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The release of neutrophil extracellular traps (NETs), either during “suicidal” or “vital” 
NETosis, represents an important strategy of neutrophils to combat Gram-negative 
bacteria. Lipopolysaccharide (LPS), a major component of the outer membrane of 
Gram-negative bacteria, is a reported stimulus for NET formation. Although it is widely 
acknowledged that the structural diversity in LPS structures can elicit heterogeneous 
immune responses, species- and serotype-specific differences in the capacity of LPS 
to trigger NET formation have not yet been investigated. In the present study, we 
compared the NET-inducing potential of LPS derived from Escherichia coli (serotypes 
O55:B5, O127:B8, O128:B12, O111:B4, and O26:B6), Salmonella enterica (serotype 
enteritidis), and Pseudomonas aeruginosa (serotype 10), under platelet-free and 
platelet-rich conditions in vitro, and in whole blood ex vivo. Here, we demonstrate that 
under serum- and platelet-free conditions, mimicking tissue circumstances, neutrophils 
discriminate between LPS of different bacterial sources and selectively release NETs 
only in response to LPS derived from E. coli O128:B12 and P. aeruginosa 10, which 
both induced “suicidal” NETosis in an autophagy- and reactive oxygen species (ROS)-
dependent, but TLR4-independent manner. Intriguingly, in whole blood cultures ex vivo, 
or in vitro in the presence of platelets, all LPS serotypes induced “vital” NET formation. 
This platelet-dependent release of NETs occurred rapidly without neutrophil cell death 
and was independent from ROS formation and autophagy but required platelet TLR4 
and CD62P-dependent platelet–neutrophil interactions. Taken together, our data reveal 
a complex interplay between neutrophils and LPS, which can induce both “suicidal” and 
“vital” NETosis, depending on the bacterial origin of LPS and the presence or absence 
of platelets. Our findings suggest that LPS sensing by neutrophils may be a critical 
determinant for restricting NET release to certain Gram-negative bacteria only, which in 
turn may be crucial for minimizing unnecessary NET-associated immunopathology.
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inTrODUcTiOn

Neutrophils are the most abundant terminally differentiated leukocytes circulating in the blood. 
Attracted by a chemotactic gradient of chemokines, neutrophils can rapidly traffic to inflammatory 
sites, where they utilize their antimicrobial arsenal of effector mechanisms to eradicate pathogens. 
In addition to phagocytosis and degranulation, the release of neutrophil extracellular traps (NETs) 
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TaBle 1 | lPs structures used in this study.

species serotype abbreviation cat. no.

Escherichia coli O55:B5 LPS-O55 L6529
O127:B8 LPS-O127 L4516
O128:B12 LPS-O128 L2755
O111:B4 LPS-O111 L4391
O26:B6 LPS-O26 L2654

Salmonella enterica Enteritidis LPS-SE L7770
Pseudomonas aeruginosa 10 LPS-PA L9143
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represents a key antimicrobial strategy of neutrophils (1). NETs 
are released during a highly complex cell death pathway known 
as “suicidal” NETosis and comprise an expelled web of chromatin 
fibers that can bind pathogens, thereby inhibiting their spread-
ing and facilitating their elimination (2, 3). Recent evidence 
indicates that NETs can also be released from viable neutrophils 
during an alternative pathway called “vital” NETosis, which 
requires activated platelets and is therefore thought to occur 
predominantly during sepsis (4, 5).

The release of NETs has been observed in response to many 
different bacteria, viruses, fungi, and parasites (6). Nevertheless, 
it is still incompletely understood how pathogens induce signal-
ing events that result in NETosis. For Gram-negative bacteria, 
lipopolysaccharide (LPS) has been reported as important stimu-
lus for NETosis (1). However, seemingly contradicting data in 
literature question whether the interaction between LPS and 
neutrophils can indeed trigger NET formation. Some reports 
describe that LPS often protects neutrophils against apoptosis 
but fails to induce NETosis (7, 8), whereas other reports claim 
that LPS-induced NETosis is only observed when additional fac-
tors are present, such as the immunomodulatory GM-CSF (9), 
apoptotic microparticles (10), or platelets (11).

Lipopolysaccharide has three main structural components: 
lipid A, a core domain containing an oligosaccharide component 
and a repetitive glycan polymer referred to as the O-antigen 
(12). Whereas the lipid A structure is relatively conserved, there 
is great variability in the composition of the O-antigen between 
bacterial strains, which provides the major basis for bacterial 
serotyping. The structural diversity in LPS has been associated 
with heterogeneous immune responses (13–16). However, 
species- and serotype-specific differences in the capacity of 
LPS to trigger NET formation have not yet been investigated. 
This study was undertaken to investigate the hypothesis that 
neutrophils are able to discriminate between LPS structures and 
thereby selectively release NETs in response to certain struc-
tures, which could partly explain the seemingly contradicting 
data concerning LPS-induced NETosis. Here, we compared the 
NET-inducing potential of commercially available LPS derived 
from seven different bacterial sources, i.e., Escherichia coli 
(serotypes O55:B5, O127:B8, O128:B12, O111:B4, and O26:B6), 
Salmonella enterica (serotype enteritidis), and Pseudomonas 
aeruginosa (serotype 10), under serum- and platelet-free or 
platelet-rich conditions, mimicking tissue and blood circum-
stances, respectively.

MaTerials anD MeThODs

antibodies, Proteins, and chemicals
Reagents were obtained from the following manufacturers: 
Sytox Orange (ThermoFisher Scientific, Cat. No. S11368, 
Duisburg, Germany), N-Methoxysuccinyl-Ala-Ala-Pro-Val 
p-nitroanilide (Sigma-Aldrich, Cat. No. M4765, Schnelldorf, 
Germany), phorbol 12-myristate 13-acetate (PMA; Sigma-
Aldrich, Cat. No. P8139, Schnelldorf, Germany), micrococcal 
nuclease (MNase; Worthington Biochemical Corporation, Cat. 
No. LS004798, Lakewood, USA), TNF-α (eBioscience, Cat. No. 

14-8329, Frankfurt, Germany), IL-6 (Prospec, Cat. No. cyt-213, 
Rehovot, Israel), IFN-α (Prospec, Cat. No. cyt-520, Rehovot, 
Israel), wortmannin (Enzo Life Sciences, Cat. No. BML-ST415, 
Raamsdonksveer, The Netherlands), diphenyleneiodonium 
chloride (DPI; Enzo Life Sciences, Cat. No. BML-CN240, 
Raamsdonksveer, The Netherlands), PKH26 Red Fluorescent 
Cell Linker Kit (Sigma-Aldrich, Cat. No. PKH26GL, Schnelldorf, 
Germany), polyclonal anti-TLR4 (InvivoGen, Cat. No. pab-
hstlr4, Toulouse, France), anti-myeloperoxidase (BioLegend, Cat. 
No. 812801, Uithoorn, The Netherlands), anti-neutrophil elastase 
(Abcam, Cat. No. ab21595, Cambridge, UK), and anti-CD62P 
(Santa Cruz, Cat. No. sc-8419, Heidelberg, Germany). All LPS 
structures used in this study were purchased from Sigma-Aldrich 
(Schnelldorf, Germany) and are listed in Table 1.

isolation of neutrophils
Neutrophils were isolated as described earlier (17). Briefly, 
neutrophils were isolated at room temperature from EDTA-
anticoagulated whole blood by Ficoll density gradient centrifu-
gation using Lymphoprep™ (Stemcell Technologies, Cat. No. 
07851). After centrifugation for 20  min at 800  ×  g, the lower 
cellular fraction with neutrophils was collected, and residual 
erythrocytes were lysed in a hypotonic buffer. Neutrophils 
were counted with CASY cell counting technology (Scharfe 
System, Reutlingen, Germany) and adjusted to 1 million cells 
per milliliter in serum-free DMEM/F12 medium containing no 
phenol red (Life Technologies, Cat. No. 11039-021, Bleiswijk, The 
Netherlands).

isolation of Platelets
After Ficoll density gradient centrifugation, platelet-rich plasma 
was collected and diluted 10 times in a buffer of PBS, 1% FCS, and 
1 mM EDTA. Remaining leukocytes were pelleted at 190 × g for 
15 min at room temperature, after which the remaining super-
natant with platelets was pelleted at 2500 × g for 5 min at room 
temperature. The platelet pellet was immediately and carefully 
resuspended in DMEM/F12 medium to an equivalent volume as 
they were in the blood, yielding a solution of 100% platelets (v/v).

induction and Quantification of neTosis
Purified neutrophils (3 × 105 cells per cm2) were seeded in well 
plates and stimulated with LPS from different bacterial sources, 
at the indicated concentrations and conditions, for 3–5 h at 37°C. 
Where indicated, stimulation of neutrophils with 100 nM PMA 
served as a positive control. After stimulation, neutrophils and 
adherent NETs were carefully washed twice with pre-warmed 
PBS (37°C) and isolated by partial NET digestion in DMEM/
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F12 medium supplemented with 5  U/ml MNase (20  min at 
37°C). Extracellular DNA in NET-containing supernatants 
was stained with 100  nM Sytox Orange and quantified by 
fluorometry (excitation/emission 530/640  nm). The activity 
of NET-associated neutrophil elastase (NE) and myeloper-
oxidase (MPO) was determined colorimetrically, using 100 μM 
N-methoxysuccinyl-Ala-Ala-Pro-Val 4-nitroanilide (at 405 nm) 
or 1 mM 3,3′,5,5′-tetramethylbenzidine (at 605 nm) as substrates 
for NE and MPO, respectively.

immunofluorescence imaging
Purified neutrophils (3 × 105 cells per cm2) were seeded in slide-
flask chambers (Thermo Scientific, Cat. No. 170920, Duisburg, 
Germany) and stimulated with LPS from different bacterial 
sources, at the indicated concentrations and conditions, for 
3–5 h at 37°C. Where indicated, stimulation of neutrophils with 
100 nM PMA served as a positive control. After stimulation, cells 
and NETs were fixed in 4% paraformaldehyde (30  min, room 
temperature), and slides were stained for DNA (Sytox Orange; 
100 nM), NE (dilution 1:200; antibody listed above), and/or MPO 
(dilution 1:100; antibody listed above). Slides were embedded 
in Vectashield Mounting Medium (Brunschwig Chemie, Cat. 
No. H-1200, Amsterdam, The Netherlands), and pictures were 
obtained with a Zeiss fluorescence microscope with Axiovision 
software (Sliedrecht, The Netherlands).

statistical analyses
Values are expressed as mean  ±  SEM. Significance was either 
determined by Student’s t-test or one-way ANOVA followed by 
Bonferroni correction using GraphPad Prism 5.0 (La Jolla, CA, 
USA). p values less than 0.05 were considered as statistically 
significant.

resUlTs

neutrophils selectively release neTs in 
response to Different lPs structures
To evaluate whether LPS is capable of inducing NETosis, and 
whether there are species- and/or serotype-specific differences in 
the capacity of LPS to induce NETosis, purified neutrophils were 
exposed to seven different LPS structures (at a concentration 
of 8  pg LPS per neutrophil, which is equivalent to ~10  μg/ml 
LPS) under platelet- and serum-free conditions (thereby largely 
approaching tissue circumstances), after which NETosis was 
quantified by measuring DNA release. Extracellular DNA was 
only detected when neutrophils were exposed to LPS-O128 and 
LPS-PA, whereas the other LPS serotypes did not induce DNA 
release (Figure 1A, left panel). For LPS-O128 and LPS-PA, the 
amount of extracellular released DNA approached ~40–50% of 
the total cellular DNA, as determined in total cell lysates, indicat-
ing that approximately half of the neutrophils were lysed and 
released NETs. Measurement of extracellular elastase activity in 
the same culture supernatants revealed that only LPS-O128 and 
LPS-PA were able to induce the release of elastase (Figure 1A, 
right panel). The release of both extracellular DNA and elastase 
clearly suggested that NETs were released. Indeed, the presence 

of NETs could be confirmed by immunofluorescence imaging, 
where typical DNA filaments (“spread” NETs) as well as “diffused” 
NETs could be observed (Figure  1B). In sum, LPS-induced 
NETosis is under tissue circumstances species- and serotype-
dependent and is, among the seven LPS structures investigated 
here, limited to LPS-O128 and LPS-PA.

lPs-O128 and lPs-Pa induce 
neTosis Only When Present above 
a Threshold Value
Next, the NET-inducing capacity of LPS-O128 and LPS-PA 
was tested at lower concentrations under the same serum- and 
platelet-free circumstances. Intriguingly, lowering LPS concen-
trations did not result in a gradual decrease of the number of 
neutrophils undergoing NETosis, but instead all neutrophils 
remained unaffected below concentrations of 8  pg of LPS-
O128 and LPS-PA per neutrophil (Figure  2A). This indicates 
that a certain minimum quantity of LPS-O128 and LPS-PA is 
required to exceed a threshold value that induces NETosis in 
neutrophils. It can be hypothesized that a pro-inflammatory 
milieu, i.e., the presence of pro-inflammatory cytokines, might 
lower the threshold for the induction of NETosis by LPS-O128 
and LPS-PA. To test this, neutrophils were preincubated for 
1 h with the cytokines TNF-α (10 ng/ml), IL-6 (10 ng/ml), or 
IFN-α (100 ng/ml), or a mixture of these cytokines, after which 
LPS was added at a concentration just below the threshold (6 pg 
LPS per neutrophil). The pro-inflammatory cytokines neither 
induced NETosis themselves (Figure  2B, top left panel) nor 
lowered the threshold for NETosis induced by LPS-O128 and 
LPS-PA (Figure 2B, middle panels). In addition, LPS-O111 did 
not gain NET-inducing capacity by priming neutrophils with 
pro-inflammatory cytokines (Figure  2B, bottom left panel). 
Also, the pro-inflammatory cytokines did not enhance NETosis 
by LPS-O128 and LPS-PA at a concentration of 8 pg LPS per 
neutrophil (Figure  2B, right panels). In summary, LPS-O128 
and LPS-PA trigger NETosis when they are present above a 
certain threshold value, which is independent from a pro-
inflammatory milieu.

lPs-O128 and lPs-Pa induce rOs- and 
autophagy-Dependent “suicidal” neTosis
As outlined, NETs can be generated in several ways, i.e., through 
cell death-associated “suicidal” NETosis or through “vital” 
NETosis (5). Since the viability of neutrophils stimulated with 
LPS-O128 and LPS-PA under serum- and platelet-free conditions 
(i.e., tissue circumstances) appeared heavily altered (Figure 1B), 
as witnessed by altered lobulated nuclei and decondensed 
chromatin, we tested the hypothesis that LPS-O128 and LPS-PA 
trigger the canonical cell death-associated pathway of “suicidal” 
NETosis, which is dependent on reactive oxygen species (ROS) 
and autophagy and usually takes hours to complete (7). Indeed, 
LPS-induced NETosis typically occurred after 3  h (Figure  3A) 
and could be fully prevented by inhibition of autophagy (using 
wortmannin) or ROS [using diphenyleneiodonium (DPI)] 
(Figures  3B,C). Since LPS signaling is heavily dependent on 
TLR4, and arguably to a lesser extent on TLR2, we assessed 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 1 | neutrophils selectively release neTs in response to lPs structures. (a) LPS-O128 and LPS-PA stimulate neutrophils to release NETs after 
180 min of incubation in platelet-free cell cultures (left panel), as measured by fluorometry. The release of DNA by LPS-O128 and LPS-PA coincides with extracellular 
activity of neutrophil elastase (right panel). (B) NET release in response to LPS-O128 and LPS-PA was confirmed by immunofluorescence microscopy, in which DNA 
was stained with 100 nM Sytox Orange (yellow). Both “spread” NETs (red arrows) and “diffused” NETs (white arrows) were observed. NET release in response to 
100 nM PMA served as positive control. LPS was used at a concentration of 8 pg LPS per neutrophil. Scale bar: 30 μm. *p < 0.05 and ***p < 0.001, when 
compared to control. Data represent mean values ± SEM of at least three experiments.
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whether blockade of TLR2 and TLR4 could prevent NET release 
in response to LPS-O128 and LPS-PA. However, inhibition of 
TLR2 and TLR4 did not alter NET release in response to either 

LPS structure, suggesting that LPS-induced NETosis occurs in a 
TLR4 and TLR2-independent manner (Figure 3B). Collectively, 
these data indicate that LPS-PA and LPS-O128 induce “suicidal” 
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FigUre 2 | lPs-O128 and lPs-Pa induce neTosis when present above a threshold value. (a) LPS-O128 and LPS-PA induce NET release only at high LPS 
concentrations of 8 pg LPS per neutrophil (PMN). (B) Priming of neutrophils for 1 h with recombinant TNF-α (10 ng/ml), IL-6 (10 ng/ml), IFN-α (100 ng/ml), or a 
mixture of all, does not promote NET release nor prime neutrophils for LPS-induced NETosis by LPS-O111 (bottom left), LPS-O128 (top middle), and LPS-PA 
(bottom middle) at a concentration of 6 pg LPS per neutrophil (PMN). In these graphs, NETosis induced by LPS-O128 and LPS-PA at 8 pg LPS per neutrophil is 
shown in dark as positive controls. Cytokines do not enhance NETosis by LPS-O128 or LPS-PA at LPS concentrations of 8 pg LPS per neutrophil (top and bottom 
right). Quantifications of NET release were performed by fluorometry, as outlined. *p < 0.05, **p < 0.01, and ***p < 0.001, when compared to control. Data 
represent mean values ± SEM of at least three experiments.
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FigUre 3 | lPs-Pa and lPs-O128 induce rOs- and autophagy-dependent “suicidal” neTosis. (a) DNA release in response to 100 nM PMA, LPS-O128, 
or LPS-PA was monitored by fluorometry using 100 nM Sytox Orange during an incubation period of 5 h. (B) NETosis induced by LPS-O128 and LPS-PA can be 
inhibited by 5 μM wortmannin (inhibitor of autophagy) or 40 μM diphenyleneiodonium (DPI; inhibitor of ROS), but not by anti-TLR2 and anti-TLR4 neutralizing 
antibodies (5 μg/ml). (c) The inhibitory effects of wortmannin and DPI on NET release by LPS-PA were confirmed by immunofluorescence microscopy, in which DNA 
was stained with 100 nM Sytox Orange (yellow). Immunofluorescence imaging also confirmed that anti-TLR2 and anti-TLR4 neutralizing antibodies did not prevent 
NETosis induced by LPS-PA. LPS was used at a concentration of 8 pg LPS per neutrophil. Scale bar: 30 μm. **p < 0.01 and ***p < 0.001, when compared to 
control, $p < 0.05 and #p < 0.01, when compared to LPS-PA alone. Data represent mean values ± SEM of at least three experiments.
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ROS- and autophagy-dependent NETosis under tissue circum-
stances, which does not require TLR2 or TLR4.

lPs induces “Vital” neTosis in the 
Presence of Platelets
It was recently demonstrated that LPS-activated platelets 
induce “vital” NETosis during sepsis (4, 5). This form of NET 
release is fundamentally different from “suicidal” NETosis; 
hence, “vital” NETosis occurs much faster, is not dependent 

on autophagy or ROS, and is not associated with direct lytic cell 
death. Therefore, the NET-inducing capacity of all seven LPS 
structures was retested in the presence of platelets. Intriguingly, 
in whole blood ex vivo, thus in the presence of platelets, NET-
like DNA lattices could be identified in response to all seven 
LPS structures (Figure  4A). An in  vitro coculture setting of 
neutrophils and isolated platelets indeed revealed NETosis in 
response to LPS structures that previously failed to induce 
NETosis under platelet-free conditions, for instance LPS-O111 
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FigUre 4 | all lPs structures induce “vital” neTosis in the presence of platelets. (a) Typical extracellular DNA filaments (white arrows) were observed in 
whole blood cultures ex vivo after 180 min of incubation with the different LPS serotypes. (B) Platelets (panel 2) or LPS-O111 (panel 3) alone does not induce 
NETosis after 180 min of incubation with neutrophils, whereas the combination of both (panel 4) stimulates NET formation without neutrophil (lytic) cell death. 
Massive neutrophil cell death is observed in response to LPS-PA alone (panel 5), based on the failure to exclude the vital dye Sytox Orange (yellow), which can be 
largely prevented by the addition of platelets (panel 6). LPS was used at a concentration of 8 pg LPS per neutrophil. Notably, representative light microscopy images 
are shown to visualize neutrophil morphology after stimulation and do not correspond in terms of “field of view” to the adjacent representative immunofluorescence 
images. Scale bars: white = 20 μm and red = 40 μm.
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(Figure  4B). Whereas platelets alone or LPS-O111 failed to 
trigger NET release, the combination of platelets and LPS-O111 
resulted in robust NET formation (Figure  4B, panels 2–4). 
Platelet-dependent LPS-induced NETs were observed already 
within 60  min of incubation, and the majority of neutrophils 
retained the capacity to exclude the vital dye Sytox Orange, 

which is indicative for “vital” NETosis (Figure 4B, panel 4). On 
the contrary, neutrophils stimulated with LPS-PA only did not 
exclude Sytox Orange anymore, which is indicative for “suicidal” 
NETosis (Figure 4B, panel 5). Importantly, “suicidal” NETosis 
induced by LPS-PA could be largely prevented by the addition 
of platelets (Figure 4B, panels 5 and 6). Finally, to confirm that 
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FigUre 5 | “Vital” neTs lack proteolytic active myeloperoxidase and elastase. (a) “Vital” NETs induced by platelets exposed to LPS-PA, as well as “suicidal” 
NETs induced by LPS-PA alone, stain positive for both myeloperoxidase (MPO) and neutrophil elastase (NE). Note the highly refined architecture of thinly interwoven 
DNA filaments of “vital” NETs when compared to “suicidal” NETs. Also note (right panels, inserts) the granular and intact neutrophil phenotype (i.e., lobulated nuclei) 
for “vital” NETs (white arrows) when compared to the altered neutrophil phenotype (i.e., decondensed chromatin) for “suicidal” NETs (blue arrows). (B) “Vital” NETs 
induced by platelets exposed to LPS-PA lack proteolytic active myeloperoxidase (MPO) and neutrophil elastase (NE) when compared to “suicidal” NETs induced by 
LPS-PA alone. For these assays, NETs were isolated through digestion with micrococcal nuclease and normalized on the basis of DNA content in NET-containing 
supernatants. Scale bars: white = 40 μm and red = 20 μm. ***p < 0.001, when compared to control. Data represent mean values ± SEM of at least three 
experiments.
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the extracellular DNA fibers in response to LPS-exposed platelets 
represent “vital” NETs, double stainings for DNA with either 
MPO or elastase (NE) were performed. Indeed, extracellular 
DNA co-localized with both MPO and NE when neutrophils 
were stimulated with platelets exposed to LPS-PA (Figure 5A; 
single channel images as Figure S1 in Supplementary Material), 

thereby confirming that the observed DNA structures are “vital” 
NETs. However, the proteolytic activity of both MPO and NE 
within these “vital” NETs appeared to be lower when compared 
to “suicidal” NETs induced by LPS-PA alone (Figure  5B). 
In  conclusion, LPS-exposed platelets mediate “vital” NETosis 
independent from the bacterial origin of LPS.
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FigUre 6 | Platelet-mediated “vital” neTosis requires platelet Tlr4 and cD62P. (a,B) “Vital” NETosis induced by LPS-O111 and platelets is insensitive 
to inhibition by 5 μM wortmannin (inhibitor of autophagy) or 40 μM diphenyleneiodonium (DPI; inhibitor of ROS) but can be prevented by pretreatment of platelets 
with anti-TLR4 neutralizing antibodies (5 μg/ml). Representative images are merged pictures of extracellular DNA (yellow, as stained with 100 nM Sytox Orange) 
and neutrophils (brightfield channel). The images show abundant NETs despite exclusion of Sytox Orange by neutrophils, indicating cell death-independent NET 
release (i.e., “vital” NETosis). Quantification of NET release (B) was performed by fluorometry, as outlined. (c) PKH26-labeled platelets (red) stimulated with 
LPS-PA form aggregates with neutrophils (NE, neutrophil elastase) after 30 min of incubation. This aggregate formation is inhibited by anti-CD62P-neutralizing 
antibodies. (D) Flow cytometry analysis confirms the formation of platelet–neutrophil aggregates, since cells within the predefined neutrophil gate increase in size 
(FSc, forward scatter) and stain positive for PKH26-labeled platelets after LPS-PA stimulation. (e) Anti-CD62P-neutralizing antibodies decrease platelet-mediated 
“vital” NETosis induced by LPS-PA, as measured by fluorometry. LPS was used at a concentration of 8 pg LPS per neutrophil. Scale bars: red = 100 μm; 
white = 30 μm; yellow = 10 μm. *p < 0.05 and ***p < 0.001, when compared to control, where not indicated. Data represent mean values ± SEM of at least 
three experiments.
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Platelet Tlr4 and cD62P are required for 
lPs-induced “Vital” neTosis
The mechanisms involved in platelet-dependent LPS-induced 
“vital” NETosis may involve platelet TLR4, which was previously 
shown to be required for “vital” NETosis (11). Indeed, anti-TLR4 
neutralizing antibodies could inhibit NET release in response to 

LPS-O111 to a large extent (Figures 6A,B). The inhibition of ROS 
(with DPI) or autophagy (with wortmannin) did not influence 
“vital” NETosis induced by LPS-O111 (Figures  6A,B; single 
channel images as Figure S2 in Supplementary Material). Besides 
promoting “vital” NETosis, platelets apparently also exerted 
inhibitory effects on “suicidal” NETosis induced by LPS-PA 
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(Figure 4B, panels 5 and 6). In the presence of platelets, LPS-PA 
hardly promoted cell death, while NETs remained present to the 
same extent as for neutrophils exposed to LPS-PA in the absence 
of platelets. Thus, platelets seem to be important mediators in 
directing the neutrophil’s fate during NET release, whereas LPS-PA 
induces “vital” NETosis in the presence of platelets, “suicidal” 
NETosis is induced when platelets are absent. As an explanation 
for this observation, it can be hypothesized that LPS-exposed 
platelets are internalized by neutrophils, thereby delivering NE 
to phagosomes and sequestering NE from the nucleus, which in 
turn inhibits “suicidal” NETosis since nuclear elastase is required 
in this pathway (18, 19). To test this hypothesis, PKH26-labeled 
platelets exposed to LPS-PA were cocultured with neutrophils, 
after which PKH26-labeled platelets and NE were visualized by 
immunofluorescence imaging. Apparently, platelets were not 
internalized by neutrophils, but instead formed large aggregates 
with neutrophils (Figure 6C, middle panel; single channel images 
as Figure S3 in Supplementary Material). The platelet–neutrophil 
aggregates coincided with the presence of NETs, consisting of 
extracellular filaments of DNA and NE (Figure 6C, insert right 
panel). The formation of platelet–neutrophil aggregates was 
further analyzed by flow cytometry, which revealed an increased 
forward scatter and PKH26-positivity in the neutrophil popula-
tion (Figure 6D). Since CD62P is crucial for platelet–neutrophil 
interactions (20), PKH26-labeled platelets exposed to LPS-PA 
were cocultured with neutrophils in the presence of CD62P-
neutralizing antibodies. Indeed, CD62P-neutralizing antibodies 
could largely prevent the formation of LPS-PA-induced platelet–
neutrophil aggregates (Figures 6C,D) and decreased NET release 
(Figure  6E). Collectively, these data demonstrate a dominant 
role for platelets in LPS-induced “vital” NETosis, which occurs 
in an autophagy- and ROS-independent, but platelet TLR4- and 
platelet CD62P-dependent manner.

DiscUssiOn

This study shows that neutrophils are able to discriminate 
between LPS of different bacterial sources and thereby selec-
tively release NETs. Under serum- and platelet-free conditions, 
thereby mimicking tissue circumstances, neutrophils released 
NETs in response to two out of seven tested different LPS 
structures, of which LPS derived from P. aeruginosa (LPS-PA) 
appeared particularly potent. P. aeruginosa is a pathogen that 
typically infects the respiratory and urinary tract, as well as 
chronic wounds, and is a significant cause of morbidity and 
mortality in hospitalized patients (21). It is well-accepted that 
neutrophils comprise a pivotal component of host protection 
against P. aeruginosa (22). It was recently reported that P. aer-
uginosa is a robust instigator of NET formation in  vitro and 
in vivo within the lungs, which contribute to the pathogenesis 
of airway changes in patients with bronchiectasis and cystic 
fibrosis (23–26). It  remains unelucidated why LPS-PA is par-
ticularly potent in eliciting NET release when compared to the 
LPS derived from other bacterial species. Since P. aeruginosa 
is generally perceived as a non-virulent opportunist, it is 
unclear why this microorganism would elicit an antimicrobial 
defense mechanism (i.e., NETosis) that is associated with 

collateral tissue damage (6), rather than triggering conventional 
phagocytosis. Reasoning otherwise, the potent NET-inducing 
capacity of LPS-PA could explain why this bacterium is actu-
ally perceived as an opportunist; hence, NETosis represents an 
extremely powerful strategy of constraining bacterial traits (27). 
An explanation for the NET-inducing capacity of LPS-PA may 
lie in the fact that P. aeruginosa is well-known for its ways to 
circumvent phagocytosis, for example through the formation of 
biofilms (28). Thus, NETosis may provide an immune response 
to those bacteria that have evolved strategies to circumvent 
phagocytic killing. Indeed, multiple other pathogens notorious 
for their attempts to evade phagocytosis, such as Streptococcus 
pneumonia (29), Haemophilus influenza (30), and Klebsiella 
pneumoniae (31), are potent stimuli for NETosis. Thus, phago-
cytosis and NETosis may have a complementary role, whereby 
the failure to phagocytose may elicit NET release. In line with 
this is the observation that NETosis is triggered by fungi that 
are too large for phagocytosis, whereas small hyphae become 
phagocytosed without inducing NETosis (18).

In addition to LPS-PA, LPS from E. coli (serotype O128:B12; 
LPS-O128) induced NETosis under tissue circumstances. Of 
note, four other tested LPS serotypes of E. coli (serotypes O55:B5, 
O127:B8, O111:B4, and O26:B6) did not elicit NET release. Thus, 
LPS-induced NETosis is not only bacterial species-specific but 
also serotype-specific. Growing evidence supports the notion 
that inflammatory responses triggered by LPS vary among 
serotypes. For instance, in a murine model of infection-induced 
preterm labor, four different E. coli LPS serotypes yielded highly 
variable outcomes (32). Our data suggest that subtle changes in 
the sugar composition of the O-antigen can impact NET release 
in response to LPS. It has been shown that modulation of the 
O-antigen composition alters the recognition and consecutive 
phagocytosis of LPS molecules by macrophages (33), which may 
also hold for neutrophils. In line with the reciprocal relationship 
between NETosis and phagocytosis described above, NETosis 
may thus be triggered by certain O-antigens that facilitate bypass-
ing of phagocytosis.

Notably, the selectivity of NET release in response to LPS 
structures in our study was lost when neutrophils were cocultured 
with platelets. Also, extracellular chromatin fibers typical for 
NETs could be identified in whole blood ex vivo in response to all 
seven different LPS structures. Thus, in the presence of platelets, 
there is no selectivity of NET release in response to the different 
LPS structures. We observed that neutrophil–platelet interactions 
induced a rapid release of NETs (<60 min) in response to all LPS 
structures, which occurred in a ROS-independent manner and 
preceded without evident lysis of neutrophils. This form of rapid 
NET release could largely be inhibited through the blockade of 
platelet CD62P. Indeed, it has previously been shown that CD62P 
promotes NETosis in mice (34). The binding of CD62P, also 
known as P-selectin, to P-selectin glycoprotein ligand-1 (PSGL-1) 
on neutrophils thus causes signaling events that result in NETosis. 
However, the exact molecular mechanisms underlying CD62P-
induced NET release remain elusive. Nevertheless, many down-
stream pathways of PSGL-1, such as the Src/Syk, PI3K/Akt, and 
p38 MAPK pathways, have in other contexts already been shown 
to be involved in NET release (35–37).
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Our observations that LPS-exposed platelets rapidly induce 
NET release independent from ROS and independent from 
neutrophil lysis closely resemble a form of NETosis, which has 
previously been referred to as “vital” NETosis (5). However, the 
existence of a non-cell death “vital” NETosis program has been 
doubted by some critics, who question whether a neutrophil 
can still live and function without an intact nucleus (38, 39). 
Nevertheless, there is evidence that anuclear granulocytes 
are in fact metabolically active and able to perform cellular 
functions, such as transmigration (40) and phagocytosis (41). 
Simultaneously, some researchers have been critical toward 
fundamental aspects of “suicidal” NETosis, who perceive “sui-
cidal” NETosis rather harmful than beneficial for the host due 
to its robust nature (42). Furthermore, it remains controversial 
whether “suicidal” NETosis is truly a unique form of cell death 
or whether it in fact reflects other forms of cell death, such as 
necroptosis (38, 43). Nonetheless the above, we have adapted the 
terms “suicidal” and “vital” NETosis in this manuscript, since 
these terms have been defined in previously published work in 
which the reported observations correspond to our findings. 
However, we agree that at least the term “vital” NETosis is a 
contradictio in terminis, since the “osis” of NETosis implies death 

and “vital” implies alive. Although our data support the coexist-
ence of both “suicidal” and “vital” NETosis, whereby platelets 
ultimately direct the neutrophil’s fate, further investigation is 
required to fully understand “vital” and “suicidal” processes and 
to assess the reciprocal relationship between both. Moreover, 
there should be international consensus about the terminology 
applied to describe the different forms of NET release as well 
as neutrophil cell death.

The structure of “vital” NETs induced by LPS-exposed platelets 
appeared highly refined and sophisticated, forming much larger 
structures of thinly interwoven DNA filaments when compared 
to “suicidal” NETs. Furthermore, we found that peroxidase and 
elastase activity was lacking in “vital” NETs, in contrast to “sui-
cidal” NETs. These two characteristics of “vital” NETs (i.e., the 
complex web-like structure and the lack of proteolytic activity) 
makes “vital” NETs highly suitable for trapping and encapsulat-
ing pathogens, but presumably not for direct extracellular killing. 
However, since neutrophils appear to remain viable during “vital” 
NETosis, subsequent phagocytosis of entrapped pathogens may 
follow, and this combination of NET release and phagocytosis 
may provide an efficient strategy to combat pathogens in the 
bloodsteam during sepsis without inducing protease-mediated 

FigUre 7 | Differential regulation of lPs-induced neT release under platelet-free and platelet-rich circumstances. Under serum- and platelet-free 
conditions, mimicking tissue circumstances, LPS-PA and LPS-O128 trigger ROS- and autophagy-dependent “suicidal” NET release in extravasated neutrophils, 
whereas other LPS structures (LPS-O26, LPS-O55, LPS-SE, LPS-O127, and LPS-O111) do not. In the presence of platelets, mimicking blood circumstances, 
neutrophils do no longer discriminate between LPS structures and release “vital” NETs in response to all LPS structures.
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