoproliferative 
Syndrome
Autoimmune lymphoproliferative syndrome (ALPS) is often 
affected by MIPs since Fas mutations, mostly in DD, are the com-
mon cause of the disease (17). Some Fas mutations cause defects 
in the binding to FADD, inhibiting the DISC formation and 
apoptosis. Other mutations may promote the NDISC formation, 
which may depend on the regulation of DD tyrosine phospho-
rylation. As such, ALPS cases that fall into different contexts of 
MIPs can respond differently to the same intervention. Thus, 
therapeutic approaches tailored for ALPS in context-dependent 
manners are desirable.

Systemic Lupus erythematosus
Systemic lupus erythematosus (SLE) illustrates multi-faceted 
MIPs and RIPs that involve both the downregulation of apoptosis 
and the upregulation of migration mediated by Fas. MIPs in SLE 
include FAS gene polymorphisms and mRNA editing. Fas gene 
polymorphisms have been associated with susceptibility to SLE 
(92), although, the consequence of the polymorphisms on the 
protein’s function is unclear. Recently, a FAS mRNA mutation 
caused by an mRNA editing has been reported in SLE patients 
(93). While the FAS gene mutation is absent in the genomic 
DNA, the mRNA editing leads to the production of an apoptosis-
defective truncated Fas protein with a frameshift at the end of 
DD especially in T cells of the SLE patients (93). Meanwhile, 
RIPs in SLE include the involvement of Lyn and the expression 
levels of soluble Fas (sFas) and sFasL. The loss of function of Lyn, 
which is implicated in the development of SLE (94), can also 
dampen Fas-mediated apoptosis (37). Elevated levels of sFas and 
sFasL of a significant number of SLE patients (60, 95) are also 
associated with the disease flare (96). The sFasL is implicated in 
the trafficking of T helper 17 lymphocytes to inflamed organs 
(12). Meanwhile, it is unclear whether the elevated level of sFas 
in SLE patient prevents Fas-mediated apoptosis, as previously 
suggested (95) or counteracts the effect of elevated sFasL level in 
SLE patients. How these RIPs influence the Fas signaling switch 
is yet to be clarified. And as such, different SLE cases influenced 
by the different context of MIPS and RIPs will have to be handled 
accordingly.

Glioblastoma Multiforme
The progression of GBM, where Fas mutations are uncommon 
(97), involves RIPs that promote non-apoptotic signaling of Fas, 
such as SFK and FasL expression. An elevated SFK activity in 

GBM (98) can promote NDISC and GBM cell invasion (43). FasL 
also contributes toward the invasive phenotype of glioblastoma 
cells (99). In GBM cases, where an SFK that promotes Fas DD 
phosphorylation (e.g., Src or Yes) is hyperactivated, the interven-
tion should thus be aimed at inhibiting NDISC that can promote 
cancer progression. Such interventions may be achieved by 
preventing FasL from binding to Fas and thus preventing the Fas 
activation and/or by specifically inhibit the activities of Src and 
Yes and thus preventing Fas DD phosphorylation. In agreement 
with this view, a drug that prevents FasL from activating Fas non-
apoptotic signals shows promise in reducing GBM progression 
(90). One may expect that integrating this approach with inhibit-
ing Src and Yes (100), can further improve therapeutic success 
for GBM.

Myelodysplastic Syndrome
A hyper-apoptotic signaling is significant in myelodysplastic 
syndromes (MDS) (101), where RIPs, such as overexpression 
of Fas (79) and SHP-1 (102) are prominent. When SHP-1 (the 
suppressor of Fas DD phosphorylation) is upregulated, inhibit-
ing the rampant apoptosis, such as by blocking FasL or SHP-1, 
should be beneficial. In agreement with this view, preventing 
FasL from activating Fas apoptotic signal in MDS seems promis-
ing (91). It can also be envisaged that combining this approach 
with SHP-1 inhibition may further improve therapeutic success 
for MDS.

Overall, the findings discussed here emphasize the importance 
of examining Fas multi-signaling while considering different con-
texts that can influence Fas signaling switch. A context-oriented 
understanding of Fas multi-signaling will allow the efficient 
design of Fas-related therapeutic strategies.
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