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Cancer immune surveillance is essential for the inhibition of carcinogenesis. Malignantly 
transformed cells can be recognized by both the innate and adaptive immune systems 
through different mechanisms. Immune effector cells induce extrinsic cell death in the 
identified tumor cells by expressing death ligand cytokines of the tumor necrosis factor 
ligand family. However, some tumor cells can escape immune elimination and progress. 
Acquisition of resistance to the death ligand-induced apoptotic pathway can be obtained 
through cleavage of effector cell expressed death ligands into a poorly active form, 
mutations or silencing of the death receptors, or overexpression of decoy receptors and 
pro-survival proteins. Although the immune system is highly effective in the elimination 
of malignantly transformed cells, abnormal/dysfunctional death ligand signaling curbs 
its cytotoxicity. Moreover, DRs can also transmit pro-survival and pro-migratory signals. 
Consequently, dysfunctional death receptor-mediated apoptosis/necroptosis signaling 
does not only give a passive resistance against cell death but actively drives tumor 
cell motility, invasion, and contributes to consequent metastasis. This dual contribution 
of the death receptor signaling in both the early, elimination phase, and then in the 
late, escape phase of the tumor immunoediting process is discussed in this review. 
Death receptor agonists still hold potential for cancer therapy since they can execute 
the tumor-eliminating immune effector function even in the absence of activation of the 
immune system against the tumor. The opportunities and challenges of developing death 
receptor agonists into effective cancer therapeutics are also discussed.

Keywords: TNF-related apoptosis-inducing ligand (TRAiL), FAS (CD95), apoptosis, necroptosis, pro-survival 
signaling, immune surveillance, cancer

iNTRODUCTiON

The concept of immune surveillance was first proposed by Ehrlich in 1909 (1) and later refined by 
Burnet (2). They postulated that immune cells could both detect and eliminate malignantly trans-
formed cells (2). During the past 20 years, analysis of both mouse models of cancer and primary 
human cancers have provided compelling evidence validating the immune surveillance concept. 
Studies have shown that immunocompromised mice lacking a functional interferon gamma (IFNγ) 
system (IFNγ receptor-1/alpha chain-deficient mice) or an intact T cell compartment are more sus-
ceptible to carcinogen-induced tumors, such as fibrosarcomas (3, 4). Furthermore, tumors formed in 
an immune-deficient background are more immunogenic than those formed in immunocompetent 
hosts, demonstrating that the immune system not only protects the host against tumor formation 
but also edits the arising tumor’s immunogenic characteristics.
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The ultimate goal of tumor immune surveillance is to identify 
and eliminate transformed cells. The main effector immune cell 
types exerting cytotoxicity against malignant cells are cytotoxic 
T cells (CTLs) and natural killer (NK) cells. Although their mech-
anisms of activation differ, both CTLs and NK cells induce tumor 
cell death through death ligand cytokines of the tumor necrosis 
factor (TNF) ligand family (5, 6). However, while the immune 
system can potently limit early tumor formation, some tumor 
cells can escape by gaining resistance to death ligand-induced 
cell death. In such instances, the immune system-mediated 
presentation of death ligands can paradoxically promote tumor 
progression.

THe ROLe OF DeATH LiGANDS  
iN TUMOR iMMUNe eLiMiNATiON

Tumor cell surveillance is facilitated by components of both the 
innate and the adaptive immune system, with the two systems 
having a complementary role in the recognition of transformed 
cells. While adaptive immune cells recognize specific antigens 
presented by class I MHC molecules on the surface of tumor 
cells (7), innate immune cells screen for more general markers 
of transformation, such as loss of MHC I expression, senescence, 
or cellular stress (8–10). The identified malignant cells are sub-
sequently eliminated by immune effector cells; predominantly 
CD8+ CTLs and NK cells.

Tumor Cell Recognition by NK Cells
NK cells are derived from the common lymphoid progenitor 
cell (11, 12) and are essential components of the innate immune 
system. As effectors of the innate immune system, NK cells rec-
ognize tumor cells via generic/ubiquitous stress markers through 
an array of antigen receptors (13). These antigen receptors are 
divided into two classes based on their effect on NK cell func-
tion: (1) inhibitory receptors, where ligand binding blocks NK 
cell activation and (2) activating receptors, which trigger NK cell 
activation and target cell killing following ligation (14).

Tumor cell identification by NK cells follows two major mod-
els, namely the “missing-self ” and the “induced-self ” models. 
The missing-self mechanism is based on the lack of self MHC 
molecules (MHC class I) on the surface of tumor cells (15). NK 
cells tolerate healthy tissues through recognition of self-MHC 
molecules (16) that activate inhibitory NK cell receptors, includ-
ing killer cell immunoglobulin (Ig)-like receptors (KIRs) (17) 
and C-type lectin receptors (e.g., NKG2A/CD94) (18). Similar to 
virus-infected cells, tumor cells downregulate MHC I expression 
to escape recognition by the adaptive immune system (19). This, 
however, relieves KIR-mediated NK cell inhibition, permitting 
NK cell activation against the tumor cell.

Besides downregulation of MHC I molecules, tumor cells 
can also present “induced-self ” antigens including MHC class 
I-related sequence A (MICA) and MICB (20). Tumor cell anti-
gen upregulation can be triggered by cellular stresses including 
replicative stress (21) and endoplasmic reticulum stress (22). 
Induced self-antigens act as activating NK receptor ligands. For 
example, MICA and MICB are recognized by the NK cell activat-
ing receptor NKG2D, triggering cytotoxicity against the NKG2D 

ligand-carrying tumor cell (23). Additional activating receptors 
presented on NK cells include CD16 (Fcγ receptor  III), which 
recognizes antibody-opsonized cells by binding to the Fc-region 
of the antibody triggering antibody-dependent cellular cytotox-
icity (ADCC) (24). The CD56dimCD16+ NK cell subpopulation 
accounts for nearly 90% of all circulating NK cells in the periph-
eral blood (24, 25) and are regarded as the most cytotoxic subset. 
The high cytotoxic potential of the CD56dimCD16+ NK  cells 
compared to the CD56bright NK cell population is believed to be 
due to their high perforin and granzyme content (25).

Tumor Recognition by Cytotoxic T Cells
The second effector cell type in tumor immune surveillance is 
CTLs. T cells, similar to NK cells, are derived from the common 
lymphoid progenitor cell (11), but form part of the adaptive 
immune response. As such, each T cell carries a single and unique 
antigen-recognizing T cell receptor (TCR) (26). When a T cell 
recognizes a specific tumor-associated antigen (TAA), it becomes 
activated and differentiates into an effector T cell, such as CD8+ 
CTL or type 1 and type 2 helper T cells (Th1 and Th2) (27). CTLs 
directly kill target cells following their TCR binding to the antigen 
displayed by MHC I molecules present on the tumor cell surface 
(28). CD4+ helper T cells have also been reported to kill target 
tumor cells, either directly, if the latter expresses MHC  II (as 
the CD4 molecule can only recognize MHC II, not MHC I), or 
indirectly, when the tumor cell does not express MHC II. MHC 
II expression in tumor cells may be induced by cytokines, such 
as IFNγ. This direct effector function is the same as that used 
by CD8+ CTLs. The majority of tumor cell types are however 
expected to be MHC II negative. CD4+ T cells have been reported 
to also kill MHC II negative tumor cells via indirect activation of 
tumor-residing macrophages and NK cells (29). Aside from cell 
killing, the important function of CD4+ helper T cells is activation 
of CD8+ CTLs through secretion of cytokines (30, 31).

Regardless of the mechanism of NK/CTL activation or the 
tumor-specific antigen recognized, tumor cell killing occurs 
through two major pathways: (1) by perforin and granzyme-
containing lytic granules or (2) via death ligand cytokines of the 
TNF superfamily (Figure 1).

Mechanism of Death Ligand-Induced  
Tumor Cell Death
Unstimulated NK cells can kill tumor cells by secreting the con-
tent of premade lytic granules. In response to tumor antigens and 
cytokines secreted by certain NK cell populations [CD56bright NK 
cells (25, 32, 33)] and Th1 helper cells (34) in the tumor microen-
vironment, NK cells and CTLs also induce TNF death ligands to 
eradicate tumor cells (5, 6). These ligands, namely TNF, Fas ligand 
(FasL), and TNF-related apoptosis-inducing ligand (TRAIL) (35) 
activate their corresponding receptors present on the tumor cells, 
inducing apoptotic or necroptotic cell death (36).

Death Ligand-Induced Apoptosis
Death receptors (DRs), namely TNFR1, FAS, and DR4/5, belong 
to the TNF receptor superfamily of plasma membrane receptors. 
These receptors are generally characterized by a cytoplasmic 
sequence of approximately 80 amino acids known as the death 
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FiGURe 1 | immune effector cells induce tumor cell death through apoptosis and necrotic-like cell lysis. Death ligands (FasL, TRAIL) presented by 
immune effector cell interact with their corresponding death receptors (DRs) on the surface of the tumor cell and activate the extrinsic apoptotic pathway. Ligand 
binding induces DR activation leading to the recruitment of the adaptor protein FADD and pro-caspase-8. Pro-caspase-8 is converted to its active form (active-C8), 
and it cleaves the effector caspase-3, -6, and -7 to their active forms, thus engaging the executioner caspase cascade. Active-C8 can also trigger the intrinsic 
apoptotic pathway through the conversion of the BH3-only protein Bid to its active form, tBid. tBid, in turn, induces the formation of Bax/Bak megachannels in the 
outer mitochondrial membrane-releasing cytochrome c (Cyt c) into the cytosol. In conjunction with Apaf-1, pro-caspase-9 and Cyt c assembles into the 
apoptosome, where pro-caspase-9 becomes activated (active-C9) and released. Active-C9 assists active-C8 in the induction of the executioner caspase cascade. 
Activation of the DRs may also induce necrosis-like cell death through DR-mediated assembly of the necrosome complex consisting of RIPK1, RIPK3, and MLKL. In 
the necrosome, MLKL gets phosphorylated by RIPK1/RIPK3 leading to its oligomerization and translocation into the plasma membrane where it triggers Ca2+ and 
Na+ influx driving cell lysis. Recognition of the tumor cell may also trigger the secretion of perforin and granzymes from lytic granules toward the target cell. Secreted 
perforin forms pores in the target cell causing direct cell lysis and enabling the entry of the serine proteases granzyme A and B (GA and GB) into the target cell. GB 
can induce apoptosis by activating caspases through cleavage. GB can also cleave Bid to tBid, thus engaging the mitochondrial apoptotic pathway. GA can induce 
cell death in a caspase-independent manner by inducing DNA fragmentation and blocking DNA repair.
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domain (DD) (37). Signaling via TNFR1 is predominantly pro-
survival linked to NF-κB signaling (38). It is the FasL receptor, 
FAS, and the two TRAIL receptors, DR4 and DR5 that primarily 
signal for cell death (37). The mechanism of cell death induced by 
FAS, DR4, and DR5 follows a highly conserved signal transduc-
tion pathway; the extrinsic apoptotic pathway.

In the absence of their ligand, DRs are present as monomers 
or preassembled dimers or trimers on the cell surface (39–41). 
Binding of the death ligand stabilizes the DR in trimeric or 
oligomeric complexes and induces a conformational change 
leading to DR activation. The activated receptor complex 
recruits the adaptor protein FADD and initiator caspases, 
caspase-8 and/or -10 leading to the formation of the death-
inducing signaling complex (DISC), the activation platform for 
pro-caspase-8 (41).

FADD-mediated recruitment enables the dimerization of pro-
caspase-8 driving its activation. Specifically, an intramolecular 
cleavage within the FADD-bound caspase-8 dimer liberates the 
small (p12) caspase homology domain, which is subsequently 
processed to the p10 catalytic subunit. The remaining 41/43 kDa 
caspase-8 intermediates present in the dimer then cleave one 
another in a trans-catalytic manner after the second DED releas-
ing the p18 catalytic subunit. The two p18 units then associate 
with the two p10 subunits to form the heterotetrameric active 
caspase-8 complex (42).

Depending on the level of caspase-8 activation, cell death can 
be triggered either directly via effector caspase activation (referred 
to as type 1 mechanism) or indirectly through engagement of the 
intrinsic, mitochondrial-mediated pathway (referred to as the type 
II mechanism) (43). In the type II mechanism, the mitochondrial 
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apoptotic pathway is activated by caspase-8- mediated cleavage 
of the BH3-only protein, Bid, producing truncated Bid (tBid) 
(44). tBid translocates to the mitochondria where it triggers 
oligomerization and activation of the Bcl-2 family members, Bax 
and Bak (45). The Bax and Bak oligomeres form pores in the outer 
mitochondrial membrane (Bax/Bak megachannels) through 
which cytochrome c is released into the cytosol (46). Cytochrome 
c together with dATP binds to apoptotic protease-activating fac-
tor-1 (APAF-1) inducing its oligomerization and formation of the 
pro-caspase-9 activating protein complex, the apoptosome (47). 
Active caspase-9 cooperates with DR-activated caspase-8/-10 in 
the activation of effector caspases and execution of cell death (48) 
(Figure 1).

Death Ligand-Induced Necroptosis
Besides activation of caspase-mediated apoptosis, DRs can also 
instigate plasma membrane permeabilization and a necrotic-like 
cell death (36). The necrosome, a cytosolic protein complex 
derived from the membrane bound DR complex, induces 
DR-dependent necrosis, or necroptosis. Core components of the 
necrosome include receptor interacting protein kinase 1 (RIPK1), 
receptor interacting protein kinase 3 (RIPK3), and mixed lineage 
kinase domain-like protein (MLKL) (49). Upon complex forma-
tion, RIPK3 phosphorylates MLKL leading to its oligomerization 
(50). Once phosphorylated, the 4-helical bundle domain (4HBD) 
of MLKL binds to negatively charged phosphatidyl inositol phos-
phates (PIP), anchoring MLKL to the plasma membrane where 
it drives cell lysis by triggering Na+ and Ca2+ influx into the cell 
(51). Ion influx can also occur through cation channels formed 
by MLKL itself, which are permeable to Na+, K+, and Mg2+ (52) 
and, via activation, of the plasma membrane cation channel, 
transient receptor potential cation channel subfamily M, member 
7 (TRPM7) resulting in Ca2+ influx (53) (Figures 1 and 2D,E).

It should be noted that the preferential form of cell death 
induced by DRs is apoptosis, and the formation of the necro-
some is only permitted in scenarios where caspase-8 is either 
not expressed (49) or its activation in the DISC fails (54). When 
active, caspase-8 cleaves RIPK1 within its kinase domains (KDs) 
and intermediate domains (IDs), thus blocking its function (55) 
(Figure 2).

Perforin–Granzyme-Mediated Cell Lysis
The death ligand and the granule-dependent cell lysis pathways 
work in a partially redundant, partially complementary fashion. 
Depending on the tissue, the effector immune cell type and 
cytokine/chemokine milieu, the relative contribution of the two 
pathways varies. Nonetheless, similar to the death ligand-induced 
cytotoxicity, lytic granules can also trigger both apoptotic and 
necrotic-like cell death.

Lytic granules contain perforin, a membrane pore-forming 
protein and a group of serine proteases, called granzymes (56). 
Recognition of the tumor cell by effector cells triggers the secre-
tion of the content of the lytic granules (56). Perforin release 
enables pore formation in the target cell membrane facilitating 
either direct cell lysis or delivery of granzymes into the target cell’s 
cytosol (56). Granzyme A (GZMA) and Granzyme B (GZMB) 
are the most abundant subtypes present in NK cell and CTL lytic 

granules (56). GZMB can activate apoptotic cell death directly 
through processing of caspases (caspases-3, -6, -7, -8, -9, and -10) 
(56) or indirectly via cleavage of the BH3-only protein Bid and 
engagement of the mitochondrial apoptotic pathway (57, 58).

Unlike GZMB, GZMA induces target cell death in a caspase-
independent manner by induction of DNA fragmentation and 
inhibition of DNA repair. GZMA does so by cleaving SET (SET 
nuclear proto-oncogene), an inhibitor of the DNase NME1 
(expressed in non-metastatic cell 1/NM23-H1) leading to single-
strand DNA breaks (59) (Figure 1). GZMA also targets the base 
excision repair enzyme apurinic endonuclease 1 (APE1) (60), 
poly- (ADP ribose) polymerase-1 (PARP-1) (61), as well as lamin 
A, B, and C (62), thus disabling DNA repair and disrupting the 
nuclear envelope culminating in cell death.

DeATH ReCePTOR SiGNALiNG  
iN TUMOR iMMUNe eSCAPe

While the immune system actively recognizes and eliminates 
most arising tumor cells (elimination phase of tumor immu-
noediting), some cells escape elimination and survive (63). The 
immune system can repress the growth of these escaped cells by 
creating a restrictive microenvironment where the tumor cells 
persists as dormant cells or continue to slowly evolve modulating 
their immunogenicity and other properties (equilibrium phase). 
The tumor immune suppression may however break or become 
exhausted, allowing unrestricted growth of the tumor cells 
(escape phase) (64, 65).

Of the death ligands, TRAIL has a distinct role in immune-
mediated tumor elimination. In contrast to TNF and FasL, 
which can also induce death of healthy cells, TRAIL shows 
high specificity against malignantly transformed cells (66, 67). 
Malignant transformation has been demonstrated to selectively 
induce TRAIL sensitivity, in a cell-autonomous manner, driven 
by intracellular changes rather than cell-extrinsic factors, such as 
cytokines secreted by immune cells (e.g., IFNγ).

In vitro, experimental models of TRAIL induction during 
malignant transformation have shown TRAIL sensitivity can 
develop either during the immortalization stage or subsequently 
at the stage of oncogenic transformation induced by RAS (68, 
69). Similarly, the transformation from premalignant colorectal 
adenoma cells to colorectal carcinoma cells was accompanied 
by an increase in TRAIL sensitivity (70). How TRAIL sensitiv-
ity increases during malignant transformation is not fully 
understood. Activation of the mitogen-activated protein kinase 
(MEK) (69), decreased expression of antiapoptotic proteins via 
inhibition of eukaryotic elongation factor (eEF2) (71), or inhi-
bition of protein phosphatase 2A activity (PP2A) (72) have all 
been implicated as possible mediators. While the evidence for the 
involvement of these processes, especially PP2A, is compelling, 
the signaling pathways are not yet fully elucidated with further 
studies required to identify key components.

Importantly, there is substantial evidence indicating that 
transformation-driven TRAIL sensitivity is a key contributor to 
tumor immune elimination. For example, TRAIL neutralization 
or deficiency promoted tumor development in a mouse model 
of carcinogen methylcholanthrene (MCA)-induced fibrosarcoma 
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FiGURe 2 | Key signaling modes of death receptors. (A) Apoptosis signaling mode. When pro-caspase-8 is abundantly expressed, binding of the death ligand 
(FasL or TRAIL, not shown) to its corresponding receptor induces the death domain (DD) of the receptor to complex with the DD of the adaptor protein FADD, 
allowing the recruitment, dimerization/oligomerization, and consequent activation of pro-caspase-8 (casp-8). Active caspase-8 inhibits RIPK1-mediated necroptosis 
and NF-κB activation by cleaving its kinase domain (KD) and intermediate domain (ID), driving apoptosis signaling. (B) NF-κB signaling mode-1. When cFLIPL is 
highly expressed, together with pro-caspase-8, cFLIPL is also recruited to the ligand-activated death receptor. Caspase-8 cleaves the small caspase homology 
domain of cFLIPL (p12), generating cFLIPp43. cFLIPp43 and full-length caspase-8 form heterodimers that exhibit receptor-restricted and limited casapse-8 activity, not 
able to trigger the caspase cascade and apoptosis. The cFLIPp43-caspase-8 complex cleaves the kinase domain of RIPK1, but not the intermediate domain, thus 
blocking RIPK1-mediated necroptosis and driving NF-κB activity. (C) NF-κB signaling mode-2. In the absence of caspase-8, the adaptor protein TRAF2 recruits the 
ubiquitin ligases cIAP1/2. cIAP1/2 polyubiquitinates the proteins in the receptor complex to which the linear ubiquitin chain assembly complex (LUBAC) will bind. 
LUBAC and cIAP1/2 polyubiquitinate RIPK1, thus creating the platform for the assembly of the NF-κB activating protein complex. (D) Necroptosis signaling mode-1. 
In the absence of caspase-8 and cIAP1/2, RIPK1 recruited to the death receptor escapes caspase-8-mediated cleavage. In the absence of cIAP1/2, RIPK1 does 
not get ubiquitinated, which enables it to associate with RIPK3. After sequential trans- and autophosphorylation of RIPK1 and RIPK3, MLKL can be recruited to 
RIPK1 and RIPK3 to form the necrosome, thus triggering necroptosis. (e) Necroptosis signaling mode-2. In the absence of caspase-8, even in the presence of 
cIAP1/2, necroptosis can be induced if the cIAP1/2-conjugated polyubiquitin chains are removed from RIPK1 by the deubiquitinating enzymes A20 and CYLD. 
Once RIPK1 is deubiquitinated, it will induce the formation of the necrosome, as in (D).
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(73). Because immunoediting eliminates evolving tumor cells via 
TRAIL-mediated killing (74), this selective pressure can result 
in tumor cells acquiring resistance to death ligand-mediated 
cytotoxicity.

Counteracting Death Ligand-induced 
Apoptosis
Tumor cells are exposed to a broad range of cellular stresses trig-
gered as a result of oncogenic transformation, genetic instability 

or nutrient deprivation. To survive under such stress conditions, 
tumor cells induce the expression of antiapoptotic proteins. For 
example, a large proportion of tumors display increased expression 
of antiapoptotic Bcl-2 proteins (75) or the caspase-3 inhibitory 
protein, XIAP (76). These proteins confer resistance to various 
death stimuli. Beyond these general antiapoptotic mechanisms 
blocking apoptosis signaling at the stage where they converge, 
tumor cells develop mechanisms that provide specific protection 
against death ligand-mediated immune attack by (1) reducing 
the expression of DRs or essential death mediators, most notably 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


6

O’ Reilly et al. Death Receptor Signaling in Cancer

Frontiers in Immunology | www.frontiersin.org October 2016 | Volume 7 | Article 446

caspase-8, (2) by impaired function of DRs, or (3) by blocking the 
transmission of the death signal from the DR. Examples of each 
of these processes are discussed below.

Loss of Essential Death Mediators
Tumor cells can prevent DR activation by inducing cleavage of 
death ligands from the surface of the immune effector cells. FasL 
and TRAIL can be cleaved off the surface of immune cells by 
matrix metalloproteinases (MMP)-3, -7, and -9 as well as ADAM-
10 and 17 (a disintergrin and MMP) (77–79). While retaining 
their trimeric structure, metalloprotease-cleaved, soluble TRAIL 
and FasL have a 100- to 1000-fold lower cytotoxic potential 
in comparison to their membrane-bound counterparts (80). 
Furthermore, soluble FasL may even block the cytotoxic effect of 
membrane-bound FasL by competing with it for receptor binding 
(81) or directly promoting tumor progression by inducing pro-
survival signal transduction upon receptor binding (for further 
details, please see “Death Receptor Signaling Driving Tumor 
Growth and Progression”) (82).

Death ligand-mediated cytotoxicity can also be controlled 
in tumor cells through regulation of DR expression. Indeed, 
reduced FAS expression has been reported in colon carcinomas 
(83) and in cutaneous T-cell lymphoma (CTCL) (84). Loss of 
TRAIL receptor expression on the other hand is not a common 
occurrence in cancers, and they may even be overexpressed 
in some cases (85). The examples of reduced TRAIL recep-
tor include loss of DR4 expression in lung squamous cell 
carcinoma (86) and reduced DR4 and DR5 expression in 
hepatocellular carcinoma (HCC), which correlated with shorter 
overall 5-year survival of patients (87). Reduced FAS, DR4, and 
DR5 expression is typically caused by gene and/or promoter 
CpG methylation or trimethylation of histone 3 on lysine 9 
(H3K9me3), while gene deletion was rarely detected (83, 86, 
88). Activating RAS mutations have also been associated with 
silencing of the FAS gene by driving methylation of the FAS 
promoter region (89). A genome-wide RNA interference (RNAi) 
screen in KRAS-transformed NIH3T3 cells identified 28 genes 
driving KRAS-mediated epigenetic silencing of FAS; many of 
them are well-known cancer-associated epigenetic regulators, 
such as DOT1-like histone H3K79 methyltransferase (DOT1L), 
enhancer of zeste 2 polycomb repressive complex 2 subunit 
(Ezh2), sirtuin 6 (Sirt6), DNA methyltransferase 1 (DNMT1), 
and nucleophosmin 2 (NPM2). All 28 genes appeared to be 
essential for FAS gene silencing as knockdown of any one was 
sufficient to restore FAS expression (90).

Regulation of DR expression is not the only mechanism 
employed by tumors to evade death ligand-induced cell death. 
Gene deletion or silencing, via CpG methylation, of caspase-8 has 
also been reported. For example, caspase-8 promoter methylation 
is well described in neuroblastoma (91) and MYCN-driven child-
hood medulloblastoma (92). Loss of caspase-8 expression was 
also found in small cell lung carcinoma (SCLC), but interestingly, 
was completely absent in non-SCLCs (93). In line with these find-
ings, MYCN amplification has been reported in SCLC (94, 95), 
while it is rarely occurring in NSCLC (96). It should be noted, 
however, that the association between caspase-8 gene silencing 
and MYCN status of SCLC has not been established.

Impaired Death Receptor Function
Manipulation of DR function is probably the most frequent 
mechanism employed to escape death ligand-mediated immune 
elimination. While FAS signaling is largely controlled through its 
expression, the function of DR4 and DR5 is predominantly con-
trolled posttranslationally. Ligand binding and the consequent 
activation of DR4 and DR5 is kept in check by two membrane-
bound decoy receptors, DcR1 and DcR2. These decoy recep-
tors lack a functional DD and, therefore, are unable to induce 
apoptosis. The actions of DcR1 and DcR2 are twofold. First, by 
sequestering TRAIL, they prevent DR4/DR5 activation (97) and 
second, through formation of heteromeric complexes with the 
death-inducing receptors, they impair DR complex confirmation 
upon ligand binding (98).

DcR1 and DcR2 overexpression has been reported in several 
tumor types, including acute promyelocytic leukemia (APL) 
(99) and prostate cancer (100). Ubiquitous DcR1 (but not DcR2) 
expression has also been reported in the tumor-surrounding 
stroma of various cancers including breast, liver, pancreatic, ovar-
ian, and prostrate (101). While deficient mTRAIL-R expression in 
mice promotes metastasis (102), it is not known if DcR1 and/or 
DcR2 can lend similar properties to tumors. Nonetheless, the fact 
that there are multiple decoy receptors for a single death ligand 
implies that tight regulation of this pathway is vital.

Osteoprotegerin (OPG), a soluble decoy receptor for receptor 
activator of nuclear factor-κB ligand (RANKL), can also bind 
TRAIL, although with a lower affinity (103, 104). While OPG’s 
main biological function is to control osteoclast maturation/
activity, it has also been implicated in breast cancer progression. 
Breast cancer cells have been reported to secrete OPG, which, 
through sequesterization of TRAIL, furnished the breast cancer 
cells with more aggressive growth and metastatic potential (104).

The activity of FAS can also be controlled by a decoy receptor, 
DcR3. Similar to OPG, DcR3 is a secreted protein and a decoy 
receptor for multiple TNF family cytokines including vascular 
endothelial growth inhibitor (VEGI/TL1A/TNFSF15), FasL, and 
LIGHT (TNFSF14). DcR3 overexpression has been reported in 
many cancers including lung and colon cancers, Epstein–Barr 
virus (EBV) or human T-cell lymphotropic virus-1 (HTLV-1)-
associated lymphomas, gliomas, and pancreatic adenocarcinomas 
as well as bone and soft tissue sarcomas (105). There is compelling 
evidence indicating that DcR3 overexpression enables the forma-
tion of distant metastases and associates with reduced overall 
survival in cancer patients (105).

It should be noted that the effect of the soluble and ligand-
promiscuous decoy receptors, OPG and DcR3, on tumor 
metastasis, is more complex than sequestration of TRAIL and 
FasL. In the case of OPG, bone resorption is a key contributor 
of bone metastasis, and OPG acts as an inhibitor of this process 
(106). Thus, OPG may be required to provide TRAIL resistance 
to tumor cells disseminated from the primary tumor, but not for 
bone metastasis. The function of DcR3 is even more complex. 
DcR3 can induce angiogenesis and block T cell costimulation 
induced by TL1A (107). DcR3 also drives reverse signaling via 
binding to its membrane-bound ligands that can trigger dendritic 
cell (DC) death via cross-linking of heparan sulfate proteoglycan 
(HSPG) on DCs (108).
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Mutations that impair apoptosis signaling by DRs are alterna-
tive mechanisms cancers employ to evade immune elimination. 
To date, over 180 mutations have been identified on the FAS gene 
and are predominantly clustered on the exons that code the DD 
(exons 8 and 9) (109). FAS mutations are rarely homozygous and 
are not exclusively restricted to cancer with several mutations 
reported in the autoimmune disease autoimmune lymphoprolif-
erative syndrome (ALPS) (110). Mutations affecting the folding of 
the DD or its interaction with the DD of FADD act in a dominant 
negative manner, i.e., they are able to impair the functionality 
of the non-mutated receptors by forming heteromeric complexes 
with them (40). The presence of even a single defective protein 
in the oligomeric DR complex is sufficient to cripple the active 
receptor conformation or hinder the recruitment of downstream 
adaptors (FADD and caspase-8) in the correct stoichiometry for 
DISC formation (40).

Mutations in TRAIL receptors have also been detected in 
cancers, although not as numerous as for FAS. For example, DR5 
mutations have been reported in NSCLC (111), non-Hodgkin’s 
lymphoma (112), breast cancers (113), and head and neck cancers 
(114). Similar to FAS, TRAIL receptor mutations (E355K, E367K, 
K415N, and L363F) are typically localized to the DD and may 
induce conformational changes including decreased protein 
backbone flexibility, decreased exposure of FADD’s DED for cas-
pase-8 binding, and reduced binding affinity of DR5 DD binding 
to FADD (115), thus, significantly decreasing the ability of these 
cells to undergo TRAIL-induced apoptosis (116). Other studies 
have reported DR5 mutations to be rare in cancers. For example, 
mutations in DR5 are uncommon in HCC (117), and while the 
DR5 gene is frequently found in the loss of heterozygosity (LOH) 
region at 8p21–22 in bladder cancer, the DR5 gene itself was not 
mutated (118).

Targeting the Transmission of the Cell Death Signal
Cellular FLICE-inhibitory protein (cFLIP), a pseudo-caspase with 
a high homology to pro-caspase-8 (119), primarily functions to 
control DR-mediated caspase-8 activation. Increased expression 
of cFLIP is frequently observed in numerous cancer types, such 
as melanoma (120) and prostate cancer (121). cFLIP has three 
main splice variants, namely the 55 kDa cFLIP-long (cFLIPL), the 
26 kDa cFLIP-short (cFLIPS), and the 24 kDa cFLIP-Raji (cFLIPR) 
(122). Similar to pro-caspase-8, all three cFLIP variants possess 
two N-terminal DEDs. In addition, cFLIPL also contains large and 
small caspase homology domains (123), but due to inactivating 
mutations in the catalytic- and substrate-binding sites, possesses 
no enzymatic activity (124). All cFLIP splice variants compete 
with caspase-8 for binding to FADD through their DEDs (125) 
and can also form heteromeres with caspase-8 within the DISC. 
In the case of FLIPS/R, heterodimerization fails to activate pro-
caspase-8 as the conformational change in the caspase catalytic 
domain of pro-caspase-8 cannot take place. Thus, FLIPS/R acts as 
dominant negative inhibitors (42).

The function of cFLIPL in regulating pro-caspase-8 activation 
is more intricate. Within the cFLIPL-pro-caspase-8 heterodimer, 
the caspase homology domain of cFLIPL induces a conforma-
tional change within procaspase-8 enabling partial enzymatic 
activity (42) resulting in c-FLIPL cleavage to an N-terminal 

43  kDa fragment (p43) and a C-terminal p12 fragment (126). 
The activation process halts at this point, as cFLIPL cannot imple-
ment the same cleavage on pro-caspase-8. Thus, the cFLIP(p43)-
caspase-8 heterodimer remains tethered to the DISC and is 
unable to activate the apoptotic caspase cascade (42). Instead, the 
FLIP(p43):caspase-8 heterodimer is an effective inducer of NF-κB 
activation (126) (Figure  2B). While fully processed caspase-8 
can inhibit all RIPK1 functions, by cleaving it in its KD and ID, 
the FLIP(p43):caspase-8 heterodimer only cleaves RIPK1 in the 
KD domain. This cleavage, while still permitting recruitment of 
RIPK1 to the DR and downstream NF-κB activation (55), blocks 
RIPK1-driven necroptosis (127) (Figure 2B).

Inhibitors of apoptosis proteins (IAPs) are defined by 
the presence of a baculovirus IAP repeat (BIR) domain. The 
primary mammalian IAPs are cellular inhibitor of apoptosis 1 
(cIAP1, BIRC2), cIAP2 (BIRC3), X-linked IAP (XIAP, BIRC4), 
and survivin (BIRC5). cIAP1, 2, and XIAP contain three BIR 
domains while survivin has one (128, 129). Initially, IAPs were 
classified as caspase binding and inhibitory proteins. However, 
it is now understood that XIAP is the only member of the family 
to function in such a manner. Through BIR domain interactions, 
XIAP can bind the initiator caspase, caspase-9, and the effector 
caspases, caspase-3 and -7, preventing their downstream signal-
ing (130). Although cIAP1 and 2 can also bind caspases, their 
predominant function in DR signaling is polyubiquitination of 
protein substrates through their E3 ubiquitin ligase activity (131).

Following recruitment to the DISC, through the adapter pro-
tein TRAF2, cIAP1/2 ubiquitinate RIPK1 and other components 
of the complex. Components of the NF-κB activating machinery 
assemble on these ubiquitin chains leading to NF-κB activation 
(132). Once activated, NF-κB elevates expression of cFLIP, antia-
poptotic Bcl-2 proteins, and XIAP providing apoptosis resistance 
to the tumor cell (133) (Figure 2C).

Recruitment of cIAP1/2 and the consequent ubiquitination of 
RIPK1 is a key switch between cell death and cell survival signal-
ing. The first decision point in DR-induced signal transduction is 
the activation of pro-caspase-8. If caspase-8 can be recruited in 
homodimeric or homo-oligomeric complexes, i.e., not in cFLIP 
heteromeres, it will undergo full activation and inhibit RIPK1-
mediated NF-κB activation (55).

In the absence of caspase-8 activation, the cell can either 
undergo death via necroptosis (134) or induce NF-κB activity 
and survival signaling (135) with the outcome dependent on the 
ubiquitination status of RIPK1 (Figure  2D). In the absence of 
cIAP1/2 or when RIPK1 is deubiquitinated by deubiquitinating 
enzymes, such as cylindromatosis (CYLD) or A20, RIPK1 can 
associate with RIPK3 and MLKL and induce necroptosis (136). 
Thus, high expression of cFLIP, cIAP1/2, or caspase-8 gene 
silencing in cancer cells will propel survival signaling upon DR 
activation (Figure 2E).

Death Receptor Signaling Driving Tumor 
Growth and Progression
Recent findings have highlighted that DR-driven survival 
signaling does not only provide resistance against death ligand-
mediated immune elimination but also equips the tumor cells 
with enhanced migratory and invasive potential. Induction 
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of migration and invasion has been reported for both TRAIL  
and FasL.

mTRAIL-R (MK/mDR5), the single murine TRAIL DR, has 
been shown to promote invasion and metastasis in KRASG12D-
driven non-SCLC (NSCLC) and pancreatic ductal adenocar-
cinoma (PDAC) (137). In KRAS mutant cells, upon activation, 
TRAIL receptors triggered the activation of RAS-related C3 
botulinum substrate (Rac1), a small GTPase important for 
cytoskeletal rearrangement and cell motility. Rac1 is known to 
drive mesenchymal-type cell motility described by elongated cel-
lular morphology and requirement of extracellular proteolysis, 
as opposed to amoeboid cell movement, which is associated 
with rounded cell morphology and lower dependency on pro-
teases. Amoeboid cell motility, on the other hand, is driven by 
Rho kinase (ROCK) in a dominant manner, since ROCK can 
block mesenchymal motility by inhibiting Rac1 activity (138). 
Transformation by oncogenic KRAS has been found to lead to 
inhibition of ROCK (139), thus allowing TRAIL-induced Rac1 
activation and mesenchymal-type cell motility (137) (Figure 3).

In addition to Rac1 activation, RIPK1-driven Src, STAT3, 
and focal adhesion kinase (FAK) activation as well as RIPK1-
independent activation of phosphatidyl inositol 3 kinase, Akt 
and Erk have been shown to trigger DR5-dependent migration 
and matrigel invasion of NSCLC cells (140). Inhibition or knock-
down of RIPK1, Src, STAT3, and PI3K either fully abolished or 
reduced TRAIL-driven cell migration. Interestingly, activation of 
these kinases and the consequent migratory behavior was only 
apparent in TRAIL-resistant cells. Furthermore, inhibition of 
Src did not sensitize cells to TRAIL-induced death indicating 
that the two DR-driven signaling pathways may be regulated 
independently (140).

It should be noted that the two TRAIL receptors, DR4 and 
DR5, may have a differential potential in inducing tumor cell 
migration. It appears that DR5, especially its membrane proximal 
domain (MPD), is the main driver of migration and DR4 does 
not transmit the same signal. In line with this, Spierings and col-
leagues reported that high DR5 expression was associated with 
an increased risk of death in NSCLC (141), although further 
research is necessary to substantiate these findings.

Similar properties of the FAS receptor have been reported. 
The “alternative” migratory signal has been reported in two main 
scenarios. First, if FAS is activated by soluble FasL following its 
shedding from the surface of immune effector cell in the tumor 
microenvironment (142). Second, when the DD of FAS contains a 
loss-of-function mutation. Similar to DR5, the membrane proxi-
mal domain (MPD) of the receptor is believed to be responsible 
for the pro-migratory signal transduction. Upon activation, the 
MPR recruits the Src kinase family member c-Yes resulting in 
PI3K pathway activation. This process can also trigger Ca2+ influx 
through the plasma membrane leading to the activating protein 
kinase C β2 (PKCβ2). PKCβ2, in turn, halts DISC formation by 
phosphorylating FAS (143, 144) (Figure 3).

Involvement of ROCK in FAS-mediated motility has also 
been proposed, although in the opposite manner, whereby FAS 
ligation was found to activate the small GTPase, RhoA driving 
ROCK activation. Active ROCK subsequently activated the Na+/
H+ exchanger NHE1, thus driving cell motility (145).

While the ability of DRs to trigger tumor cell motility is well 
established, the composition of this non-canonical, “motility-
inducing signaling complex (MISC)” is not. The effect of 
ROCK in DR-mediated motility, i.e., whether it is activation or 
inhibition of ROCK that drives it, as well as the involvement 
of caspase-8 in DR-mediated kinase activation is currently 
controversial (146).

TARGeTiNG DeATH ReCePTOR 
SiGNALiNG FOR ANTiCANCeR THeRAPY

Priming and activation of the immune system against cancer 
cells hold great promise. The potential of the immune system to 
identify and kill individual tumor cells and retain the memory 
of TAAs, which enables the elimination of metastasized and 
reactivated tumor cells, is immense. Removal of malignant cells, 
regardless of the mechanism of recognition, depends on death 
ligands and/or lytic granules (Figure 4). Therapeutic replication 
of the cytotoxic immune effector functions would bypass the 
intricate and complex tumor immune interactions and execute 
tumor elimination without the need to prime the immune system 
against the tumor.

This proposal has instigated extensive research to develop 
DR agonist-based therapeutics with initial studies focusing on 
recombinant death ligands as evidenced by the number of clini-
cal and preclinical studies (Table S1 in Supplementary Material). 
Although activation of TNFR1 and FAS with recombinant 
ligands and with agonistic antibodies against the receptor, such 
as Jo2, was highly efficient in killing tumor cells, they also induced 
systemic toxicity due to induction of severe inflammatory reac-
tions by TNF and of extensive apoptosis in hepatocytes by FAS 
agonists (147, 148). The mechanism of FAS agonist-induced 
fulminant hepatitis is now understood in deeper detail revealing 
a multifold action including direct effect on hepatocytes and 
indirect, ADCC through the FcgammaRIIB receptor targeting 
the sinusoidal endothelial cells and causing hemorrhage (149). 
These findings led to the development of recombinant FasL and 
agonistic anti-Fas antibodies engineered for targeted delivery to 
the tumor cells (150). The third death ligand, TRAIL, on the other 
hand showed high specificity against tumor cells and minimal 
toxicity against normal tissues, including hepatocytes, in clinical 
trials. However, its excellent safety profile was not matched with 
its expected efficacy (151).

Thus, the strategy to directly induce immune effector cell-
mediated tumor cell killing was revisited. Recent advances in 
our understanding of DR regulation and function have enabled 
refinement of these therapies. We now know DR agonists should 
mimic the receptor activation mechanism of the membrane-
bound native ligand, avoid sequestration by decoy receptors, 
effectively target and accumulate in the tumor tissue, and ideally 
promote activation of the immune system against the tumor.

The importance of receptor selectivity has been recognized 
for some time and selective agonists against the TRAIL DRs 
either in form of agonistic antibodies or engineered ligand 
variants have been developed (101, 152). The ability of these 
agonists to fully replicate the receptor-activation mechanisms 
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of the membrane-bound native ligand, however, has not been 
fully elucidated yet. Agonistic antibodies are believed to better 
mimic the function of membrane-bound TRAIL. Nonetheless, 
the early stage clinical trials with agonistic antibodies also 
met with limited efficacy, confirming that while receptor 
selectivity is important, specific tumor targeting is probably 
also essential (153).

Based on the observation that adoptive T-cell therapy often fails 
to induce meaningful anticancer responses in cancer patients, the 
Bremer laboratory developed fusion proteins of TRAIL where the 
extracellular portion of TRAIL was fused with either an antibody 
fragment recognizing the T cell surface molecule CD3 or with 
K12, the ligand of another T cell marker, CD7 (154). This fusion 
strategy enables TRAIL to bind to the surface of T cells and 
functionalize them against tumor cells. Xenograft mouse studies 
showed accumulation of the TRAIL-functionalized T cells at 
the tumor site and robust antitumor activity (154). Importantly, 
80% of the mice treated with the ant-CD3-TRAIL-functionalized 
T cells survived over 70 days and the treatment had no noticeable 
toxicity.

To address selective targeting of TRAIL to tumor cells, new 
approaches utilizing bispecific antibodies are also emerging. 

For example, the development of a bispecific antibody against 
melanoma chondroitin sulfate proteoglycan (MCSP) and DR5 
has recently been reported. MCSP is highly expressed on the 
surface of almost 90% of melanomas, but not on normal mel-
anocytes (155, 156). MSCP × DR5 antibody bound selectively 
and with high affinity to MSCP+ melanoma cells where it exerted 
strong and selective DR5-dependent cytotoxic activity against 
MCSP-expressing melanoma cells. Furthermore, the antibody 
could also trigger NK-cell-mediated ADCC through recogni-
tion of its Fc-region by Fcγ-receptor expressing immune cells 
(NK cells). This approach offers a novel immunotherapeutic 
tool via coupling of three cooperating processes: delivering the 
DR agonist to the malignant cell population, potent activation 
of DR5-mediated cell death signaling, and recruitment of Fcγ-
receptor-carrying immune cells that can mount an immune 
response against the tumor cells (for a summary of current for-
mulations of DR-agonists, please see Table S1 in Supplementary 
Material).

The development of DR agonist-based cancer therapeutics is 
ongoing. A major challenge in DR agonist-based cancer thera-
peutics is to design therapies, which while promoting selective 
DR mediated cytotoxicity against tumor cells avoid unintentional 
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triggering of pro-survival pathways. The ongoing focus on 
understanding how cell death versus pro-survival decisions are 
made downstream of DRs may enable the development of drug 
combinations that block the non-death signaling while inducing 
cell death.

The remarkable effect of the immune checkpoint inhibitors 
has also highlighted the potential of the immune system to 
eradicate tumors once the suitable conditions established offer-
ing the concept of combination therapies with DR agonists. 
There is also increasing evidence for the synergistic interaction 
between cell death pathways, for example between TRAIL and 
FasL (157), as well as the immune-activating potential of differ-
ent cell death forms. Similar interaction may exist between the 
perforin– granzyme and death ligand cytotoxic pathways that 
future therapies might exploit.

There are still a number of open questions concerning DR 
signaling. While the signal transduction pathways mediated by 
TNFR1 are increasingly understood, the range and composition 
of non-apoptotic signal transducing protein complexes activated 
by TRAIL receptors and FAS are poorly elucidated. It is impera-
tive that we have a thorough understanding of these complexes 
and the triggers promoting their formation to avoid accidental 
activation of pro-survival pathways when therapeutically target-
ing DRs. We also need to dissect the cytotoxicity mechanisms 
induced by different formulations of DR agonists, whether it is 
direct activation of the extrinsic apoptotic pathway, necroptosis, 

or ADCC induced by NK cells recognizing tumor cells opsonized 
by agonistic anti-DR antibodies. Overall, we need to understand 
the role of death ligands and DRs in the context of tumor immune 
interaction in order to develop DR agonists into an effective 
cancer therapeutic.
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