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The quality of life of organ transplant recipients is compromised by complications
associated with life-long immunosuppression, such as hypertension, diabetes, oppor-
tunistic infections, and cancer. Moreover, the absence of established tolerance to the
transplanted tissues causes limited long-term graft survival rates. Thus, there is a great
medical need to understand the complex immune system interactions that lead to
transplant rejection so that novel and effective strategies of intervention that redirect
the system toward transplant acceptance (while preserving overall immune competence)
can be identified. This study implements a systems biology approach in which an
experimentally based mathematical model is used to predict how alterations in the
immune response influence the rejection of mouse heart transplants. Five stages of
conventional mouse heart transplantation are modeled using a system of 13 ordinary
differential equations that tracks populations of both innate and adaptive immunity as
well as proxies for pro- and anti-inflammatory factors within the graft and a representative
draining lymph node. The model correctly reproduces known experimental outcomes,
such as indefinite survival of the graft in the absence of CD4+ T cells and quick rejection
in the absence of CD8+ T cells. The model predicts that decreasing the translocation rate
of effector cells from the lymph node to the graft delays transplant rejection. Increasing
the starting number of quiescent regulatory T cells in the model yields a significant but
somewhat limited protective effect on graft survival. Surprisingly, the model shows that a
delayed appearance of alloreactive T cells has an impact on graft survival that does not
correlate linearly with the time delay. This computational model represents one of the first
comprehensive approaches toward simulating the many interacting components of the
immune system. Despite some limitations, the model provides important suggestions of
experimental investigations that could improve the understanding of rejection. Overall,
the systems biology approach used here is a first step in predicting treatments and
interventions that can induce transplant tolerance while preserving the capacity of the
immune system to protect against legitimate pathogens.

Keywords: mathematical model, transplant, rejection, immune response, antigen-presenting cells, T cells,
cytokines

Abbreviations: APCs, antigen-presenting cells; POD, post-operative day; Treg, regulatory T cells.
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INTRODUCTION

Organ transplantation is a life-saving surgical procedure through
which the functionality of a failing organ can be restored via
replacement with a functioning one. Transplants are performed
for a wide variety of organs, including skin, heart, kidney, liver,
pancreas, spleen, and lung (1). However, without the administra-
tion of immunosuppressive drugs, the recipient’s immune system
recognizes the transplanted tissue as a foreign and potentially dan-
gerous material and responds with a massive immune attack that
ultimately destroys the graft. This immune response represents a
major roadblock in the development of effective therapeutic regi-
mens for the care of patients requiring organ transplants. Current
therapeutic regimens rely on chronic immunosuppression. How-
ever, the quality of life of transplant recipients is compromised
by complications that derive from life-long immunosuppression
(such as hypertension, diabetes, opportunistic infections, and
cancer) and by the limited long-term graft survival rates due to
the absence of established immune tolerance to the transplanted
tissues. Ultimately, 20% or more of transplanted patients die by
5 years post-transplant. Thus, there is a pressing need for a new
investigative approach to understand the systemic effects that
arise from the dynamic interactions between components of the
immune system and transplanted tissues.

Previous hypothesis-driven research has provided important
insight into the complex interactions among the multiple compo-
nents of the immune system, including T cells, antigen-presenting
cells (APCs), and cytokines (2–10). Such studies have helped to
determine the critical players and processes in transplant rejec-
tion. For example, the rationale for “costimulation blockade”
therapies stems from such studies. These therapies, which target a
key step of lymphocyte activation, aim to control T cell activation
and promote transplant survival. They have been shown to be a
potent strategy for promoting long-term acceptance of transplants
in rodents (11–15) and primates (16–18). However, their clinical
translation encountered serious difficulties, and ultimately cos-
timulation blockade therapies were only approved asmaintenance
therapies (19) since they could not promote tolerance (20). To
date, the only clinically successful avenue of transplant tolerance
induction has been through protocols that induce hematopoi-
etic chimerism (21, 22) (the coexistence of donor and recipient
hematopoietic cells) via donor bone marrow co-transplantation
with the organ to be transferred. This procedure requires heavy
conditioning of patients and carries a significant risk of immuno-
logical complications (e.g., the development of graft versus host
disease). Consequently, this approach is applicable only in a very
restricted cohort of patients in need of a transplant. Thus, a valid
andwidely applicable strategy to alter the reactivity of the immune
system of transplant recipients in a robust and reliable way is still
needed.

Biological studies of rejection face various challenges. Exper-
imental in vivo models of immune rejection can elucidate pre-
cise information regarding select immune cell dynamics and the
production and distribution of cytokines. However, conclusions
about the system as a whole and the generalizability of these
conclusions to other species or types of allografts are further
complicated by factors such as procedural variability between

models of rejection and variability in parameter measurements.
These factors, in combination with the complexity of the immune
response, motivate the use of an integrated theoretical and exper-
imental approach to unravel the inter-connected components
of the immune response that contribute to transplant rejection.
A mathematical model of allograft rejection, refined by multi-
ple clinical and experimental observations, can help to identify
variables and parameters that play a significant role in immune
system dynamics and yield a better understanding of the complex
mechanisms of transplant rejection.

Several computational models have been implemented to pre-
dict the dynamics of the immune system in response to viral or
bacterial infections (23–26), although only a few theoretical stud-
ies have addressed transplant rejection. A recent publication used
agent-basedmodeling (ABM) to investigate solid organ transplant
rejection (27). In their study, the model provides an abstract
representation of the innate and adaptive immune components
involved in the acute rejection process of a solid organ trans-
plant. The study does not use experimentally based parameter
values, but it gives a range of possible responses to a transplant
challenge without replicating a specific disease process. Another
recent study (28) used ordinary differential equations to model
the impact of the initial inflammatory response to a surgical insult
on overall graft damage. These studies have addressed general
transplant immunology questions and have studied a very specific
aspect of the initiation of the transplant rejection response, but
they do not offer the capacity to capture the important intrica-
cies of the rejection response in a combined experimental and
theoretical system that could lead to useful predictions to design
new experimentations. The mathematical model presented in
the current study aims to provide useful theoretical predictions
of transplant rejection based on biologically relevant parameter
values, initial conditions, and cellular interactions.

The objectives of this study are (i) to develop a theoretical
model to predict the effect of the immune response dynamics
on the rejection of a murine heart transplant based on exper-
imental measurements, and (ii) to identify new and effective
strategies to promote transplant acceptance that could be inves-
tigated experimentally. The model is composed of a system of
ordinary differential equations describing the cellular dynamics
in the lymph node and graft in the context of a simulated acute
rejection of murine heart allograft. The model equations and
parameters are based on previous immune system models and
are designed to incorporate key assumptions and experimental
observations of the immune response tomurine heart transplants.
The model captures the known behavior of mouse heart rejection
and recapitulates the effect of previously reported experimental
manipulations. It also underscores the relative importance of
the ratios of effector versus regulatory T cells (Tregs) on the
speed of graft rejection. Importantly, the model predicts a previ-
ously unappreciated behavior when altering the timing of T cell
exposure to the graft, providing details for the design of new
experimentations that could confirm or refute these findings.
Ultimately, we believe this model could become an innovative tool
to improve our understanding of transplant rejection and signifi-
cantly aid in the design of new and effective strategies of immune
intervention.
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MATERIALS AND METHODS

Model Development
In this study, a mathematical model of murine heart transplants
is developed to investigate the interactions between the host
immune system and transplanted graft. A compartmental model
is used in which all interactions are assumed to occur in either
the graft or the draining lymph node. A separate compartment
for blood is not included, but the rates of exit and entry of the
various cells into the graft or lymph node are assumed to account
for transit time in the blood. Table 1 provides the definition and
description of all the variables tracked by this model. As with
any model, some assumptions and simplifications are necessary
to address a specific question using quantitative techniques.

The following list provides a summary of the assumptionsmade
in this study:

• Antigen-presenting cells: a single population of APCs is defined
in the model and includes the populations of dendritic cells,
macrophages, and B cells; no distinction is made between the
origin of the APCs (donor or recipient);

• Antigen presentation: direct, indirect, and semi-direct antigen
presentation pathways are grouped into a single function;

• Rejection mechanisms: only cell-mediated mechanisms of graft
cell destruction (by effector T cells and inflammatoryAPCs) are
included since the absence of B cells and associated antibody
production in mouse heart transplant models (obtained via
genetic manipulation or depletion strategies) does not extend
graft survival (29);

• Lymphoid tissue: the activation of the immune response is
restricted to an ideal lymph node that drains the graft. The
contribution of the response by multiple lymphoid tissues is
accounted for by amplifying the translocation rate of activated
T cells from a single lymph node to the graft;

• Naïve T cells: the population of graft-reactive T cells is consid-
ered to be homogeneously naïve. No contribution of memory
T cells is considered at this stage. A continuous output of newly
generated T cells (from the thymus) is assumed to maintain a
constant number of naïve T cells in the lymph node. Of the total
T cell population, 5% are considered to be alloreactive (30);

TABLE 1 | Description of model variables.

Variable Description Location

ALN
mat Mature antigen-presenting cells Lymph node

TLNE Activated effector T cells

TLNR Activated regulatory T cells

TLNH Activated helper T cells

AG
mat Mature antigen-presenting cells Graft

AG
imm Immature antigen-presenting cells

AG
inf Inflammatory antigen-presenting cells

TGE Activated effector T cells

TGR Activated regulatory T cells

TGH Activated helper T cells

GG Graft cells

CG
p Pro-inflammatory cytokine

CG
a Anti-inflammatory cytokine

• Inflammatory response: the danger signals generated by the
surgical procedure of transplantation (e.g., surgical trauma,
ischemia/reperfusion injury, and potential exposure to bac-
terial and viral components) (31) and the ensuing release of
inflammatory cytokines (i.e., IL-6, IL-18, TNF, IP-10, IL-1) by
graft tissues and innate immune components are simplified
and represented in a single population (CG

p ). No contribution
to the rejection response by concomitant protective immune
responses (anti-pathogens) is assumed. Moreover, as no spe-
cific quantification of each of inflammatory factors is currently
available in the literature, their functions and behavior are
represented with a single model variable. CG

p has both inflam-
matory and chemotactic functions, and its behavior is initially
modeled based on the production and accumulation of IL-6, the
most representative inflammatory cytokine in transplantation
as previously reported (32, 33);

• Anti-inflammatory response: the anti-inflammatory cytokines
(i.e., IL-10, TGF-β, IL-35, pro-resolving mediators) normally
produced by graft tissues and cells of the immune system as
compensatory mechanisms to the inflammatory response ini-
tiated by the transplant and by the rejection response are all
included in a single population (CG

a ). As per CG
p , there is no

transplant-specific quantification available for these factors and
CG

a is mainly modeled on the behavior reported for IL-10 in the
regulation of immune responses (34–36).

• Graft cells turnover: the growth of heart cells is considered
negligible in the model based on reported data (37).

With these assumptions, the dynamics between the immune
system and the graft are described in the following five stages (and
are depicted in Figure 1):

1. Transplantation: transplantation (introduction of the graft)
occurs at day 0 and is captured by themodel using the following
initial conditions (listed in Table 2) for the graft population
(GG), pro-inflammatory cytokines (CG

p ), and immature APCs
(AG

imm): GG(0)= 5,600,000 cells (38, 39), CG
p (0)= 50 pg/ml

(32, 33), and AG
imm = 2,000 cells (40, 41). GG(0) was chosen

by extrapolating the number of cells in a mouse heart based
on the average mass of a mouse heart and the average cell
density of a human heart. Pro-inflammatory cytokines are
assumed to be present at time 0 since transplantation is
associated with surgical trauma and exposure to bacterial
and viral agents. Additionally, during the procedure, the
reconnection to the recipient circulation initiates the process
of ischemia/reperfusion injury, causing rapid accumulation
of inflammatory mediators (31, 42, 43). Although there is a
general agreement on the presence of inflammatory elements
at time 0, the overall amount is not known and, thus, an
arbitrary value is chosen here. This value reflects the kinetics
of mRNA expression and plasma accumulation of IL-6 – a
key “danger signal” in the activation of the immune system in
transplantation – that have been described previously (32, 33).
The presence of these inflammatory cytokines leads to a rapid
influx of host immature APCs into the graft (representing
the influx of circulating monocytes rapidly converting in the
tissues into APCs).
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FIGURE 1 | Schematic of the five stages of transplant rejection defined in the theoretical model. Circled numbers correspond to the stage number.
(1) Transplantation is represented in the model by positive initial conditions for the graft population, pro-inflammatory cytokines, and immature APCs. (2) The
activation of AG

imm into AG
mat by pro-inflammatory factors, and the translocation of AG

mat from the graft to the lymphoid tissue. Pro- (CG
p ) and anti-inflammatory (CG

a )
cytokines attract AG

imm to the graft. (Note the depictions of CG
a - and CG

p -dependent interactions are not included in the figure to prevent overcrowding the schematic.

Please refer to the equations for a detailed explanation of the cytokine actions.) (3) The activation of TLNE , TLNH , and TLNR in the lymph node. T cell activation is facilitated
(blue lines) by ALN

mat and TLNH and inhibited (red lines) by TLNR . (4) The translocation of T cells from the lymph node to the graft. (5) In the presence of TGH , A
G
imm are

activated into AG
inf (blue line). Graft cells are destroyed by AG

inf and TGE . Graft destruction and AG
imm activation are inhibited by TR (orange lines).

TABLE 2 | Initial values for model variables.

Variable Initial value Unit

ALN
mat 0 cells

TLNE 0 cells

TLNR 0 cells

TLNH 0 cells

AG
mat 200 cells

AG
imm 2,000 cells

AG
inf 0 cells

TGE 0 cells

TGR 0 cells

TGH 0 cells

GG 5.6e6 cells

CG
p 50 pg/ml

CG
a 0 pg/ml

2. APC maturation and presentation of donor antigens in the
lymph node: once exposed to CG

p , immature APCs are activated
into mature APCs in the graft (AG

mat). The maturation of APCs
contributes to an increased accumulation of pro-inflammatory
factors as well as, in a delayed fashion, to the production of
anti-inflammatory factors (CG

a ) (34–36). Once mature, APCs
exit the graft and travel to the draining lymphoid tissue.

3. Activation of T cells in the lymph node: in the theoretical model
of the lymph node, naïve CD8+ effector T cells (TEN), naïve
Tregs (TRN), and naïve CD4+ helper T cells (THN) that have
the capacity to recognize donor antigens are assumed to be
present initially at background levels of 55,000, 9,500, and
70,000 cells, respectively. Upon entering the lymph node, ALN

mat
facilitate the activation of T cells (6, 10). As shown in Figure 1,
ALN

mat are necessary to promote the activation of naïve CD8+

(TLN
E ), CD4+ (TLN

H ), and regulatory (TLN
R ) T cells in the lymph

node. CD8+ T cell activation is dependent on the licensing of
interacting APCs by activated CD4+ T cells. Once activated,
Tregs inhibit the activation of CD8+ and CD4+ T cells. T cell
proliferation in the lymph node depends on the autocrine
and paracrine effects of growth factors (e.g., IL-2). Tregs are
unable to produce and secrete these growth factors and, thus,
their proliferation is delayed and dependent on the presence
of activated CD4+ and CD8+ T cells (44).

4. T cell infiltration of the graft: following their activation, TLN
E ,

TLN
H , and TLN

R exit the lymph node and search for the inflamed
tissues of the graft. It is important to note that not all T cells
exiting the lymphnodewill locate the graft. Also, thoughT cells
originate from multiple lymph nodes, only one lymph node is
explicitly depicted and described in the model for simplicity.
The translocation rate parameters eE, eH, and eR in Eqs 8–10
are multiplied by a factor k that accounts for the contribution
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of these two phenomena to the number of cells entering the
graft. Specifically, the parameter k is interpreted as the product
of the percent of T cells that reach the graft and the number of
lymph nodes (and spleen) from which T cells originate.

5. Destruction of the graft: in the graft, TG
H promote the conversion

of AG
imm into inflammatory APCs (AG

inf); this represents the
activation of macrophages into inflammatory cells that release
cytotoxic agents (e.g., reactive oxygen species) that induce
death of surrounding graft cells. This process is inhibited
by TG

R (45, 46). The release of pro-inflammatory cytokines
is promoted in the presence of AG

mat, TG
E , TG

H, and AG
inf. The

release of CG
a is assumed to depend on AG

mat, TG
R , CG

p , GG, and
AG

inf (47). The presence of CG
a inhibits the conversion of AG

imm
into AG

mat or AG
inf. AG

inf and TG
E direct the destruction of the

graft, while TG
R inhibit graft destruction.

Model Equations
The interactions described in the five stages are modeled using
a system of 13 ordinary differential equations that tracks cell
populations and cytokine concentrations within the graft and
lymph node.Many of the parameter values are taken directly from
literature sources, some were obtained experimentally, and the
remaining are estimated according to experimental assumptions
and observations. The initial values of allmodel variables are given
in Table 2. The model parameter values, units, and references are
listed in Table 3.

Themodel equations describe the activation, proliferation, nat-
ural decay, destruction, and inhibition of the various populations
when appropriate. The interactions in the lymph node are mod-
eled using four equations, and the interactions in the graft are
modeled using nine equations. The superscripts LN and G denote
cell populations in the lymph node and graft, respectively.

In Eq. 1, the rate of change of mature APCs in the lymph node
(ALN

mat) is defined. This rate depends on the entrance of mature
APCs from the graft at rate eA (first term) and on the natural decay
of ALN

mat in the lymph node (second term).

dALN
mat

dt
= eAAG

mat − μAA
LN
mat (1)

The naïve alloreactive T cell populations (TEN, TRN, and THN)
in the lymph node are assumed to be constant since a background
population of these cells is always present (due to thymopoiesis).

In Eq. 2, the rate of change in CD8+ T cells in the lymph node
is shown to depend on T cell activation (term 1), decay (term 2),
proliferation (term 3), and translocation (term 4). The activation
of TLN

E depends on the presence of both ALN
mat and TLN

H , while
TLN

R inhibit this process (10, 46, 51). Proliferation of the TLN
E cells

depends on ALN
mat and TLN

E and occurs at rate rE (used as a proxy for
the production, secretion, and autocrine effect of IL-2) (52). The
translocation of TLN

E from the lymph node is assumed to occur at
rate eE.

dTLN
E

dt
=

aETENALN
matTLN

H(
γ1 + ALN

mat
) (

α1 + TLN
R
) − μET

LN
E

+
rETLN

E ALN
mat

β1 + ALN
mat

− eETLN
E (2)

TABLE 3 | Names, values, units, and citations for all model parameters.

Equation Parameter
name

Value Unit Source

1 eA 5.5 1/day (24)
1 μA 1.2 1/day (48)
2 TEN 55,000 cells Section “Experimental

Data Collection”
2 aE 3 1/day (25)
2 γ1 100 cells (25)
2 α1 2,500 cells Estimated
2 μE 0.7 1/day (25)
2 rE 1.51 1/day (25)
2 β1 5,000 cells Estimated
2 eE 0.001 1/day (24)
3 TRN 9,500 cells Section “Experimental

Data Collection”
3 aR 2.82e−4 1/day Optimized
3 γ2 1,000 cells Estimated
3 μR 0.7 1/day (24, 49)
3 rR 0.02 1/day Estimated
3 α2 9,500 cells Estimated
3 eR 0.001 1/day (24)
4 THN 70,000 cells Section “Experimental

Data Collection”
4 aH 6,018.9 cells/day Optimized
4 γ3 100 cells (25)
4 α3 2,500 cells Estimated
4 μH 0.4 1/day (24, 25)
4 rH 1.51 1/day (25, 50)
4 γ4 4,000 cells (25)
4 eH 0.001 1/day (24)
5 ap1 1,500 cells/day/(pg/ml) Optimized
5 η1 10 pg/ml Estimated
5 α4 12,000 cells Estimated
6 kCP 0.005 1/day/(pg/ml) Optimized
6 μAimm 60 1/day Optimized
6 ap2 3.844 1/day Optimized
6 η2 10 pg/ml Estimated
6 α5 12,000 cells Estimated
7 μAinf 1.2 1/day (48)
8 k 15 – Estimated
8 rEG 0.3 1/day Optimized
8 η3 10 pg/ml Estimated
8 β2 4e6 cells Estimated
9 rRG 0.00375 1/day Optimized
9 α6 12,000 cells Estimated
10 rHG 0.755 1/day Estimated
10 γ5 4,000 cells Estimated
10 η4 10 pg/ml Estimated
11 dinf 0.055 1/day Optimized
11 α7 12,000 cells Estimated
11 dE 0.004 cells/day Optimized
11 α8 12,000 cells Estimated
12 ρ1 10.98 (pg/ml)/day Optimized
12 α9 12,000 cells Estimated
12 ρ2 0.024 (pg/ml)/day Estimated
12 α10 12,000 cells Estimated
12 ρ3 0.24 (pg/ml)/day Estimated
12 α11 12,000 cells Estimated
12 ρ4 10.95 (pg/ml)/day Optimized
12 α12 12,000 cells Estimated
12 μCp

0.15 1/day Optimized

13 ξ1 2.08e−4 (pg/ml)/cells/day Estimated
13 ξ2 6.3e−6 (pg/ml)/cells/day Estimated
13 ξ3 4.2e−9 1/cells/day Estimated
13 ξ4 2.5e−4 (pg/ml)/cells/day Estimated
13 μCa

0.05 1/day Estimated
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The rates of change of Tregs in the lymph node (Eq. 3) and
CD4+ T cells in the lymph node (Eq. 4) contain the same four
terms (activation, decay, proliferation, and exit) as the equation
for CD8+ T cells, with a few important differences: the activation
of TLN

R and TLN
H depends only on ALN

mat, and the proliferation of TLN
R

occurs only in the presence of TLN
E or TLN

H . The activation of TLN
H

is inhibited by TLN
R (10, 45).

dTLN
R

dt
=

aRTRNALN
mat

γ2 + ALN
mat

− μRT
LN
R +

rRTLN
R
(
TLN

E + TLN
H
)

α2 + TLN
R

− eRTLN
R

(3)
dTLN

H
dt

=
aHTHNALN

mat(
γ3 + ALN

mat
) (

α3 + TLN
R
) − μHTLN

H

+
rHTLN

H ALN
mat

γ4 + ALN
mat

− eHTLN
H (4)

The rate of change of the AG
imm population in the graft is defined

in Eq. 5. The first term represents the influx of AG
imm due to the

presence of the graft and pro-inflammatory cytokines. The second
term accounts for the natural decay of AG

imm. The third term
indicates the loss of immature APCs once they become activated
into AG

mat. The fourth term defines the TG
H-mediated activation of

AG
imm into AG

inf. In both of these last two terms, the conversion of
AG

imm into activated populations is inhibited by CG
a and TG

R (35,
47, 51, 53, 54). The functional form describing the inhibition by
CG

a is chosen to emphasize that the rate is a decreasing sigmoidal
function of CG

a .

dAG
imm
dt

= kCpC
G
p GG − μAimmAG

imm − ap1

(
1 −

(
CG

a
)2

η2
1 +
(
CG

a
)2
)

×

(
AG

immCG
p

α4 + TG
R

)
− ap2

(
1 −

(
CG

a
)2

η2
2 +
(
CG

a
)2
)(

AG
immTG

H

α5 + TG
R

)
(5)

Equation 6 describes the dynamics of mature APCs in the graft
(AG

mat). The first term defines the activation of AG
mat by CG

p , which
is inhibited by CG

a and TG
R (35, 47, 51, 53, 54). The second term is

the natural decay of AG
mat, and the last term accounts for the exit

of AG
mat from the graft to the lymph node.

dAG
mat

dt
= ap1

(
1 −

(
CG

a
)2

η2
1 +
(
CG

a
)2
)(

AG
immCG

p

α4 + TG
R

)
− μAA

G
mat − eAAG

mat

(6)

In Eq. 7, inflammatory APCs are differentiated from AG
imm in

the presence of TG
H and inhibited by CG

a and TG
R (term 1) (35, 47,

51, 53, 54) and are assumed to exhibit natural decay (term 2).

dAG
inf

dt
= ap2

(
1 −

(
CG

a
)2

η2
2 +

(
CG

a
)2
)(

AG
immTG

H

α5 + TG
R

)
− μAinfA

G
inf (7)

The rates of change for CD8+, regulatory, and CD4+ T cells
in the graft (Eqs 8, 9, and 10, respectively) depend on the rate at

which they enter the graft (term 1), their natural decay (term 2),
and their proliferation (term 3). The proliferation of TG

E and TG
H

is inhibited by CG
a (36). The parameter k that multiplies the exit

rate of T cells from the lymph node accounts for the fact that not
all T cells exiting the lymph node reach the graft and that T cells
arrive frommultiple lymphnodes. The value for k is obtained from
the product of the percent of T cells that reach the graft and the
number of lymph nodes from which T cells originate.

dTG
E

dt
= keETLN

E − μET
G
E + rEG

(
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CG

a
)2

η2
3 +
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a
)2
)
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EGG

β2 + GG

(8)

dTG
R

dt
= keRTLN

R − μRT
G
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rRGTG
R
(
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E+TG
H
)
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R

(9)

dTG
H

dt
= keHTLN

H − μHTG
H + rHG

(
1 −

(
CG

a
)2

η2
4 +

(
CG

a
)2
)

TG
HAG

mat

γ5 + AG
mat

(10)

Equation 11 describes the dynamics of themass of the graft. The
first and second terms represent the destruction of the graft due
to AG

inf and TG
E , respectively. TG

R work to inhibit the destruction of
the graft through mechanisms that differ from the ones used in
the lymph node. It is recognized that in non-lymphoid tissues, TG

R
do not inhibit the accumulation, nor the proliferation, of AG

imm,
TG

E , and TG
H. Instead, they prevent damage via inhibition of the

destructive activities of AG
inf and TG

E (in addition to preventing the
conversion of AG

imm into AG
inf and AG

mat, depicted in Eqs. 6 and 7)
(54–56). No growth of graft cells is assumed in thismodel as stated
in our model assumptions.

dGG

dt
= − dinfAG

infGG(
α7 + TG

R
) − dETG

EGG(
α8 + TG

R
) (11)

As defined in Eq. 12, the release of pro-inflammatory cytokines
is triggered by the conversion of AG

imm into AG
mat and AG

inf (terms 1
and 4) as well as by the execution of effector functions by both TG

E
and TG

H recognizing their target (10) (terms 2 and 3). The release
of CG

p by each of these cells is inhibited by TG
R (46, 54). The natural

decay of CG
p is modeled in the last term.

dCG
p

dt
=

ρ1A
G
mat

α9 + TG
R

+
ρ2T

G
E

α10 + TG
R

+
ρ3T

G
H

α11 + TG
R

+
ρ4A

G
inf

α12 + TG
R

−μCp
CG

p

(12)
Equation 13 describes the release of CG

a due to the conversion of
AG

imm into AG
mat and AG

inf – a regulatory pathway embedded in the
process of activation to prevent uncontrolled reactivity (35) – and
due to activity of TG

R (46) that infiltrate the graft (terms 1, 4, and
2, respectively). Upon encountering pro-inflammatory cytokines,
the graft tissue also produces anti-inflammatory mediators (term
3). The last term gives the natural decay of CG

a . Since the four
populations leading to the production of CG

a are already inhibited
in the presence of CG

a , additional inhibition is not included in any
of the terms.

dCG
a

dt
= ξ1A

G
mat + ξ2T

G
R + ξ3C

G
p GG + ξ4A

G
inf − μCa

CG
a (13)
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Experimental Data Collection
Male 8- to 10-week-old Balb/C (H-2d), and C57BL/6 (B6; H-2b)
mice were purchased from the Jackson Laboratory (Bar Har-
bor, ME, USA) and housed in specific pathogen-free facilities at
Johns Hopkins University, Baltimore, MD, USA. All experiments
were conducted according to Institutional Animal Care and Use
Committee-approved protocols.

Heterotopic (intra-abdominal) heart transplantation was per-
formed from BALB/c to B6 mice, as previously described (57).
On day 7 post-transplantation, cells from grafts were isolated
using an adaptation of the technique described by Setoguchi et al.
(58). Briefly, tissues were digested at 37°C via 3 consecutive 15-
min incubations in PBS containing Collagenase IV (560U/ml;
Worthington) DNAse I (275U/ml; Amresco), and Dispase II
(0.4U/ml; Roche). Leukocytes were enriched using a 24% Histo-
denz (Sigma-Aldrich)-based gradient separation. These prepara-
tions were then used to quantify the content of CD4+, CD8+, and
Tregs in the rejecting hearts via flow cytometry. Cells were stained
using anti-CD4+ and anti-CD8+ mAb (from BD Bioscience) and
anti-Foxp3 mAb (Affymetrix/eBioscience) according to the man-
ufacturer protocols; samples were acquired using a BD LSR-II
flow cytometer. Data were analyzed via FlowJo analysis software
(FlowJo, LLC).

Table 4 summarizes the absolute counts and relative ratios of
T cell subsets infiltrating a rejecting heart on post-operative day
(POD) 7 deriving from such analysis. From these data, the biolog-
ical variability observed between animals in the total number of
each subset that infiltrate the heart is clearly evident. Strikingly,
however, the ratios among T cell subsets were maintained within
very narrow ranges. Consequently, we used the average number of
T cells to set the scale for the number of T cells in the model, and
we optimized various model parameters to the observed ratios of
T cells.

A similar approach was used to determine the average number
of each T cell subset in a typical lymph node. Our data agree
with a previously published data set (3). Briefly, collection of 16
lymph nodes from multiple animals averaged the identification of
17e6 CD8+ T cells, 22e6 CD4+ T cells, and 3e6 Treg. This renders
1.1e6 CD8+ T cells, 1.4e6 CD4+ T cells, and 0.19e6 Treg in the
average lymph node. Considering that ~5% of T cells are reactive
against donor antigens, the average lymph nodes contains (at time
0) 55,000 CD8+ T cells, 70,000 CD4+ T cells, and 9,500 Treg.

Parameter Estimation
The model contains 61 parameters. Many of the values of these
parameters have been obtained directly from experimental studies

TABLE 4 | Absolute counts and relative ratios of T cell subsets infiltrating a
rejecting murine heart on POD 7.

CD8 CD4 CD8/CD4
ratio

Treg Treg (% of CD4)

Heart #1 2.7e6 5.4e5 5 7.4e4 13.6
Heart #2 4.3e5 8.3e4 5.3 1.2e4 14.9
Heart #3 6.5e5 1.8e5 3.7 2.5e4 14.1
Average 1.27e6 2.7e5 4.7 3.7e4 14.2
SE 6e5 1.2e5 0.4 1.5e4 0.3

(1–6, 8–10, 26, 32, 33, 46, 47, 50–52, 57, 59–68) or other math-
ematical models of the immune system (3, 23–26, 48, 69–74).
Table 3 provides a list of all the model parameter values and
sources for their values when possible. A definition of “estimated”
in Table 3 indicates that the value was not found directly in the
literature but was estimated according to known relationships and
ratios among cell populations in the model. For example, due to
the potency and cellular similarities of Tregs and helper T cells, the
activation rate of TLN

R is assumed to be smaller than the activation
rate of TLN

H (46). As another example, the death rate of AG
inf is

assumed to equal the death rate of AG
mat. The constant values for

TEN and THN are obtained from experiments conducted in the
present study (Table 4). According to reported ratios (26, 46, 57),
the TRN population should be chosen to be about one-tenth of the
helper T cell initial populations.

Several remaining model parameters are optimized (and are
defined as “optimized” in Table 3) to satisfy the following experi-
mental observations:

(1) Presence of all T cells
a. APC conditions (40, 41)

i. AG
mat have a peak population of ~18,000 cells.

ii. AG
imm have a peak population of ~12,000 cells.

iii. AG
mat and AG

imm peak between days 1 and 3.
b. Graft destruction (66)

i. A 75% reduction of the graft mass occurs by
12–14 days following transplantation.

c. T cell ratios (Table 4 and see Experimental Data Collec-
tion)
i. The maximum TG

E value is approximately five times
greater than the maximum TG

H value (ratio of average
TG

E :TG
H values is 4.7, Table 4).

ii. The maximum TG
H value is approximately seven times

greater than the maximum TG
R value (ratio of average

TG
H:TG

R values is 7.29, Table 4).
iii. The maximum number of TLN

E occurs at ~4 days post-
transplantation.

iv. The maximum number of TG
E occurs at ~6 days post-

transplantation.
(2) Absence of helper T cells (7, 64)

No graft rejection.
(3) Absence of effector T cells (7, 64)

Rejection should be delayed slightly.
(4) Absence of all T cells (40, 41)

a. No damage to the graft.
b. APC measures:

i. Immature APCs: 23000, 12000, 2100, and 2000 cells on
days 1, 3, 5, and 10.

ii. Mature APCs: 17000, 12000, 2400, 3000 on days 1, 3, 5,
and 10.

RESULTS

Model Verification
The following four model simulations were used to confirm that
the model results indeed reflect the assumptions on which the
model was built in terms of expected physiological behavior.
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Timing of Graft Rejection
In the absence of any external manipulation (i.e., administration
of immunosuppressive drugs or any immunomodulatory
intervention), experimental murine cardiac transplants are
rejected at ~12–14 days after transplantation. Tanaka et al. (66)
performed in vivo visualization of murine cardiac allograft
rejection and identified the cessation of the heartbeat to occur on
day 12, which corresponded to a 75% reduction in the measured
luminescence of donor tissue from transgenic luciferase-GFP
(green fluorescent protein)-modified mice. The present model

uses this as an approximate metric, defining graft rejection once
the number of graft cells has decreased by 75% of their initial
number. Figure 2A shows the time dynamics of graft rejection
predicted by the model. The behavior of other key populations
including APCs in the graft, T cells in the lymph node, T cells in
the graft, and cytokines in the graft are shown in Figures 2B–F.
The number of T cells in the lymph node peaks around days 6–7
in the lymph node and days 7–9 in the graft, which agrees with
experimental observations (70). The ratios of TG

E :TG
H and TG

H:TG
R

at their peaks are calculated to be 4.7 and 7.29, respectively, in the

FIGURE 2 | (A) Graft rejection is predicted to occur ~11days following transplantation. (B) Model predicted values of immature APCs (AG
imm, magenta), mature APCs

(AG
mat, green), and inflammatory APCs (AG

inf, cyan) in the graft. (C) Model predicted values of regulatory T cells (black), CD4+ T cells (blue), CD8+ T cells (red) in the
lymph node. (D) Model predicted values of regulatory T cells (black), CD4+ T cells (blue), CD8+ T cells (red) in the graft. (E) Model predicted concentration of
pro-inflammatory cytokines (CG

p , red) and anti-inflammatory cytokines (CG
a , blue) in the graft. (F) Ratio of CG

a :C
G
p in the graft.
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graft, which are consistent with experimental values obtained in
this study (Table 4).

Graft Rejection in the Absence of CD8+ T Cells (TE)
As demonstrated experimentally (7), transplant rejection can
occur even if no CD8+ cells are present in the system; the time
to rejection is just slightly delayed. The absence of CD8+ cells is
simulated in the model by modifying the initial value of naïve
effector T cells to be TEN = 0. As a result, no effector T cells
are generated in the lymph node, but graft rejection is predicted
to occur at day 22 (dashed curve, Figure 3A) instead of day 11
when all T cells are present (solid curve, Figure 3A). Rejection
is predicted to occur despite the absence of CD8+ T cells since
activated CD4+ T cells in the graft promote the differentiation of
inflammatory APCs (Figure 3B) which cause graft destruction.
Figure 3C serves to explain why the graft is not destroyed sooner
when no CD8+ T cells are present given that AG

inf is much higher in
their absence (Figure 3B). When all T cells are present, the graft is
destroyed by both AG

inf and CD8+ T cells (terms 1 and 2 in Eq. 11,
respectively). The contribution of each of these terms to the rate
of change of the graft population is plotted in Figure 3C (solid
curves). Specifically, the contribution of the AG

inf term (labeled
dinf) is shown in red, the contribution of the CD8+ T cells when
they are present (labeled dE) is shown in black, and the sum of
these contributions (labeled total) is shown in blue. The dashed
curves correspond to these same cases when CD8+ T cells are
absent. Note that in this case the contribution of AG

inf (dashed red
curve) and the sum of the contributions (dashed blue curve) lie
on top of each other since the contribution of the CD8+ T cells
is zero (black dashed curve). As can be seen in Figure 3C, the
contribution of AG

inf whenCD8+ T cells are absent exceeds the total
solid blue curve until a time point between days 5 and 10 when the
blue solid curve exceeds the dashed blue curve. This explains the
steep decline in graft population initially in the absence of T cells
followed by a slower decay than when all T cells are present.

Graft Acceptance in the Absence of All T Cells
As discussed in Ref. (10, 75), animals with no T cells (i.e., no CD4+

T cells, no CD8+ T cells, and no Tregs) are incapable of rejecting
transplants. To simulate conditions of no T cells in the model,
the naïve T cell populations are set to 0: TEN =TRN =THN = 0.
As a result, no T cells are generated in the lymph node or graft.
Although AG

mat are activated, the absence of T cells or AG
inf pre-

vents any damage to the graft (Figure 4A), which survives indef-
initely. The APC dynamics in the graft under these conditions
are compared with data reported by Oberbarnscheidt et al. (40)
in Figure 4B. It shows a fairly accurate description of the trend
of AG

mat with, however, an overestimation of the accumulation
of AG

imm, a result that we attribute to the model assumptions
employed (see Model Limitations). The levels of the pro- and
anti-inflammatory cytokines are shown in Figure 4C.

Graft Acceptance in the Absence of TH

Several studies (7, 52, 64) have demonstrated that the presence of
CD4+ T cells is a necessary and sufficient condition for rejection.

FIGURE 3 | (A) Graft rejection is delayed by ~10 days in the absence of CD8+

T cells. Dashed curve: model prediction in the absence of effector T cells.
Solid curve: model prediction in the presence of all T cells. (B) Model
predicted values of inflammatory APCs in the absence of effector T cells
(dashed curve) and in the presence of all T cells (solid curve). (C) Individual
contributions of AG

inf (red curve, labeled dinf) and CD8+ T cells (black curve,
labeled dE) and combined contribution (blue curve, labeled total) to the rate of
change of the graft population in the absence (dashed) and presence (solid) of
CD8+ T cells.
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FIGURE 4 | (A) Model predicted number of graft cells when no T cells are present. (B) Model predicted number of mature APCs (green), immature APCs (magenta),
and inflammatory APCs (cyan) in the graft when no T cells are present. The model predictions are compared with data reported in Ref. (40, 41) (asterisks).
(C) Concentrations of pro-inflammatory cytokines (red) and anti-inflammatory cytokines (blue) when no T cells are present.

In accordance with this, the model reproduces the finding that in
the absence of CD4+ T cells in the lymph node (THN = 0), the graft
is accepted since no damage-inducing cells are activated without
the contribution of CD4+ T cells.

Model Simulations
The model is used to assess the effect of altering the number of
naïve Tregs (adoptive transfer), altering the translocation rate of
T cells from the lymph node to the graft, and performing a tran-
sient peri-transplant depletion of T cells. Insight from simulation-
generated hypotheses may have eventual implications for design-
ing improved therapeutic strategies that promote tolerance of
transplants.

Adoptive Transfer of Regulatory T Cells
Adoptive transfer is a technique by which T cells are obtained
from an animal, stimulated in a polyclonal or antigen-specific
fashion, and grown in culture. The cells are then transferred back
into the original animal or into a separate animal with the overall
goal of expanding the frequency of those T cells. Ultimately, this
procedure can be exploited to increase or decrease the reactivity of
the immune system. Adoptive transfer has been employed using
Treg, aiming to counter graft destruction, and is currently under
active investigation for its clinical translation (67, 76). The size,
frequency, and type of these transfers can vary greatly depending
on the system and overall treatment goal. Here, a single injection
of naïveTregs into the lymphnode immediately prior to transplan-
tation is simulated by varying TRN from 9,500 cells to 3e8 cells.
Figure 5 shows that the graft survival time increases non-linearly
with the injection dose. However, fairly rapid transplant rejection
is still observed, as expected (67). The model reproduces previous
observations that indicate the simple increase of TRN would have a
very limited impact on transplant survival unless combined with
ideal complementary strategies, such as immunosuppression (in
a form that does not affect Treg activity, but only effector T cells)
and pre-activation of the injected Tregs (to effectively reduce the
levels of the other T cells so that a large ratio of TR to T cells is
maintained).

FIGURE 5 | Impact of naïve Treg adoptive transfer on graft survival.
Model predicted values of time until transplant rejection as the initial (and
constant) level of naïve regulatory T cells is varied between 9,500 and 3e8
cells.

Translocation Rates
The ease with which T cells can travel between the lymph node
and the graft is expected to influence the destruction of the graft.
For example, decreasing the rate (eE) at which TE cells translocate
from the lymph node to the graft should extend the survival
of the graft, though not indefinitely. Figure 6 depicts the effect
of eE alone on graft survival time (i.e., eE is varied while the
other translocation rates are held constant eH = eR = 0.001 day−1,
magenta curve) or in combination with the translocation rate
of CD4+ cells (i.e., eE and eH are varied and assumed equal
to each other while eR = 0.001 day−1, blue curve) or with the
translocation rate of Tregs (i.e., eE and eH and eR are all varied
and assumed equal to each other, black curve). Under normal
model conditions, eE = eH = eR = 0.001 day−1. If eE is increased,
the graft survival time is decreased from baseline. If both eE and
eH are increased, the graft survival time is even more decreased.
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However, if eE, eH, and eR are increased, the survival time is
longer because more Tregs are present to inhibit the effects of
the CD8+ and CD4+ T cells. The logic is reversed to the left
of eE = 0.001 day−1.

Delayed Injection of T Cells
In Figure 7, the model is used to simulate the effect of introducing
T cells into a system that originally has no T cells for a fixed
number of days [simulations for 10 (red), 20 (blue), 30 (black),
40 (magenta), and 50 (green) days are shown]. These simulations
were used to assess the ability of the model to reproduce the out-
come of published experiments in which T cells were introduced

FIGURE 6 | Impact of T cell translocation rates on graft survival. Model
predicted values of transplant survival times as the translocation rate of CD8+

T cells (i.e., eE is varied while the other translocation rates are held constant
eH = eR = 0.001day−1, magenta curve) is varied alone or in combination with
the translocation rate of CD4+ cells (i.e., eE and eH are varied and assumed
equal to each other while eR =0.001 day−1, blue curve) or with the
translocation of regulatory T cells (i.e., eE and eH and eR are all varied and
assumed equal to each other, black curve).

into a lymphopenic animal 50 days after heart transplantation.
The rationale for this test was that the healing process would
make the graft incapable of initiating the rejection response. The
reported results, however, refuted that hypothesis and showed a
complete rejection initiated even when T cells were introduced
50 days after transplant (2). The model presented in the current
study fails to predict this outcome, but provides valuable insight
into the behavior of the system modeled. For example, the red
curve in Figure 7A shows that themodel predicts graft acceptance
when no T cells are present and graft destruction once T cells
are introduced starting at day 10. As indicated by the additional
curves in Figure 7A, the steady state population of graft cells
(e.g., the population of graft cells after 200 days) does not change
monotonically with the number of days till lymphocyte injec-
tion. That is, the steady-state number of graft cells is higher if
T cells are injected at 20 days instead of 10 days, but lower if T
cells are injected at 40 days instead of 10 days. This unexpected
behavior is summarized inFigure 7B, which shows the population
of graft cells at 200 days as a function of the day at which T
cells are injected. This graph clearly shows the non-monotonic
relationship between these values.

DISCUSSION

In this study, a mathematical model of transplant rejection that
encompasses both innate and adaptive elements of the immune
response is presented. The model is based on combining experi-
mentally observed ratios of different types of T cells in the lymph
node and graft as well as the time at which their numbers are
maximum together with defined characteristics of the immune
response that have been reported in the literature (2–10, 26, 46, 47,
50, 51, 57, 60, 64, 66, 67, 75, 77). Our efforts in the development
of this transplant rejection model were driven by its ultimate
application as a tool to provide a better understanding of the
complex dynamics that underlie the rejection response and to
provide a novel and powerful perspective to predict new methods
for preventing graft rejection. Three hypothetical immune inter-
ventions are explored in this study:modulation of the frequency of
naïve Tregs, alteration of the migration of T cells to the graft, and

FIGURE 7 | (A) Model predicted number of graft cells when no T cells are initially present and then injected after 10 (red), 20 (blue), 30 (black), 40 (magenta), and 50
(green) days. (B) The number of graft cells predicted by the model at day 200 when T cells are administered at different time points between 10 and 60days.
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transient depletion of the T cell pool. First, we considered a simple
experiment of adoptive transfer of naïve Tregs simulating condi-
tionswhere the starting number of restingTregs in the lymphnode
was altered. Our model indicates that a higher number of Tregs
causes an increase in the time to allograft rejection (Figure 5).
As expected, however, the impact on graft protection is modest
and requires what would be a non-physiological augmentation
of Treg numbers to achieve a therapeutic effect. As indicated
below, this model is well suited to investigate which combination
of strategies could maximize the impact of Treg adoptive transfer
(67). For example, although indirectly, the model simulations
already suggest a powerful effect of activated Tregmigrating to the
graft (see comments on third simulation below). While this paper
only considers a simple example, the ultimate goal of adoptive
transfer is tomaintain a high level of Tregs so that they accumulate
in both the lymphnode and the graft (46, 47, 57, 67). Achieving the
greatest possible ratio of Treg to other T cells would yield themax-
imum inhibitory effect on the activation of TG

E , TG
H, CG

p , AG
mat, and

AG
inf, and, as a result, provide a significant protection to the graft.
Second, as shown in Figure 6, reducing the translocation rate

of TLN
E has a non-linear effect on graft destruction. For example,

a 50% decrease in eE yields an 82% increase in graft survival
time, while a 50% increase in eE decreases the graft survival
time by 34%. Decreasing both the translocation rate of TLN

E and
the translocation rate of TLN

H causes an even more pronounced
increase in graft survival time. This protective effect is not only
due to a more limited damage inflicted directly by a reduced
number of translocating T cells but is also due to the powerful
suppressive effect of Tregs that localize to the graft. In fact, the
concomitant reduction of eR with eE and eH shows a much more
limited prolongation of graft survival. This behavior helps to
explain why the inhibition of TLN

E translocation to the graft has
a more beneficial effect than their complete absence (Figure 3).
This is probably due to the contribution of TLN

E to the expansion of
Tregs in the lymph node that would then more efficiently control
the remaining immune response, a situation that would not occur
in the absence of TLN

E . Thus, the manipulation of activated T cell
migration could have a more profound therapeutic effect than
the prevention of their activation or their deletion, as long as
the migration of activated Tregs is not concomitantly affected.
Such complex dynamics could contribute to understanding the
disparate therapeutic effects observed when targeting specific
chemokine receptors (78, 79). Alternatively, this result highlights
the importance of using activated Tregs rather than resting ones
for adoptive transfer strategies.

Third, the theoretically predicted non-linear and non-
monotonic relationship between graft survival and the delayed
appearance of alloreactive T cells suggests that new experiments to
confirm such a relationship are needed to determine if the results
suggest a new method for promoting graft survival. The model
prediction is in discordance with the experimental observation
that the re-introduction of T cells 50 days post-transplant causes a
prompt rejection response (2). This underscores the need to adapt
the theoretical model to incorporate other important mechanisms
that would contribute to such an outcome. At the same time,
this discrepancy indicates that the basic principles implemented

in our model are not sufficient to explain the intricate behavior
of the immune system and suggest that additional scenarios
need to be investigated experimentally. We can speculate two
plausible scenarios: (a) the accumulation of pro-inflammatory
mediators follows a longer kinetic that supports delayed activation
(though not observed experimentally), or (b) the phenomenon
of lymphopenia-induced proliferation of T cells (observed when
T cells are transferred into a lymphopenic mouse) causes the
non-specific activation of T cells that can travel directly to the
graft and initiate the rejection response (80). The experimental
validation of these possible hypotheses would strengthen the
understanding of the non-linear and non-monotonic behavior
predicted in this scenario by our model. For example, the model
prediction of graft rejection when T cells are administered at
40 days versus the model prediction of near graft acceptance
when T cells are administered at 42 days warrants additional
investigation. This improved understanding would be essential
in determining the extent to which the transient elimination of T
cells would be more effective and, possibly, what combinatorial
intervention strategy would maximize this effect.

Model Limitations
Some of the choices and assumptions made in this study limit
the capabilities of the model. First, the model focuses on the
interactions of T cells, APCs, and inflammatory cytokines, but
does not include small-scale details, such as cell signaling or the
secretion of various factors. Additionally, cytokines are grouped
into two categories (pro- and anti-inflammatory signals) and are
tracked only in the graft, not in the lymph node. Considering
the vast number of individual cytokine molecules involved in a
full immune response as well as their independent dynamics, the
relative strength of their effects on the overall immune system
(as well as independent effects on individual cell types), and their
unique production and decay rates, amodel that accounts for each
cytokine molecule individually will rapidly become complicated
and cumbersome. But, studies show that the overall balance of
these signals and their specific varieties can significantly impact
graft outcome (4, 6, 33, 47). Effects of pro- and anti-inflammatory
cytokines are assumed to be included in parameters such as rE, rR,
and rH. The tradeoff of specificity for simplicity allows the model
to reproduce general behavior.

Some of the diversity and antigen-specificity of the various
cell populations are generally neglected in the model. B cells and
memory T cells are excluded, allowing the model to be com-
pared with experimental preparations only involving a naïve T
cell repertoire (6, 7, 9, 50, 64, 77, 81). One aspect of initiation
of acute organ rejection includes cross-reactivity of non-naïve
T cells cross-reacting against specific foreign MHC molecules
(HLA in humans) presented by graft cells. The contributions of
non-naïve T cells can vary widely, depending on the immuno-
logical history of the individual (including the formation of het-
erologous immunity toward the transplant), and serve as a point
of customization that can be adjusted in subsequent iterations
of this model. The model also does not accurately represent the
accumulation of immature APC in the graft when no T cells
are present in the system. This limitation likely derives from the
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simplification of incorporating multiple APC types into one vari-
able and having AG

inf and AG
mat originating from the same starting

population. Moreover, the effects of mechanisms of tolerization,
namely the induction of T cell anergy by immature APC or the
conversion of T cells into Tregs, are not presently included but
could be incorporated in the future. These processes contribute
significantly to the underlying anti-inflammatory processes, as
they allow AG

imm and TG
R to inhibit activated cells in ways cur-

rently not being modeled. Modeling these factors may require
probabilistic considerations of co-stimulatory encounters of anti-
gen with or without pro-inflammatory signals. Additionally, graft
rejection experiments typically conclude upon rejection and no
furthermeasurements of the graftmass are taken. Thus, anymodel
predictions post-rejection unfortunately cannot be compared to
available experimental observations.

The model also assumes that the entire graft is attacked at day
0. In reality, due to the three-dimensional heterogeneity of the
system, sites undergoing an inflammatory response are damaged
more. There are also early and late inflammatory populations that
could be included in the model using a time delay. This would
require converting the system into delay differential equations, as
in (25).

Model Extensions
Excitingly, despite the presented limitations, multiple avenues
of experimentation to understand the rejection response and to
assess the efficacy of therapeutic interventions are suggested by
the results obtained with this model. For example, the current
model predicts that altering the TRN population has a significant
impact on graft survival, as shown in Figures 5 and 6. The size,
timing, and repetition of Treg transfers can vary widely; many
experiments have started to identify appropriate combinations for
maximizing graft life (10, 46, 47, 51, 57, 67, 77). This model can
be used to simulate a multitude of adoptive transfer regimens that
may or may not have been explored experimentally. In addition,
pharmaceutical immunosuppression can be simulated by target-
ing terms in the equations that represent chemical pathways. In
particular, there ismuch interest in directlymanipulating pro- and
anti-inflammatory signals as novel immunosuppressive strate-
gies; model simulation could help to identify optimal regimens.
The model can also be used to assess the compatibility between

the current strategy of immunosuppression and experimental
immune interventions and guide the identification of optimal
conversion strategies. Moreover, future iterations of the model
could encompass the heterogeneity of reactivity of each individual
repertoire of alloreactive T cells (combined with the extent of
mismatch in HLA molecules between donor and recipient) to
achieve a more “personalized” level of intervention – an ideal goal
of current medical research. Overall, the model can be used to
hypothesize that pathways are viable targets for pharmaceutical
intervention based on parameter sensitivity analysis and model
dynamics. Combined with a continuous cycle of suggested exper-
imentation and model optimization, this approach has potential
for valuable contributions in the quest of transplant tolerance
induction.
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