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Neutrophil extracellular traps (NETs) are chromatin-derived webs extruded from neu-
trophils in response to either infection or sterile stimulation with chemicals, cytokines, 
or microbial products. The vast majority of studies have characterized NET release 
(also called NETosis) in pure neutrophil cultures in  vitro. The situation is surely more 
complex in  vivo as neutrophils constantly sample not only pathogens and soluble 
mediators but also signals from cellular partners, including platelets and endothelial 
cells. This complexity is beginning to be explored by studies utilizing in vitro co-culture, 
as well as animal models of sepsis, infective endocarditis, lung injury, and thrombosis. 
Indeed, various selectins, integrins, and surface glycoproteins have been implicated 
in platelet–neutrophil interactions that promote NETosis, albeit with disparate results 
across studies. NETosis can also clearly be regulated by soluble mediators derived from 
platelets, such as eicosanoids, chemokines, and alarmins. Beyond platelets, the role 
of the endothelium in modulating NETosis is being increasingly revealed, with adhesive 
interactions likely priming neutrophils toward NETosis. The fact that the same selectins 
and surface glycoproteins may be expressed by both platelets and endothelial cells 
complicates the interpretation of in vivo data. In summary, we suggest in this review that 
the engagement of neutrophils with activated cellular partners provides an important 
in vivo signal or “hit” toward NETosis. Studies should, therefore, increasingly consider 
the triumvirate of neutrophils, platelets, and the endothelium when exploring NETosis, 
especially in disease states.

Keywords: neutrophil extracellular traps, platelets, endothelium, selectins, integrins

iNTRODUCTiON

Neutrophil extracellular traps (NETs), first described in 2004, are released by neutrophils via an 
active process coined NETosis (1, 2). While first characterized for their role in combatting infectious 
organisms (1), these tangles of chromatin and antimicrobial proteins are now known to play a role 
in pathogenic autoimmunity and other sterile inflammatory states (3, 4). NETs may place organ 
systems at risk, including the vasculature (5–7), central nervous system (8), lungs (5), and kidneys 
(9, 10). Organ failure and thrombotic vessel occlusions are even possible (11–13). Neutrophils, as one 
of the first responders to inflammatory insults have long been known to interact with other cell types 
(especially platelets and endothelial cells) with implications for neutrophil recruitment, generation 
of reactive oxygen species (ROS), and phagocytosis. This cell-to-cell crosstalk may be mediated by 
either direct cell contact or soluble mediators. In this review, we will focus on the implications of 
crosstalk for NETosis. Relevant studies have characterized not only in vitro systems (typically with 
human cells) but also more complex murine models of disease. There is significant heterogeneity 
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between studies, especially in terms of how NETosis is scored 
and the neutrophil pathways that are considered (which is prob-
ably not surprising as a canonical model of NETosis is still not 
established). Our goal is to highlight the similarities between 
studies and to point out the discrepancies that necessitate further 
research. Also, whenever possible, we will try to focus on the 
implications of these interactions for controlling infection and 
for regulating inflammation and end-organ damage.

PLATeLeT FUNCTiON

Platelets are megakaryocyte-derived cell bodies that lack nuclei. 
They circulate in the bloodstream as well-established regula-
tors of the hemostatic system (14). Platelets may be activated 
by the exposure of subendothelial matrix proteins, such as von 
Willebrand factor (vWF) and collagen, as might happen with 
mechanical vessel injury (15). Platelets recognize vWF via a glyco-
protein receptor complex, glycoprotein Ib (GPIb)/IX/V (16), with 
the GPIb subunit playing a particularly key role (17). In parallel, 
collagen engages a different glycoprotein receptor, GPVI (18). 
Soluble plasma factors also activate platelets, including fibrinogen 
(via GPIIb/IIIa) (19) and thrombin (through protease-activated 
receptors or PARs) (20). When considering research studies, it is 
important to note that some studies may activate platelets with 
synthesized activators. An example is thrombin receptor activator 
peptide (TRAP), which acts as an agonist for all PARs (21), and 
the more specific TRAP-6, which binds specifically to PAR-1 (22).

These various activating signals lead to platelet aggregation 
and the release of copious amounts of preformed mediators from 
platelet granules, such as adenosine diphosphate (ADP) and 
thromboxane A2 (TXA2) – with the potential for potent local 
effects and feedforward into further platelet activation (14, 17). 
Platelet factor 4 (PF4, also known as C–X–C motif ligand 4) is 
another mediator released by platelets. In addition to function-
ing as a chemokine for cells, such as neutrophils, PF4 binds and 
neutralizes negatively charged cell surface glycosaminoglycans, 
such as heparan sulfate, dermatan sulfate, and chondroitin 
sulfate, thereby mediating several downstream effects, including 
platelet aggregation (23). Another soluble mediator that will be 
discussed in this article is high-mobility group box 1 (HMGB1), 
a protein “alarmin”/cytokine released by activated platelets 
(24). Finally, proteins such as P-selectin may be either released 
locally, or expressed on the platelet surface, thereby regulating 
the local environment (25, 26). For example, P-selectin has been 
implicated in platelet aggregation under pulsatile shear stress 
conditions (27).

While platelets clearly play a key role in stemming blood 
loss in the event of vessel injury, they also have well-established 
immunomodulatory properties, potentially acting as sentinels of 
infectious and inflammatory events (28, 29). In particular, the 
innate immune receptors toll-like receptor 2 (TLR2) and TLR4 
(for Gram-positive and Gram-negative organisms, respectively) 
are expressed on the platelet surface (30, 31). Activation of 
these receptors may lead to release of platelet granules (32), PF4 
upregulation (33), GPIIb/IIIa conformational changes (34), and 
ultimately feed forward to thrombin generation (30). Having said 
that, some studies have found less potent responses. For example, 

exposure of platelets to triacylated lipoproteins (like Pam3CSK4, 
a TLR2 agonist) and lipopolysaccharide (LPS, a TLR4 agonist) 
does not always lead to significant P-selectin release (35).

PLATeLeT–NeUTROPHiL iNTeRPLAY

Platelets interact directly with neutrophils and thereby alter 
neutrophil function (17). Examples of ligand/receptor pairs that 
mediate direct platelet/neutrophil interactions include P-selectin/
P-selectin glycoprotein ligand 1 (PSGL-1) (36, 37), intercellular 
adhesion molecule 2 (ICAM-2)/lymphocyte function-associated 
antigen (LFA-1) (38), and GPIb/macrophage-1 antigen (Mac-1) 
(17, 39). These interactions clearly support platelet adhesion to 
leukocytes (40, 41) and, in some cases, have been shown to be of 
fundamental importance for recruitment of neutrophils to sites 
of inflammatory insult (40). Furthermore, beyond traditional 
direct interaction, some molecules (such as GPIIb/IIIa) may be 
transferred from platelets to neutrophils via microparticles (MP), 
thereby regulating neutrophil function (an example being nuclear 
factor kappa B activation) (42).

There is also a key role for platelet-released soluble media-
tors (ADP, TXA2, etc.) in both perpetuating platelet–neutrophil 
interplay and activating neutrophils. As an example, ADP 
(which would presumably be platelet-derived in  vivo) induces 
platelet–neutrophil complexes through a mechanism that may be 
dependent upon P-selectin, but not PSGL-1 (41). TXA2 augments 
multiple neutrophil functions, including neutrophil adhesiveness 
(43), oxidative burst (44), and diapedesis (45). Platelet-derived 
HMGB1 can engage/activate neutrophil TLRs (46). Beyond 
TLRs, another well-recognized receptor for HMGB1 is the 
receptor for advanced glycation end products (RAGE), with 
engagement by HMGB1 leading to neutrophil recruitment 
and neutrophil-mediated tissue injury (47). PF4 interacts with 
neutrophil chondroitin sulfate (48) and (in the presence of 
 co-stimulatory tumor necrosis factor alpha) mediates neutrophil 
granule release and surface adherence (49). PF4 has also been 
implicated in neutrophil chemotaxis (50). Neutrophil-activating 
peptide 2 (NAP-2) released from platelets can regulate neutrophil 
polarization and motility through CXCR1/2 (51). CCL5 (another 
chemokine released by platelets) may also play a role in neutro-
phil infiltration (52).

PLATeLeTS AND NeTosis

Platelets are far-and-away the most studied cellular regulators 
of NETosis. Most model systems have pointed to platelet activa-
tion as the first step. This is followed by platelet–neutrophil 
crosstalk, and ultimately regulation of neutrophil effector 
function. Studies have employed numerous platelet activa-
tors, including LPS, Pam3CSK4, thrombin, collagen, ADP, 
and TRAP-6 (53–55). These different strategies for activation, 
beyond anything else, make it challenging to compare studies 
side-by-side (Table  1).

Regarding in  vitro studies, platelet–neutrophil interactions 
have been assessed under static conditions (53, 57), and also with 
the introduction of shear stress (53–56). It is worth noting that the 
methodology for quantifying NETosis has varied markedly across 
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TABLe 2 | Selected in vivo models of platelet-stimulated NeTosis.

Species Model Required mediator(s) Reference

Mouse Endotoxemia LFA-1 (56)
Mouse TRALI GPIIb/IIIa (5)
Mouse ALI HMGB1 (58)
Mouse ALI Mac-1, CXCL4/CCL5 (61)
Mouse P-selectin overexpression P-selectin (59)
Rat Endocarditis P-selectin/PSGL-1 (63)
Mouse IVC ligation TXA2 (62)

ALI, acute lung injury; CCL5, chemokine (C–C motif) ligand 5; CXCL4, (C–X–C motif) 
ligand 4; GpIIb/IIIa, glycoprotein IIb/IIIa; HMGB1, high-mobility group box 1; IVC, inferior 
vena cava; LFA-1, lymphocyte function-associated antigen 1; Mac-1, macrophage 1 
antigen; PMA, phorbol 12-myristate 13-acetate; PSGL-1, P-selectin glycoprotein ligand 1;  
TRALI, transfusion-related acute lung injury; TXA2, thromboxane A2.

TABLe 1 | Selected in vitro studies of platelet-stimulated NeTosis.

Species Platelet activator Required mediator(s) Not required Reference

Human LPS P-selectin, Mac-1, GpIIb/IIIa (54)
Mouse LPS (54)
Human LPS LFA-1 (56)
Human S. aureus alpha toxin hBD1 (57)
Human TRAP TXA2 (5)
Mouse HMGB1 (via TLR4) HMGB1 (via RAGE) (58)
Human Collagen, ADP, thrombin, TRAP-6 HMGB1 P-selectin, Mac-1, GpIIb/IIIa (55)
Mouse Collagen, ADP, thrombin, TRAP-6 HMGB1 (via RAGE) (55)
Mouse LPS HMGB1 (55)
Human TRAP, Pam3CSK4 TXA2, leukotriene B4, GPIb, vWF, LFA-1 P-selectin, GpIIb/IIIa (53)
Mouse Thrombin P-selectin (59)

ADP, adenosine diphosphate; GPIb, glycoprotein Ib; GpIIb/IIIa, glycoprotein IIb/IIIa; hBD1, human beta-defensin-1; HMGB1, high-mobility group box 1; LFA-1 lymphocyte function-
associated antigen 1; LPS, lipopolysaccharide; Mac-1, macrophage 1 antigen receptor; RAGE, receptor for advanced glycation end products; S. aureus, Staphylococcus aureus; 
TLR4, toll-like receptor 4; TRAP, thrombin receptor-activating peptide; TXA2, thromboxane A2; vWF, Von Willebrand factor.
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studies. Examples include cell-free DNA quantification (53, 55), 
myeloperoxidase-deoxyribonucleic acid (MPO-DNA) ELISA 
(5, 55, 60, 61), neutrophil elastase-DNA ELISA (53), neutrophil 
elastase concentration (57), or direct visualization of NETs by 
fluorescence microscopy (54). Microscopy samples have been 
scored by quantifying percent surface area of Sytox green staining 
(detects extracellular DNA) (54, 58), histone H2Ax percentage 
surface area (56), or citrullinated histone H3-positive cells per 
field (62).

We will first describe some notable in vivo studies in the field, 
which have focused on disease models (Table 2). We will then 
step through the various stages of platelet–neutrophil interplay, 
beginning with platelet activation and ending with NETosis 
(Figure 1).

Notable In Vivo Models
One of the first studies to consider the impact of activated plate-
lets on NETosis in vivo utilized a mouse model of endotoxemia 
(sepsis) induced by intravenous LPS (54, 56). The authors found 
that LPS triggers the recruitment of neutrophils to liver sinusoids, 
which then facilitate recruitment of platelets (54) – with platelet 
recruitment dependent upon neutrophil LFA-1 (56). Importantly, 
NETosis is only triggered after engagement by the activated 
platelets (which seem to have been primed by LPS acting 
through platelet TLR4). This functionality presumably plays a 
key role in bacterial sequester, but also places the host at risk for 
significant endothelial damage (54). The authors further mimic 
these data in  vitro, demonstrating that stimulation of platelets 
through TLR4 enhances both platelet–neutrophil adhesion and 
NETosis, but without upregulating P-selectin expression or 
platelet aggregation (54).

Another notable study investigated platelet–neutrophil 
interplay in the context of transfusion-related acute lung injury 
(TRALI). TRALI was modeled by treating BALB/c wild-type 
mice with the combination of LPS and an anti-MHC I monoclo-
nal antibody (5, 64). NETosis was quantified in the lungs by either 
intravital microscopy or postmortem histological examination 
(5). Lung NETosis was dependent upon platelet–neutrophil inter-
play as NETosis was significantly mitigated by inhibiting platelet 
activation with aspirin (an irreversible inhibitor of platelet TXA2 

generation) or a GPIIb/IIIa inhibitor, tirofiban (5). In vitro, 
TRAP-activated platelets enhanced NETosis (5).

In a murine model of acute lung injury achieved with positive-
pressure ventilation, platelet depletion led to depressed NETosis 
as measured in blood by MPO-DNA ELISA and in the lungs by 
microscopy (61). A critical role for Mac-1 was demonstrated with 
blocking antibodies and genetic knockout. By contrast, blocking 
LFA-1 did not suppress NETosis (61). Beyond integrin signaling, 
the authors argued that a second hit was also necessary for full 
neutrophil activation. Indeed, blocking platelet-derived CXCL4/
CCL5 chemokine heterodimers reduced lung injury, while also 
explicitly mitigating NETosis in response to TRAP-activated 
platelets in vitro (61).

In a model of endocarditis, cultured bacteria from endo-
carditis patients were infused through carotid catheters into 
rats (63). By  confocal microscopy, a platelet/bacteria layer 
was demonstrated inside the vegetation film, which was also 
intermixed with NETs (63). Furthermore, deoxyribonuclease 
(DNase, an enzyme that degrades DNA) proved to be an 
effective treatment (63). Platelets were deemed necessary for 
NETosis in this model, shown by inhibition with aspirin (63). 
Furthermore, NETosis was inhibited by P-selectin and PSGL-1 
blocking antibodies (63).

In a final noteworthy study, the authors were interested in 
probing mechanisms by which aspirin might mitigate venous 
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thrombosis (62). In a murine model of deep vein thrombosis 
(achieved by complete inferior vena cava ligation), both aspirin 
(which reduces the synthesis of TXA2 by platelets) and a selective 
thromboxane receptor antagonist reduced thrombus size. This 
was accompanied by a reduction in neutrophil infiltration, as 
well as deposition of both fibrin and NETs.

Mediators of Direct Platelet–Neutrophil 
interaction
P-Selectin/PSGL-1
If one considers in  vitro studies with human neutrophils, then 
P-selectin has largely been judged dispensable for the ability 
of stimulated platelets to promote NETosis (53–55). In other 
species, the story may be different. For example, P-selectin has 
been implicated as required for thrombin-activated platelets to 
induce NETosis, as well as histone citrullination (a prerequisite 
for NETosis); this was demonstrated with cells isolated from 
knockout mice, and also by antibody-based inhibition (59). 
In the same study, mice overexpressing soluble P-selectin 
demonstrated higher neutrophil histone citrullination in  vivo. 
Interestingly, P-selectin overexpression did not seem to regu-
late baseline NETosis, although accelerated NETosis could be 
unmasked in these mice with ex vivo stimulation (suggesting 
the neutrophils had been somehow primed by the overexpres-
sion) (59). Additionally, in the aforementioned rat model of 
infective endocarditis, platelet-induced NETosis was found to be 

dependent upon P-selectin/PSGL-1 as demonstrated by blocking 
antibodies (63).

What explains these discrepancies? One simple possibility is 
species difference (human versus mouse/rat). Another consid-
eration is that P-selectin/PSGL-1 interactions may already be 
established when neutrophils are purified for in vitro studies, and 
so blocking antibodies may be less effective in this context (5, 65). 
As hinted above, the method of platelet stimulation must also be 
kept in mind, as there was no apparent role for platelet P-selectin 
in studies in which platelets were stimulated with LPS (54) or 
TRAP-6 (56), as compared to a positive role in a study using 
thrombin as the stimulus (59). As P-selectin may serve a priming 
role in vivo more so than as the primary stimulus (59), and as 
P-selectin is also well-known to be expressed on endothelial cells 
(66, 67), intravital studies that can probe these interactions in real 
time will be important in sorting this out going forward.

Neutrophil Mac-1
There is a suggestion that the β2 integrin Mac-1 is dispensable for 
platelet-induced NETosis based on in vitro studies with human 
neutrophils [with either TLR4 agonist (54) or TRAP-6 (5, 55) as 
the platelet stimulator]. By contrast, a study of acute lung injury 
demonstrated the requirement of Mac-1 for neutrophil-platelet 
aggregation as well as NETosis (61). Another interesting study 
recently revealed that neutrophil Mac-1 is required for crawl-
ing on the inflamed endothelium, a process that also requires 
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PSGL-1, albeit without direct PSGL-1/endothelium contact (39). 
The authors discovered that PSGL-1 instead concentrates in a 
uropod, which projects into the bloodstream where it receives 
activating signals from platelets. These PSGL-1-mediated signals 
then regulate Mac-1 distribution and ultimately crawling (39). 
This study nicely highlights the potential complexity of platelet–
neutrophil interplay in  vivo, and how a comprehensive model 
of neutrophil effector functions (such as NETosis) may not be 
possible without considering both platelets and the endothelium.

Neutrophil LFA-1
The β2 integrin lymphocyte function-associated antigen 1 (LFA-
1) is known to be the key receptor by which neutrophils interact 
with fibrinogen, an interaction that has been linked to an effec-
tive neutrophil oxidative burst (68). Beyond fibrinogen, platelet 
ICAM-2 may also interact with LFA-1 (38). In vitro studies with 
human platelets (activated with LPS, TRAP, or Pam3CSK4) 
have demonstrated that platelet–neutrophil interaction and 
resulting NETosis can be reversed with blockade of LFA-1 (53, 
56), including under conditions of shear stress (56). Similarly, 
a mouse model of sepsis has supported a key role for LFA-1 in 
platelet-mediated NETosis, with either genetic deletion or block-
ade reducing NETosis in liver sinusoids (54, 56). However, in a 
different study focusing on murine neutrophils, TRAP-activated 
platelets signaled through neutrophil Mac-1, but not LFA-1, to 
induce NETosis (61). Differences in species, model, or culture 
conditions may have contributed to the discrepancies across 
studies.

Platelet GPIb
An in vitro study has suggested that GPIb (the classic receptor 
for vWF) is required for platelet-induced NETosis (53), although 
without a clear understanding of its counterpart on neutrophils. 
Interestingly, the authors also found that LPS-stimulated platelets 
increase expression and release of vWF, with blockade of vWF 
preventing platelet-induced NETosis (53). As GPIb can interact 
directly with neutrophils through Mac-1 (69, 70), and since vWF 
is also presented on the surface of endothelial cells, this pathway 
will need to be further dissected (including in vivo) before defini-
tive conclusions can be drawn (71).

Platelet GPIIb/IIIa
In a mouse model of TRALI, blockade of GPIIb/IIIa (with 
tirofiban) reduced NETosis in lung tissue (5). This stands in 
contrast to in vitro human studies, which have not found a role 
for GPIIb/IIIa in platelet-induced NETosis (53–55). Interestingly, 
GPIIb/IIIa can be transferred from platelets to neutrophils 
through platelet-derived MP (42), an observation that could have 
implications for in vitro and in vivo discrepancies. It may also be 
that the key role of GPIIb/IIIa is to facilitate platelet–platelet or 
platelet–endothelial interactions (72–74), which would stand out 
in in vivo models, more so than the in vitro work.

Soluble Mediators Released by Platelets
Eicosanoids
Platelets stimulated with Pam3CSK4 and TRAP (5, 53) may 
utilize TXA2 as a means of signaling to promote release of 

NETs (53). Given that there is no well-characterized receptor 
for TXA2 on neutrophils, mechanistic details remain to be 
determined.

Chemokines
PF4 (CXCL4) can play a role in regulating in vitro human NETosis, 
based on blocking experiments (53), and also direct stimulation 
of neutrophils with recombinant PF4 (53). In vivo, MKEY (a pep-
tide inhibitor of CXCL4/CCL5 heterodimer formation) reduces 
NETosis in a model of acute lung injury (61).

Alarmins
Recombinant HMGB1 activates neutrophils to release NETs, 
dependent upon either neutrophil TLR4 (58) or neutrophil RAGE 
(55). Human beta defensin-1 (a microbicidal protein found in 
both neutrophils and platelets) is released by platelets exposed to 
Staphylococcus aureus alpha toxin, in a manner that then triggers 
NETosis (57).

Neutrophil Signaling in Response 
to Platelets
It should be noted that neutrophil signaling has not been char-
acterized in most models of platelet-induced NETosis. When 
Pam3CSK4, LPS, or TRAP were used to stimulate platelets, the 
resulting NETosis was found to be ROS independent (5, 53, 55). 
This is in contrast to S. aureus alpha toxin-activated platelets, 
which promote NETosis in a ROS-dependent manner (57). 
Platelet HMGB1 seems to leverage neutrophil autophagy to 
induce NETosis (55). Another study has demonstrated that 
ERK and PI3K are required for platelet-induced NETosis, when 
platelets were activated with Pam3CSK4, LPS, or arachidonic acid 
(53). At this point, the data are too limited to predict whether 
a consensus signaling pathway will emerge, although there are 
hints that ROS may not be a critically important factor in a criti-
cally important factor in platelet-induced NETosis.

eNDOTHeLiUM–NeUTROPHiL iNTeRPLAY

Neutrophils develop in the bone marrow from myeloid 
precursors, reaching sites of infection or inflammation via 
the vasculature. This migration of neutrophils from the 
bloodstream to inflamed tissues is mediated by the interac-
tion of adhesion molecules on the neutrophil surface with 
their respective ligands on the vascular endothelium. Details 
regarding this well-coordinated series of events arise from 
intravital microscopy studies in animals, as well as observations 
of patients with leukocyte adhesion deficiency (75). As an initial 
step, neutrophils leverage specific surface ligands in order to 
tether to P- and E-selectin molecules expressed on activated 
endothelial cells (selectin ligands potentially expressed on 
neutrophils include PSGL-1, E-selectin ligand 1, and CD44). 
Tethering of neutrophils is followed by their rolling along the 
endothelium (76–80). Rolling neutrophils develop membrane 
extensions at their rear end (tethers) and front (slings), which 
stabilize neutrophil rolling and allow the process to proceed 
despite the high shear stress of flowing blood (81). Subsequently, 
neutrophils firmly adhere to endothelial cells, mediated by 
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the binding of neutrophil β2 integrins (LFA-1 and Mac-1) to 
endothelial ligands such as intracellular adhesion molecule 
1 (ICAM-1) and ICAM-2 (76, 78, 79, 82). β2 integrins have 
two main states of activation: the first is an extended (but 
not open) form with low to intermediate affinity, and the 
second an extended and open form with high affinity (the 
form required for firm adhesion). Mechanisms and signaling 
pathways involved in these transitions have been delineated 
in great detail, and are reviewed elsewhere (82–84).

Rolling and adhesion may be followed by transmigration, 
when neutrophils pass between endothelial cells (paracellu-
lar) or through endothelial cells (transcellular). While many 
details remain to be determined, the paracellular process is 
more prevalent, occurring perhaps 90% of the time (76, 83, 
85) and favored by neutrophils expressing Mac-1 (86, 87). By 
contrast, the transcellular route may be favored by increased 
endothelial expression of ICAM-1 (88) or by activation of 
endothelial cells by neutrophils through annexin A1 secre-
tion (89). Beyond the above, adhesion molecules involved in 
the transmigration process include platelet endothelial cell 
adhesion molecule 1 (PECAM-1), CD99, ICAM-2, junctional 
adhesion molecules (JAMs), and cadherins (90). The roles of 
these adhesion molecules have primarily been demonstrated 
in mouse models wherein their deletion results in inhibition 
of transmigration and reduced accumulation of neutrophils 
in tissues (83, 85, 91).

Within inflamed tissues, neutrophils home via chemokine 
gradients. Interestingly, recent studies have demonstrated that 
neutrophils are able to undergo a “reverse transmigration” pro-
cess such that tissue neutrophils may migrate back to the vascular 
lumen. Studies in mice have demonstrated that downregulation of 
JAM-C by neutrophil elastase plays a key role in the process (92). 
At present, the functional significance of reverse transmigration 
is not entirely clear. One idea is that the reverse transmigration 
has a significant downside, as it may contribute to dissemina-
tion of a local immune response into a systemic inflammatory 
phenomenon (93). Alternatively, it may play a role in dampening 
immune response as observed in zebrafish (94) and, we speculate 
patients with systemic inflammation (95).

Circulating neutrophils tend to be quiescent in nature, with 
their activation tightly linked to migration from circulation to 
tissue. Neutrophil activation can be thought of as a two-step 
process whereby exposure to one stimulus (priming) ensures 
a maximum response to a second. So, rolling and adhesion of 
neutrophils on the endothelium may initiate their activation, 
but full effector functions only become available to neutrophils 
once they encounter certain pro-inflammatory chemokines/
cytokines or pathogen-derived ligands that can activate other 
receptors (G protein-coupled receptors and innate pattern-
recognition receptors as classic examples). Neutrophils can 
then rapidly undergo degranulation, activation of their NADPH 
oxidase pathway for free radical generation, phagocytosis, and 
even NETosis (96–98). An example comes from studies of 
P-selectin overexpressing mice in which neutrophils seem to 
be sensitized to NETosis by excess P-selectin exposure, but 
do not actually release NETs unless confronted with a second 
stimulus (59).

THe eNDOTHeLiUM AND NeTosis

Netting neutrophils externalize not just chromatin but also 
a variety of antimicrobial peptides and proteases that target 
pathogens. Recent work has demonstrated that these mediators of 
host defense may also promote tissue damage (12). NETs induce 
endothelial cell death in a dose-dependent and partially DNA-
independent manner (99). Rather than DNA, associated histones 
and to some extent myeloperoxidase may be most responsible 
for NET-mediated endothelial cytotoxicity (99). Another study 
demonstrated the externalization of matrix metalloproteinase-9 
(MMP-9) and MMP-25 along with NETs. This externalized 
MMP-9 activates pro-MMP-2 produced by the endothelium, 
resulting in cytotoxicity and vessel dysfunction (100).

An interesting in vitro study investigated the implications of 
co-culture of activated endothelial cells with neutrophils (101). 
The result was not just increased NETosis by neutrophils, but also 
increased endothelial cell death (101). The death was attributable 
to increased IL-8 production by the endothelial cells themselves 
(101). One can imagine a scenario in  vivo in which activated 
endothelial cells induce NETosis, followed by endothelial cyto-
toxicity and potentially the release of mediators that feed forward 
into more NETosis.

It should also be noted that although endothelial cells have not 
been the explicit focus of most NETs studies, they almost surely 
play a prominent role in  vivo, either through direct regulation 
of neutrophil activity, or through modulation of other cellular 
elements, such as platelets (Figure  1). As an example, in the 
aforementioned sepsis model, liver sinusoids support neutrophil 
adhesion even in the absence of platelets, perhaps providing 
certain activating signals to the neutrophils that prime them for 
subsequent platelet capture (56). One might also point to the 
TRALI model (5). There, GPIIb/IIIa plays a key role in NETosis 
beyond anything that has been seen in vitro (53–55) – raising the 
question of whether additional synergistic signals may emanate 
from the endothelium in vivo (5). Finally, although studies focus-
ing on platelet–neutrophil interactions in  vitro have suggested 
contradictory roles for P-selectin (53–55), it is worth noting that 
P-selectin is also present on endothelial cells, which may help 
explain its more clear-cut role in vivo (59). We expect to see much 
more on this front in the coming years.

DeNDRiTiC CeLLS

Dendritic cells (DCs) are best known for their role as profes-
sional antigen-presenting cells, bridging the gap between innate 
and adaptive immunity. In recent years, the intersection of 
neutrophils/NETosis and DCs has been increasingly considered. 
First, neutrophils are well established to play a role in the recruit-
ment of DCs to sites of inflammation, and promote maturation 
of DCs via secretion of a variety of soluble mediators, such as 
CCL3, CCL4, CCL5 (RANTES), CCL20, tumor necrosis factor 
α, α-defensins, and cathelicidins (102–106). At the same time, 
in vivo immunization studies have demonstrated that neutrophils 
can dampen immune responses by competing for antigen with 
DCs and limiting contact between T cells and DCs (107). So, at 
least in some contexts, vaccination responses may improve with 
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temporary depletion of neutrophils. In other contexts, NETs 
seem to do the opposite, quite specifically transferring antigens to 
DCs, and thereby initiating autoimmune disorders, such as small 
vessel vasculitis (108).

With further implications for autoimmunity and sterile 
inflammation, NETs activate plasmacytoid DCs in lupus and 
atherosclerosis via TLR9. Activated plasmacytoid DCs produce 
interferons, which in turn prime neutrophils for more NETosis 
(thereby setting up a positive feedback loop) (109, 110).

Again pointing to different roles in different contexts, DCs 
may sometimes downregulate NETosis. This has been described 
in the specific context of human immunodeficiency virus (HIV), 
which acts through CD209 on DCs to produce interleukin 10 
(IL-10). IL-10 then inhibits HIV/TLR7-mediated NETosis (111). 
Demonstrating at least some specificity, PMA-induced NETosis 
is not suppressed by IL-10 (111).

MiCROPARTiCLeS

MP are small, cell membrane-derived vesicles (112). MP from 
endothelial cells (113, 114), platelets (115), and red blood 
cells (116) have all been implicated in activating neutrophils. 
Furthermore, both platelet-derived (115) and red blood cell-
derived (116) MP induce Mac-1 expression on neutrophils and 
stimulate neutrophil phagocytic activity (115, 116). The role of MP 
in promoting NETosis was also demonstrated in a paper focusing 
on preeclampsia, in which placenta syncytiotrophoblast-derived 
MP seem to promote NETosis (117). In inflammatory bowel 
disease, MP also appear to activate NETosis (118).

CLeARANCe OF NeTs

While NETs play a critical role in host defense, excessive forma-
tion or persistence of NETs may lead to adverse effects. Thus, 
clearance of NETs is an important physiological process that 
helps minimize excessive presentation of both toxic products and 
potential self-antigens. Degradation of NETs by serum DNase is 
one mechanism by which NETs are cleared, with impairment 
of this process leading to a lupus-like syndrome in mice (119). 
Interestingly, inadequate DNase activity has also been detected in 
the blood of patients with both lupus (119–121) and autoimmune 
vasculitis (122). Beyond the enzymatic activity of DNase, mac-
rophages also play a role in the clearance of NETs. DNase pro-
cessing of NETs prepares them for engulfment by macrophages, 
with the process further facilitated by the opsonization of NETs 
by complement C1q (123). Though this process was initially 

thought to be immunologically silent, recent in vitro studies have 
demonstrated a potentially complicated response that depends 
upon macrophage polarization (124). The authors show that M2 
macrophages induce a pro-inflammatory response when exposed 
to NETs (including the release of a variety of pro-inflammatory 
cytokines/chemokines). By contrast, M1 macrophages initially 
undergo cell death that leads to their own nuclear decondensation 
and DNA release. Interestingly, over time, M1 macrophages then 
degrade this macrophage-derived DNA in a caspase-activated 
DNase-dependent manner (124). The full implications of this 
interplay remain unclear in vivo (and in disease states) and will 
hopefully be elucidated by future studies.

FUTURe DiReCTiONS

This is a field in which much remains to be defined, as is especially 
highlighted by the various studies of platelet-induced NETosis. 
Studies in different systems and by different investigators have 
revealed surprisingly little mechanistic consensus, which prob-
ably points to an involvement of multiple pathways, thereby 
allowing certain aspects to be revealed by different groups. An 
obvious barrier is that platelet activation is achieved through 
different methodology in each study. It would be very interest-
ing to see one group (or preferable a number of groups) take a 
systematic approach to this question, asking how the method of 
stimulation influences the specifics of platelet–neutrophil cross-
talk. Given the highly regulated crosstalk that exists between the 
endothelium and neutrophils, endothelial cells surely play an 
important role in regulating NETosis in vivo – although relatively 
few studies have specifically probed that role. Studies should, 
therefore, increasingly consider the triumvirate of neutrophils, 
platelets, and the endothelium when exploring NETosis, espe-
cially in disease states.
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