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Tertiary lymphoid organs (TLOs) form in territorialized niches of peripheral tissues char-
acterized by the presence of antigens; however, little is known about mechanism(s) of 
antigen handling by ectopic lymphoid structures. In this mini review, we will discuss 
the role of antigen-presenting cells and mechanisms of antigen presentation in TLOs, 
summarizing what is currently known about this facet of the formation and function of 
these tissues as well as identifying questions yet to be addressed.
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inTRODUCTiOn

The ability to respond rapidly and effectively to damage or infection is mediated by the immune 
system. Secondary lymphoid organs (SLOs) such as lymph nodes (LNs) and spleen provide critical 
meeting points for immune cells and antigens, promoting interactions that result in a prompt, 
targeted immune response. A key process in initiating and sustaining such an adaptive response 
is in the delivery of antigen for interrogation by lymphocyte populations. Networks of lymphatic 
vessels channel free and cell-borne antigen to the lymph node where it is then further directed to 
appropriate lymphocyte compartments through additional structural and cellular filters. However, 
during chronic inflammation, ectopic lymphoid tissue can form in the periphery, outside the 
normal sites of secondary lymphoid organogenesis. This tissue shares common features with SLOs, 
including segregated T and B cell areas, germinal centers (GCs), development of structural stromal 
components, and vascularization, with high endothelial venules (HEVs) often observed (1). These 
so-called tertiary lymphoid organs (TLOs) are thought to function as a local site for perpetua-
tion of adaptive immune responses providing a local source of antibody, generated as the result 
of local antigen presentation, and lymphocyte activation and maturation in the newly formed 
structure. In some settings, development of these lymphoid structures may be advantageous, as 
in bacterial and viral infections (2–4), atherosclerosis (5, 6), and cancer (7, 8), while in a number 
of diseases, particularly autoimmune disorders, the development of TLOs may be associated with 
non-resolving inflammation, with a vigorous and sustained response to self-antigen amplifying 
severe and chronic pathology [reviewed in Ref. (9); see also Ref. (10–12)]. In this review, we will 
outline the role of antigen-presenting cells (APCs) and mechanisms of antigen presentation in the 
TLO, summarizing what is currently known about this facet of the formation and function of these 
tissues as well as identifying questions yet to be addressed.
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A spectrum of TLO development has been documented in the 
literature, with ectopic lymphoid tissue ranging from relatively 
loose aggregates of B and T cells to highly compartmentalized, 
complex structures that include stromal scaffolding supporting 
distinct T cell zones and secondary B cell follicles containing 
GCs, i.e., bona fide lymphoid organs with clear parallels to 
secondary lymphoid tissue (9, 13). The initial steps leading to 
development of TLOs are unclear, as a number of distinct but 
inter-related signals can prompt development of organized lym-
phoid structures in non-lymphoid tissue. Determining the “tip-
ping point” beyond which development of functional, relatively 
stable ectopic lymphoid tissue is inevitable is inherently difficult. 
However, a number of features are known to affect formation 
and stability of the structure. Several studies, described in more 
detail elsewhere in this research topic issue, variously indicate 
increased expression of cytokines such as lymphotoxin (LT) and 
other TNF family members (14), IL-22 (15), and chemokines 
such as CXCL13 and CCL21 (16–18) as being capable of induc-
ing TLO formation. In a patho-physiological setting, specific 
cell types (19), including T cells (16), and APCs, such as mac-
rophages (20), dendritic cells (DCs) (2, 3), and activated B cells 
(21), are all described as possible key players in early expression 
of cytokines and chemokines that promote increased tissue 
infiltration by leukocytes, development of lymphoid stromal 
cells such as follicular dendritic cells (FDCs), and construction 
and maintenance of the functional TLO. Fluid accumulation at 
the site of infection has also been suggested to influence TLO 
development (22).

AnTiGen-PReSenTinG CeLL 
POPULATiOnS wiTHin TLOs

Dendritic Cells
Although an ever-increasing number of cell types have been 
shown to be capable of presenting antigen to immune cells, the 
classical professional antigen-presenting cell is the conventional 
dendritic cell (23).

Their involvement in various types of TLO has been dem-
onstrated by a number of studies. In a model of viral lung 
infection, Halle et  al. (2) showed that early infiltration of 
CD11c+ cells into the perivascular and peribronchiolar space 
(4 days post infection) precipitated recruitment of lymphocytes 
to the infected tissue, with subsequent development of organ-
ized inducible bronchus-associated lymphoid tissue (iBALT) 
structures. Within these highly developed structures, DCs 
resided primarily within the T cell area, as in SLOs. When 
CD11c+ cells were selectively depleted at various time points 
using a diphtheria toxin receptor (DTR) transgenic model, the 
size, but not frequency, of iBALT was reduced, suggesting an 
important role for DCs, and possibly alveolar macrophages, in 
maintaining TLO integrity (2). A concurrent study, investigat-
ing induction of iBALT in a model of influenza infection, also 
demonstrated a key role for CD11c+ cells in maintenance of 
these lymphoid structures. Again, using a DTR-transgenic 
model, this study showed that selective depletion of CD11c+ 
cells from lungs with mature iBALT led to disintegration of 

the TLO and gradual dispersal of lymphocytes from the lung 
(3). Notably, influenza-specific plasma cells were found to be 
undetectable soon after DT-induced depletion of CD11c+ cells, 
while total B cells and peanut agglutinin (PNA)+ GC B cells were 
also substantially reduced. The level of class-switched immu-
noglobulin, specifically IgA, was also significantly reduced in 
bronchoalveolar lavage fluid. These results indicate a prominent 
role for DCs in the function and maintenance of iBALT follow-
ing influenza infection, as well as suggesting an important role 
for the TLO in local production of class-switched antibodies. 
Somewhat surprisingly, depletion of CD11c+ cells also led to 
a significant reduction in the level of systemic hemagglutinin-
specific antibody present, indicating a potential role for TLO 
GCs in generation of long-lived plasma cells that home to 
the bone marrow (BM). To investigate the role of antigen 
presentation by DCs in this tissue, lung DCs were isolated 
from animals challenged with influenza virus expressing the 
MHC-II OVA323–339 epitope, at days 4 and 17 post infection. 
While these DCs were able to activate OVA-specific CD4+ 
T cells (OT-II) at day 4, this was no longer the case at the later 
time point. However, they retained antigen-presenting ability, 
as demonstrated by DC-mediated activation of OT-II cells after 
addition of pre-processed OVA peptide. The authors suggest 
that the primary role of the DC population in maintenance of 
the iBALT is production of LTβ, which in turn induces high 
levels of CXCL13, an important chemokine in B cell migration 
and retention. Finally, the study also demonstrated that adoptive 
transfer of granulocyte-macrophage colony-stimulating factor 
(GM-CSF)-cultured BM-derived cells (a mix of conventional 
DCs and monocyte-derived macrophages) intratracheally into 
the lungs of naïve mice leads to iBALT development (3).

In a model of thyroid TLO development, where high levels 
of CCL21 were artificially induced in the thyroid, CD3+CD4+ 
T cells from an adoptively transferred mixed splenocyte popula-
tion were found to be the initiating cell type in development of 
ectopic lymphoid tissue. Subsequent recruitment of host DCs 
and DC/T cell interactions were found to be important for 
the formation of peripheral-node addressin-positive (PNAd+) 
HEVs in the developing TLO, in a LTα-/LTβR-dependent man-
ner (16). A subsequent paper by the same group confirmed that 
depletion of CD11c+ DCs led to reduced lymphangiogenesis in 
the thyroid (24).

LTβR is known to have an important role in the maintenance 
of HEVs within LNs (25), again indicating that these structures 
are bona fide lymphoid organs. Interestingly, in a model of 
insulin-dependent diabetes mellitus induced by adoptive trans-
fer of specific antigen-expressing DCs, only mice that showed 
early infiltration of leukocytes and formation of islet-associated 
organized lymphoid structures in the pancreatic parenchyma 
went on to develop diabetes, suggesting a link between antigen 
presentation by DCs to T cells, TLO formation, and development 
of autoimmunity (26). More recently, the presence of mature 
DCs in tumor TLOs was highly associated with a favorable 
clinical outcome in patients with lung cancers (27, 28); however, 
to date, there is no direct demonstration that APCs in TLOs 
permit efficient local T-cell priming against tumor-associated 
antigens.
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Macrophages
Macrophages are some of the earliest immune cells to encounter 
antigen at sites of infection or injury. The response to antigenic 
stimulus is context-dependent but production of inflammatory 
cytokines is a key function of these cells in the early stages 
of inflammation. In the case of atherosclerosis, macrophages 
that infiltrate the early plaque take up oxidized low-density 
lipoprotein (ox-LDL) particles and are activated, including 
upregulation of antigen-presentation genes and increased 
production of inflammatory cytokines (29). Recently, work 
from Guedj et  al. has proposed a role for pro-inflammatory 
macrophages as a kind of lymphoid tissue inducer (LTi) 
cell in the development of artery tertiary lymphoid organs 
(ATLOs) during atherosclerosis. In this study, BM-derived 
macrophages were incubated with both LPS and IFNγ to yield 
a “pro-inflammatory” phenotype or with IL-4 to generate “alter-
natively activated” macrophages. Vascular smooth muscle cells 
(VSMCs) incubated with LPS/IFNγ-stimulated macrophages, 
which produced TNFα and LTα, developed a lymphoid tissue 
organizer (LTo) phenotype, while those incubated with IL-4-
stimulated macrophages did not (20). This activity did not 
require LTβR signaling but was dependent on TNF receptor 
involvement. In addition, Jupelli et  al. (4) have reported that 
iNOS-expressing macrophage involvement in early stages of 
bacterial lung infection precedes development of iBALT in the 
lungs of infected mice in their model. Intratracheal transfer of 
“pro-inflammatory” macrophages (generated from BM-derived 
macrophages cultured with IFNγ) into infected lungs leads to 
increased lung inflammation and iBALT formation. It should 
be also noted that, although the recruitment of CD11c+ DCs 
is clearly a crucial step in the development of iBALT in the 
viral infection model from Halle et al. (2), the earliest infiltrate 
recorded was that of alveolar macrophages, within 5–7  h of 
infection, with DC accumulation described from 4  days post 
infection. As TLOs, by their nature, form during inflammatory 
events, and particularly during sustained inflammation, it is 
logical to assume that macrophage production of inflamma-
tory cytokines following antigen encounter is a necessary, but 
probably not sufficient, primary event in TLO formation. As 
described for ATLO formation, a possible role for macrophages 
as a type of inducible LTi remains to be demonstrated for other 
types of ectopic lymphoid tissues.

B Cells
The main role of B cells in an immune response is production of 
antibodies. B cell presentation of antigen to T cells is an integral 
aspect of this function. These interactions allow B cells to receive 
survival signals and direct them appropriately to generate high 
affinity antibody specific to the antigen encountered (30). Well-
established, highly organized TLOs contain secondary B cell 
follicles, which form following antigen encounter and activation 
of B cells (31–33). The GCs of these follicles are structurally and 
functionally similar to those within SLOs, with FDC development 
described within a number of ectopic lymphoid tissues. This lends 
credence to the hypothesis that TLOs provide a venue for local 
production of antibody proximal to the site of inflammation, with 
either beneficial (e.g., during infection, cancer, or atherosclerosis) 

or deleterious (e.g., autoimmunity) effects depending on the 
context in which the TLO forms.

B cells are involved in FDC development (34) in a LT- and 
TNF-dependent manner, with B cell aggregates shown to induce 
FDC through LTα1β2 production in SLOs (35, 36). LTα1β2 
expression by naïve B cells is induced by CXCL13 (also known 
as B-lymphocyte chemoattractant), which is itself induced by 
LTα1β2 in a positive feedback loop (37), with FDCs likely the 
major source of CXCL13 in the follicle (36). In mice with B cells 
lacking LTβ, FDC structures in the spleen were disrupted, though 
not wholly absent (13). Similarly, LTα is not fully required for 
formation of iBALT, as lymphocytic aggregates form in influenza-
infected Lta−/− mice and lymphoid chemokines CXCL13 and 
CCL21 are detectable. However, these structures lack the level 
of development and organization of the TLO observed in mice 
expressing LTα (17). A similar role in promoting FDC formation 
has been suggested for B cells in TLOs that arise in the salivary 
glands of Sjögrens syndrome patients (38).

Follicular Dendritic Cells
Follicular dendritic cells are cells of the immune system found in 
B cell follicles. FDCs are integral to the function of the follicle, 
presenting antigen in the form of immune complexes bound to 
their surface (39, 40). FDCs are believed to provide a uniquely 
long-lasting “depot” of antigen that can be accessed by B cells 
well beyond clearance of the initial infection or injury from which 
the antigen was acquired. They are thought to be important in 
the affinity maturation of the B-cell receptor (BCR). Only B cells 
expressing a receptor of high enough affinity will be successful in 
acquiring sufficient antigen from the FDC to in turn present the 
antigen to their cognate T cell and receive survival signals (36). A 
recent study has shown that disruption of the FDC network in a 
model of arthritis led to reduced GC formation in lymphoid folli-
cles, impaired recruitment of follicular helper T (Tfh) cells into B 
cell areas, diminished autoantibody production, and attenuation 
of disease (41).

Although there is some debate over how B cells within a TLO 
might perceive antigen due to the likelihood of increased availa-
bility of local antigen compared to SLOs, a number of studies have 
identified FDCs within ectopic lymphoid structures (5, 42–45). 
The source of these cells within TLOs is unclear, but, as discussed 
above, various studies indicate that B cell production of LTα1β2 
is important for differentiation of FDCs within ectopic lymphoid 
organs (1, 35, 38), even though follicle formation in BALT has 
been reported also in the absence of differentiated FDCs (46). In 
addition to providing a platform for antigen presentation, FDCs 
are also known to produce a variety of cytokines and chemokines 
involved in B cell migration survival and proliferation, as well as 
recruitment of Tfh cells into B cell areas, such as CXCL13, BAFF, 
IL-15, and IL-6 (45, 47). Therefore, a similarly multi-faceted role 
for these cells in mature TLOs is anticipated.

Other Antigen-Presenting Cells
As reviewed by Kambayashi and Laufer recently, a number 
of cells not traditionally considered “professional” APC may 
nonetheless under specific circumstances be induced to 
express MHC-II on their surface and have been shown to 
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interact with T cells in an antigen-specific manner (23, 48). 
In Sjögrens syndrome, salivary gland epithelial cells (SGECs) 
may play an important role in the presentation of self-antigen. 
Numerous lines of evidence point to this ability, including 
expression of co-stimulatory molecules, such as CD80, CD86, 
and CD40 (49, 50), the ability to express adhesion molecules 
and human leukocyte antigen (HLA)-DR (51), and the ability 
to activate antigen-specific T cells (48). Ishimaru et  al. also 
suggest expression of IFNγ by SGECs may be involved in 
increased expression of MHC-II by these cells (48). Self-antigen 
presentation by thyroid epithelial cells – indicated by MHC-II 
expression and an ability to induce T cell activation – was 
described more than 30 years ago, with the authors suggesting 
that the cells might preferentially present self-antigen (52). 
Other non-hematopoietic cells have also been implicated in 
presentation of self-antigen. In 2010, Cohen and colleagues 
described a role for lymphatic endothelial cells (LECs) in 
the induction of peripheral tolerance through autoimmune 
regulator (AIRE)-independent presentation of self-antigen (53). 
Additionally, extrathymic AIRE-expressing cells (eTACs) have 
been identified in pancreatic TLO of non-obese diabetic (NOD) 
mice (54). The ability of eTACs to induce peripheral tolerance 
in TLOs is yet to be demonstrated, but expression of AIRE in 
these cells has been linked to non-canonical NF-κB activa-
tion, which contributes to peripheral tolerance induction (55). 
Finally, fibroblastic reticular cells (FRCs) express and present 
peripheral tissue-restricted antigen to T cells as part of the 
peripheral tolerance mechanism, and their ability to stimulate 
T cells is altered depending on the inflammatory state of the 
tissue (56). These cell types have also been detected in TLOs, 
again pointing to roles in directing the immune response that 
unfolds within (5, 45, 57).

While the presence in TLOs of each of the APCs described thus 
far has been robustly reported in the literature and across a variety 
of TLOs, in the vast majority of cases there has been limited or no 
direct investigation of actual antigen presentation in these tissues. 
What mechanisms exist to allow TLO-associated APCs access to 
antigen? Who are the main APCs presenting antigen, what are the 
nature of the antigens, and what are the ultimate immunological 
consequences of antigen presentation in TLOs?

ACQUiRinG AnTiGen FOR 
PReSenTATiOn

In the case of LNs, DCs carrying antigen acquired directly in a 
peripheral tissue migrate via the lymphatic vessels and enter the 
subcapsular sinus (SCS). Here, the DCs must traverse from the 
SCS ceiling to the floor, cross the dense parenchyma, and enter 
the paracortex. Small antigens can also drain freely through the 
lymphatic bed to the SCS. These antigens can be accessed by DCs 
already residing within the LN as they pass through conduits 
linking the SCS and HEVs (58, 59). A comparable conduit 
system is present in the follicular regions, allowing similar 
access to antigen by B cells (60, 61). The follicles themselves are 
positioned directly adjacent to the SCS and may facilitate B cell 
acquisition of soluble antigen, potentially draining through 
SCS pores (62, 63) or presented by SCS macrophages (64–66). 

Another possibility is that B cells could acquire unprocessed 
antigen from DCs (67). In this instance, uptake by the DC 
would likely involve the FcγRIIB receptor, allowing the antigen 
to remain unprocessed and recycled to the cell surface (68). 
Larger antigens acquired by non-cognate B cells can be further 
transported to FDCs in a complement-dependent way.

But what happens in a TLO? To date, direct data pertaining to 
antigen handling within TLOs is scarce. One might speculate as 
to the relevance of lymphatics and conduits to antigen transport 
to/within TLOs since, in general, the majority of TLOs do not 
demonstrate a distinct capsule or SCS, and form locally at the 
peripheral site of antigenic challenge. Yet lymphatic vessels do 
appear to be present in TLOs, such as those seen in ATLOs, iBALT, 
and pancreatic and thyroid infiltrate (5, 18, 24, 69). But their direct 
contribution in antigen transport is open for debate [as reviewed 
in Ref. (22)]. Splenic white pulp lacks afferent lymphatics but 
demonstrates series of organized cellular transport mechanisms 
[involving marginal zone macrophages, B cells and DCs (70)] 
along with a conduit network directly linked to the blood stream 
(71). As in the LN conduit system, transport of antigen/molecules 
is similarly size restricted, but does represent one way in which 
small molecules can be transported to particular compartments 
within the TLO. ATLOs demonstrate ER-TR7+ reticular networks 
consistent with the presence of conduits. Indeed, conduit struc-
tures were seen to extend through the T cell areas terminating 
adjacent to HEVs of the ATLO. In addition, these conduits were 
able to channel only small particles (10 kDa) and not larger parti-
cles from the adventitia following i.v. administration (5). Evidence 
of conduit-like structures have been reported in both human and 
murine studies and in a variety of tertiary lymphoid tissues found 
in pancreas, kidney, salivary glands, and liver (57). So, it seems 
likely that an additional contribution of conduits and lymphatics 
in the instance of TLOs may relate to antigen transport, allowing 
small molecule percolation throughout the ectopic lymphoid 
organ, while, as in other lymphoid organs, their major role likely 
relates to cellular trafficking (transport of chemokines to HEVs in 
the case of conduits, and perhaps efferent lymphatic functions for 
removal of inflammatory cells and mediators from the affected 
tissue). Mechanisms of antigen handling and presentation in LNs 
vs. TLOs are illustrated in Figure 1.

AnTiGen PReSenTATiOn in TLOs

We have recently extensively studied antigen presentation in 
ATLOs (72), by using the Eα-GFP/Y-Ae system to visualize 
antigen uptake through a GFP tag and tracking of Eα peptide/
MHC-II presentation using a commercially available (Y-Ae) Ab 
(73–75). In the case of ATLO APCs, acquisition and presentation 
of soluble antigen upon MHC class II occurs within a matter of 
hours (72). However, unlike in the LN, presentation in the ATLO 
occurs equally across the major APC populations, perhaps more 
consistent with free diffusion of the antigen rather than transport 
to defined niches and compartments (72). Around 80% of the 
CD11chiMHC-II+ APCs were monocyte-derived CD11b+DC-
SIGN+ cells, 15% were CD11b+DC-SIGN− conventional DCs, 
and 5% CD11b−DC-SIGN− lymphoid DCs. The majority (80%) 
of MHC-II+CD11clo/− APCs were CD19+CD11b− B cells and 10% 
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FiGURe 1 | Antigen handling and presentation in lymph nodes vs. TLOs. (A) Antigen reaches lymph nodes (LNs) via the afferent lymphatics, 
transported by dendritic cells (DCs) or freely draining from the peripheral tissues. Migratory DCs cross the subcapsular sinus (SCS) and enter the paracortex 
(T cell area), migrating in response to appropriate chemotactic cues (1). Here, they encounter T cells searching for cognate peptide–MHC complexes. DCs 
residing within T cell areas can also sample small soluble molecules from a network of conduits traversing the paracortex (2). Additionally, small soluble 
antigens may be accessed by B cells via pores in the endothelial layer or transported by SCS macrophages, as is the case for larger antigens and immune 
complexes (3). Such antigen can be further transferred to FDCs for presentation to B cells (4). Freely draining antigen may also exit the LN efferent lymphatic 
and reach the next lymph node in the chain (5). (B) In general, tertiary lymphoid organs (TLOs) lack a defined capsule, which may allow more free diffusion 
of antigen through the structure. Lymphatic and conduit-like structures have been identified in TLOs, and may function in an analogous fashion to those in 
SLOs, although this has yet to be formally demonstrated. Similar cellular compartmentalization is observed between TLOs and SLOs, and they share many 
common antigen-presenting cell populations. Indeed, the migration of DCs from surrounding tissues to the TLOs has been observed in several models of 
TLO formation. Thus, TLOs likely share common pathways for handling cell-associated and free antigen with SLOs to optimize the functioning of adaptive 
immune responses. Key: B, B cell follicle; T, T cell area; SCS, subcapsular sinus; GC, germinal center; M, medulla; PC, plasma cell niche; DC, dendritic cell; 
FDC, follicular DC; FRC, fibroblastic reticular cells; LTo, lymphoid tissue organizer; LEC, lymphatic endothelial cell; LV, lymphatic vessel; HEV, high endothelial 
venule; low/high Mw Ag, low/high molecular weight antigen.
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were CD19−CD11b+ macrophages. 1–2% of CD11cloSiglecH+ 
plasmacytoid dendritic cells (pDCs) were also detectable within 
the ATLO. Following Eα i.v. administration, around 55% of 
MHC-IIhiY-Ae+ APCs were CD11c+CD11b+DC-SIGN+, followed 
by B cells, conventional DCs, CD11clo/− macrophages, and lym-
phoid DCs. None of the pDCs were Y-Ae+, in contrast with what 
was previously observed by us in the aorta of early atherosclerotic 
mice (73, 74). In summary, DCs, macrophages and B cells were 
the major ATLO APCs.

Altering the kinetics of antigen presentation is known to influ-
ence the outcome of T cell responses (76–81). How, or even if, 
differences in antigen handling between TLOs and LNs impact 
on the ensuing immune response is unknown. While TLOs form 
at sites of active antigen presentation and functional lymphocyte 
responses, they also support entry and priming of naïve T cells 

within the tissue. Intranasal delivered mature BM-derived DCs 
pulsed with OVApeptide (SIINFEKL) were readily detected in 
iBALT and able to induce proliferative responses in naïve OT-I 
CD8+ T cells (2). Similarly, OT-I T cells proliferated in tumor-
associated tertiary lymphoid structures following interaction 
with DCs (82). Notably, multiphoton imaging revealed that 
the dynamics of naïve T cell migration and interaction with 
antigen-bearing DCs in iBALT (2) was consistent with the three 
phases of T cell priming reported by Mempel et al. (83). A similar 
observation relating to CD4+ T cell behavior showed OT-II T cells 
clustering around ATLO resident CD11c+ cells following antigen 
challenge (72), reminiscent of that seen in LN priming of CD4+ 
T cells (84). Priming of naïve T cells within ectopic structures may 
have beneficial or detrimental effects depending upon context 
of the ongoing immune response, being beneficial in infectious 
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disease where secondary infection is a risk or contributing to 
epitope spreading in autoimmune disease.

Another possible role of TLOs may be the provision of a 
localized concentration of antigen, either from an infection or, 
in the case of autoimmunity, self-antigen(s). Although some 
transient TLOs disperse after antigen clearance, as in iBALT, this 
dissolution can be delayed by up to 3 weeks after the infection 
has resolved (2). However, it may be possible that this lag period 
exists due to some antigen in the form of immune complexes 
being displayed by FDCs. In either respect, this persistence may 
enable more efficient development and maintenance of memory 
cells, as suggested by data from ATLO and allograft studies (72, 
85), and therefore a more effective in situ response to subsequent 
re-infection or antigen challenge.

FUTURe DiReCTiOnS

Clearly, many questions remain unresolved with regard to the 
importance and mechanism(s) of antigen presentation within 
TLOs, where lack of isolation or encapsulation may, in many 
instances, allow for a much greater degree of exposure to free 
antigen for all cells within the tissue. Details such as in situ neo-
antigen availability, the timing of antigen arrival and presentation, 
the context in which antigen is encountered by specific cells, and 
the ability of those cells to receive appropriate co-stimulatory or 
tolerogenic signals remain to be elucidated.

With advances in cellular imaging techniques, in combination 
with trackable antigens and cell populations, the answers to such 
questions are becoming increasingly tangible. The elegant appli-
cation of such approaches has successfully furthered our under-
standing of soluble antigen and immune complex trafficking and 

related immune cell interactions in SLOs (86–88). By identifying 
key antigen handling routes and responding cells in a dynamic 
setting, the possibility to develop antigen-specific therapeutics 
targeting TLO functions becomes a more exciting and viable 
option.

The identification of key antigen specificities must also be 
allied with such imaging approaches. The increasing power of 
next generation sequencing techniques makes the sequencing of 
both T and B cell repertoires (89, 90) in TLOs a reality. Biases 
in repertoire indicating clonal responses could yield valuable 
information pertaining to antigen specificity. At the very least, 
key clonal populations could be identified and used as biomark-
ers or even be targeted to prevent or augment antigen-specific 
responses as required.
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