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Experimental autoimmune encephalomyelitis (EAE) is the most common animal model of 
multiple sclerosis (MS), a chronic inflammatory autoimmune disease of the central ner-
vous system (CNS) characterized by multifocal perivascular infiltrates that predominantly 
comprise lymphocytes and macrophages. During EAE, autoreactive T cells first become 
active in the secondary lymphoid organs upon contact with antigen-presenting cells 
(APCs), and then gain access to CNS parenchyma, through a compromised blood–brain 
barrier, subsequently inducing inflammation and demyelination. Two-photon laser scan-
ning microscopy (TPLSM) is an ideal tool for intravital imaging because of its low pho-
totoxicity, deep tissue penetration, and high resolution. In the last decade, TPLSM has 
been used to visualize the behavior of T cells and their contact with APCs in the lymph 
nodes (LNs) and target tissues in several models of autoimmune diseases. The leptome-
ninges and cerebrospinal fluid represent particularly important points for T cell entry into 
the CNS and reactivation following contact with local APCs during the preclinical phase 
of EAE. In this review, we highlight recent findings concerning the pathogenesis of EAE 
and MS, emphasizing the use of TPLSM to characterize T cell activation in the LNs and 
CNS, as well as the mechanisms of tolerance induction. Furthermore, we discuss how 
advanced imaging unveils disease mechanisms and helps to identify novel therapeutic 
strategies to treat CNS autoimmunity and inflammation.

Keywords: experimental autoimmune encephalomyelitis, T cell activation, regulatory T cells, two-photon 
microscopy

iNTRODUCTiON

Immune responses directed against self-antigens of the central nervous system (CNS) underlie 
several diseases, including multiple sclerosis (MS), neuromyelitis optica, and acute disseminated 
encephalomyelitis. MS is a chronic inflammatory demyelinating disease of the CNS affecting 
approximately 2–2.5 million people worldwide and leading to chronic progressive disability in the 
majority of cases (1). MS is heterogeneous both clinically and histopathologically, suggesting that 
different effector cells and molecular mechanisms are involved in the induction of tissue destruction 
(2). The most common form of MS, known as relapsing–remitting MS (RRMS), is associated with 
acute inflammatory episodes that reduce neurological function. RRMS patients may experience 
some recovery between relapses, but in 80% of cases, the disease evolves to a more progressive form, 
termed secondary progressive MS (SPMS). The latter is associated with a gradual loss of neurological 
function and ascending paralysis, both of which are believed to be less dependent on inflammation 
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(3). Epidemiological and identical twin studies suggest that both 
genetics and environmental factors may play a role in disease 
pathogenesis (4, 5). Although the cause of MS is unknown, 
the presence of perivascular mononuclear cell infiltrates and 
demyelination suggest the disease is induced by an autoimmune 
response (4, 6, 7). Autoreactive T cell activation in MS is mainly 
associated with infection and is probably mediated by molecular 
mimicry, novel antigen presentation, bystander activation, or the 
coexpression of T cell receptors (TCRs) with different specifici-
ties (8–12). Antigen-presenting cells (APCs) containing myelin 
antigens were identified in the cervical lymph nodes (LNs) from 
MS patients, suggesting that the induction and propagation of 
autoimmune responses in MS starts at the periphery, within CNS 
draining LNs (13–15).

Several animal models have been developed to simulate 
clinical and histopathological patterns of demyelinating CNS 
inflammation, and these have been studied to determine the key 
steps in MS pathogenesis. The preferred animal model of MS 
is experimental autoimmune encephalomyelitis (EAE), which 
was introduced in 1925 by Koritschoner and Schweinburg, 
who induced spinal cord (SC) inflammation in rabbits by 
inoculation with human SC material (16). Since then, EAE 
has been induced by the immunization of susceptible animal 
strains, including primates and rodents, and has been shown 
to mimic several aspects of human MS (17). EAE can also 
be induced by the adoptive transfer of myelin-specific CD4+ 
T cell lines produced in vitro, proving that EAE is induced by 
an autoimmune response to myelin antigens (18). The shared 
clinical and histopathological features of EAE and MS suggest 
that both are autoimmune diseases induced by CNS-specific 
CD4+ autoreactive major histocompatibility complex class 
II (MHC-II) restricted T cells, which trigger a cascade of 
pathogenic events resulting in inflammation, demyelination, 
and neurodegeneration (19). Indeed, DR15 and DQw6 are 
the most important genetic susceptibility factors for MS, and 
myelin antigen-specific CD4+ MHC-II restricted T cells are 
more abundant in the blood and cerebrospinal fluid (CSF) of 
MS patients (20–23). During EAE, CNS-specific T cells are 
activated in the peripheral lymphoid organs and then migrate 
into the CNS (24). Inside the CNS, the T cells are reactivated by 
resident or infiltrating activated APCs, which present MHC-II 
associated peptides, resulting in inflammation, demyelination, 
and axonal damage.

Experimental autoimmune encephalomyelitis is considered 
an invaluable tool to study the activation of autoreactive T cells 
in the peripheral immune compartment, their migration into 
and reactivation within the CNS, and the subsequent induction 
of CNS inflammation. The activation and trafficking of immune 
system cells in EAE/MS is not fully understood. Recently, 
in vivo imaging techniques, such as two-photon laser scanning 
microscopy (TPLSM), have provided insights into the underly-
ing disease mechanisms, leading to the development of novel 
therapeutic strategies to delay the progression of the disease. In 
this review, we discuss recent work on immune responses during 
EAE, highlighting the use of in vivo imaging to investigate T cell 
activation in lymphoid organs and the CNS and to study the basis 
of novel disease mechanisms.

iMMUNe ReSPONSeS AND THeiR 
ReGULATiON DURiNG eAe

The most widely used protocol for EAE induction is currently 
based on the subcutaneous (sc) injection of an encephalitogenic 
peptide, which is emulsified in complete Freund’s adjuvant 
(CFA) containing mineral oil and Mycobacterium tubercolosis 
strain H37Ra, followed by intravenous (iv) administration of 
pertussis toxin as adjuvant. In the Swiss Jim Lambert (SJL) 
mouse (H-2s), EAE can be actively induced by immunization 
with CNS homogenate, proteolipid protein (PLP), myelin basic 
protein (MBP), or encephalitogenic epitopes of PLP (PLP139–151, 
PLP178–191), myelin oligodendrocyte protein (MOG92–106), or 
MBP (MBP84–104) in an emulsion with CFA (25). The disease 
follows a predictable clinical course, characterized by a pro-
dromal period of 10–15 days followed by ascending paralysis 
beginning in the tail and hind limbs and progressing to the 
forelimbs concurrent with weight loss. In SJL mice, the disease 
involves a relapsing–remitting course of paralysis, allowing 
for mechanistic studies or immunomodulatory strategies in 
a relapsing autoimmune disease setting. MOG35–55 is a potent 
encephalitogenic peptide in C57BL/6 (H-2b) mice, and immu-
nization with this peptide leads to chronic progressive disease. 
Generally, the resulting clinical EAE phenotype depends 
mainly on the antigen source and the genetic background of 
the animal species and strain.

Experimental autoimmune encephalomyelitis is a useful 
model for the investigation of immunological mechanisms 
responsible for the inflammatory autoimmune process in MS. 
During EAE, naïve autoreactive CD4+ T cells are activated in 
the secondary lymphoid organs and reach the CNS through the 
blood by extravasation across the blood–brain barrier (BBB) (26). 
Inside the CNS, the autoreactive CD4+ T cells are reactivated by 
resident or migrating APCs displaying CNS self-antigens, which 
are necessary for T-cell reactivation. This process is required for 
the pathogenesis of MS and EAE because it induces the produc-
tion of soluble pro-inflammatory mediators (26). These molecules 
may trigger the recruitment of other inflammatory cells, includ-
ing innate immune system cells, which are key contributors to 
demyelination and axonal damage (26).

Autoimmune diseases also reflect a failure to sustain immune 
tolerance to self and/or cross-reactive molecules. EAE models have 
contributed to the understanding of immunoregulatory processes 
during the pathogenesis of MS, and CD4+CD25+FoxP3+ regula-
tory T (Treg) cells represent the most efficient immunoregulatory 
cellular mechanism (27–30). Abnormalities in Treg generation and 
function are considered a primary cause of autoimmune disease 
and other immunological disorders (31). These cells represent 
5–10% of the CD4+ T lymphocytes in healthy adult mice and 
humans, and they have a specialized role in controlling both the 
innate and adaptive immune systems (32, 33). Treg cells have been 
shown to modulate neuroinflammatory processes in several EAE 
studies. For example, Rag−/− MBP-TCR transgenic mice develop 
spontaneous EAE and the depletion or inactivation of Treg cells by 
the injection of an anti-CD25 monoclonal antibody results in a 
massive activation of autoreactive T cells, leading to more severe 
EAE and a delayed or abrogated recovery phase (34–36). In EAE 
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induced by MOG35–55, both antigen-specific T-effector and Treg 
cells differentiate and proliferate in the periphery before migrat-
ing to the CNS, with Treg cells necessary for natural recovery after 
the disease peak observed in immunized EAE mice (36, 37). In 
both actively induced and passively induced EAE models, the 
accumulation and expansion of Treg cells in the CNS correlates 
with recovery (36, 38). Dendritic cells (DCs) may be a major 
target of Treg-dependent immunoregulation in lymphoid organs 
during EAE and other animal models of autoimmunity (39–41).

viSUALiZATiON OF T CeLL DYNAMiCS  
IN VIVO BY TPLSM – AN iNTRODUCTiON

Two-photon laser scanning microscopy is advantageous because 
it achieves deep tissue penetration and high resolution with low 
phototoxicity, making it ideal to visualize immune system cells 
in living animals and to provide dynamic views of leukocytes 
(42, 43). TPLSM movies are acquired by rendering a raw time 
series of three-dimensional images with one or more fluorescent 
channels. Cell tracking requires the location of each cell within 
three-dimensional space at successive time points, and repeated 
imaging at defined time intervals can be used to determine a 
cell’s migratory path, velocity, motility, chemotactic index, and 
physical interactions with tissue components (43). The behavior 
of different cell types and the molecular mechanisms controlling 
their migration can be studied by using TPLSM to compare two 
or more experimental conditions (e.g., wild-type versus knockout 
animals, or animals with and without defined cell populations).

T cells are constantly in motion under physiological and 
pathological conditions, traveling over long distances in the 
blood, migrating into lymphoid or non-lymphoid organs through 
the endothelial wall, and then actively moving inside the tissues. 
TPLSM has been used extensively to study the motility behavior 
of these cells inside lymphoid and non-lymphoid tissues during 
autoimmune responses. For example, TPLSM has shown that 
following extravasation in the LNs, T cells initially move at 
high velocity, displaying a random walk or directed migration 
pattern to facilitate antigen surveillance (44–46). If migrating 
T cells come into direct contact with APCs in the vicinity of high 
endothelial venules (HEVs), their dynamic behavior undergoes 
changes, such as reduced motility or organization into clusters, 
leading to cell activation and proliferation (47, 48). T cell crawling 
on DCs has also been visualized in the LNs in the T cell area (49, 
50). During viral infections, central memory CD8+ T cells may 
encounter antigen also in the peripheral areas in LNs presented 
by subcapsular sinus macrophages (51). Tolerance induction is 
accompanied by less stable DC/T cell interactions with shorter 
T cell/APC contact times, smaller DC/T cell clusters, and a rapid 
restoration of effector T cell motility (39–41, 52–54). Therefore, 
the detection of antigens and subsequent immune responses 
requires the long-range migration of cells, short-range commu-
nication, and direct cell–cell contact with APCs.

The reactivation of primed T cells in the CNS is necessary for 
the initiation of inflammatory responses and requires physical 
contact between T cells and local APCs. In the last decade, TPLSM 
has revealed the motility behavior of migrating T cells in the CNS 

and their reactivation inside the SC parenchyma, which is the 
main site of CNS inflammation in most EAE models (55–58). 
Importantly, T cells interact with APCs in the subarachnoid space 
during the early stages of EAE, and these contacts seem critical 
for T cell reactivation and expansion in the CNS (57, 59). TPLSM 
studies have been pivotal to the investigation of immune system 
cell behavior in the lymphoid tissue and CNS during autoimmune 
diseases, and the dynamic behavior of effector T cells and Treg cells 
during the course of EAE is discussed in detail below.

T CeLL DYNAMiCS iN THe LNs  
DURiNG eAe

In the absence of immunization, naïve T cells continuously 
migrate and scan antigen-presenting DC populations within the 
T cell zones of LNs (46, 49). Their fast and stochastic motility 
behavior facilitates a series of random encounters between 
antigen-specific T cells and DCs, thus favoring the initiation of 
potential adaptive immune responses (48, 60, 61). However, this 
apparently non-directed motility in the LNs is guided on rails, 
namely the fibroblastic reticular cells (FRCs), which are covered 
in chemokines and form tight networks in secondary lymphoid 
organs (62).

Dendritic cells in LNs upregulate their surface-processed 
antigen about 3 h after immunization, whereas migratory DCs 
appear after ~24 h (63, 64). Following immunization, interactions 
between antigen-specific T cells and antigen-loaded DCs in the 
LNs are prolonged compared to the steady state (65). They also 
undergo changes in motility involving initial transient serial 
encounters, followed by a phase of slowing and stable contacts, 
and then by a return to high motility (38, 48, 49, 66, 67). During 
antigen recognition, TCR ligation reduces or arrests T cell motil-
ity by sending stop signals through LFA-1 integrin, allowing the 
formation of stable T cell/APC conjugates and efficient activation 
(67–69). In agreement with TPLSM studies in other experimental 
models of autoimmunity, the induction of active EAE is followed 
within 20–24 h by a substantial reduction in the speed and motil-
ity coefficients of antigen-specific naïve T cells in response to 
antigen challenge in the draining LNs. Simultaneously, the arrest 
coefficient of these cells increases significantly, suggesting there 
is direct physical contact with DCs as confirmed by measuring 
individual T cell/DC interactions frame by frame (40, 41).

Dendritic cells are essential not only for the induction of 
antigen-specific immune responses but also for the mainte-
nance of peripheral tolerance (70). In vivo studies have shown 
that immunity and tolerance both require the activation and 
clonal expansion of T cells following antigen-specific interac-
tions between naïve T cells and APCs (71, 72). For example, 
an elegant TPLSM study using a tolerogenic immunoglobulin 
carrying the MOG35–55 peptide (Ig-MOG) has revealed T cell 
motility and T cell/DC interactions leading to T cell tolerance 
during EAE induced in 2D2 TCR transgenic mice (73, 74). This 
study showed that tolerized T cells had an activated T-helper 
(Th)2 phenotype resulting in the secretion of IL-4 and IL-5 
cytokines, and their motility was reduced following tolerogen 
exposure similar to Th1 cells after immunization (74). However, 
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FiGURe 1 | TPLSM imaging of an exposed lymph node after MOG35–55 
immunization. Representative image of autoreactive T cells (blue) showing 
motility in the absence (A) or presence (B) of exogenous transplanted Treg 
cells (red). TPLSM was performed using MHC-II-GFP transgenic mice to 
visualize APCs (green). For an intuitive assessment of cell motility, yellow cell 
tracks are displayed graphically to indicate the progression of naïve T cell 
movement during the imaging period. The resulting positional information in 
four dimensions (xyz coordinates and time) is the basis for all subsequent 
computational analysis. Two-photon multidimensional data analysis 
parameters revealed that during MOG35–55 immunization, Treg cells modify the 
behavior of autoreactive T cells, increasing their motility and reducing their 
contact time with APCs in the peripheral LNs. Both figures are original. 
Scale bar = 100 micron.
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the Th2 cells had higher migration velocities and took longer to 
exhibit changes in motility than Th1 cells, suggesting that both 
Th1 immunity and Th2 tolerance alter T cell migration following 
antigen recognition (74).

Although T cell activation during the initial phase of the 
immune response in the LNs has been studied in detail, less is 
known about the later stages of the disease. We used TPLSM to 
show that efficient antigen-dependent priming is also maintained 
during the later stages of active EAE induced by MOG35–55 (41). 
Our results showed that 7  days after immunization, during 
the preclinical phase of the disease, ovalbumin (OVA)-specific 
T cells moved faster, had a higher motility coefficient and a lower 
arrest coefficient than MOG35–55-specific T cells. MOG-specific 
effector T cells were more motile, had a lower arrest coefficient 
and a shorter contact time with DCs 7 days after immunization 
compared to MOG-specific T cells after 1 day, suggesting antigen-
dependent activation is less effective. However, the number of 
stable contacts between T cells and DCs was higher after 7 days, 
suggesting that efficient antigen-dependent priming is also main-
tained during later phases of the immune response. Interestingly, 
the percentage of intermediate contacts was strongly reduced 
after 7 days, and the immune response was more polarized, with 
most T cells establishing transient or prolonged contacts with 
DCs. Adoptively transferred T cells appeared to lack contact with 
B cells and macrophages, suggesting that DCs provide the main 
mechanism for ongoing T cell activation during the late phase of 
the immune response during EAE. Activated MOG35–55-specific 
(but not OVA-specific) T cells tended to cluster, keeping close to 
each other without physical contact and swarming into organized 
spatial patterns, suggesting that proliferation and therefore clus-
tering are necessary for the clonal expansion and maintenance 
of an immune response in the LNs. Sustained T cell activation 
and proliferation requires persistent antigen availability and the 
presentation of antigen by migratory DCs (75, 76). Subcutaneous 
immunization with an emulsion containing CFA in the EAE 
model allows the slow release and persistent presentation of 
antigen, favoring prolonged antigen-dependent T cell activation 
(77). In addition, some T cells may be primed in the LNs and 
may therefore be activated more efficiently due to the presence of 
chemokines and cytokines released during the 7 days of continuous 
antigen recognition. The presence of cytokines and chemokines 
is supported by the clustering of T cells, which suggests potential 
clonal expansion. Taken together, these observations suggest that 
antigen-dependent T cell activation is maintained during the late 
phase of the immune response, highlighting the importance of 
prolonged and sustained immune responses for the successful 
induction of autoimmunity.

TReG CeLL-DePeNDeNT DYNAMiCS  
iN THe LNs DURiNG eAe

Regulatory T cells are a subset of suppressor T cells that con-
tribute to the maintenance of immunological homeostasis and 
self-tolerance (78). The mechanisms by which Treg cells regulate 
immune responses are complex and incompletely understood, 
but there is a consensus that DCs are the major target of Treg cells 

in lymphoid organs (39, 40, 79, 80). The contacts between T cells 
and DCs are highly regulated events influenced by the timing of 
activation, the signal strength and the inflammatory environ-
ment, so the regulation of these contact dynamics by Treg cells is an 
essential component of the T cell activation process (60, 81, 82).

Two-photon laser scanning microscopy studies during pre-
clinical EAE have shown that the presence of Treg cells increases 
the velocity and motility of T cells in draining LNs (as shown in 
Figure 1) (40). In addition, Treg cells reduce the arrest coefficient 
of T cells in draining LNs by limiting the contact time between 
T cells and antigen-loaded DCs (40, 41). It is unclear how Treg 
cells regulate T cell/DC interactions during EAE, but previous 
studies suggest that CTLA-4 may be necessary for the suppressive 
function of Treg cells in the draining LNs after immunization (83). 
Supporting this hypothesis, previous TPLSM studies have shown 
that the presence of CTLA-4 on Treg cells increases OVA-specific 
T cell motility and modulates the threshold for T cell activation 
(83). These studies of T cells specific for non-myelin antigens 
agree with TPLSM studies in EAE showing that Treg cells control 
the priming of autoreactive T cells at very early stages of CNS 
disease by preventing persistent T cell interactions with DCs in 
the LNs (40, 41). Further support comes from previous studies 
showing that the presence of CTLA-4 on Treg cells modulates CD80 
and CD86 expression on DCs following antigen stimulation and 
suppresses the production of IL-6 and TNF-α by DCs (84–86). 
Finally, the analysis of explanted pancreatic LNs from non-obese 
diabetic mice has shown that persistent Treg/DC contacts prevent 
autoreactive T cell activation by DCs (39).

We recently used TPLSM imaging to investigate the 
negative modulation exerted by Treg cells during the late phase 
of the immune response in the draining LNs in the EAE mouse. 
Imaging was carried out 7  days after immunization, when 
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efficient antigen-dependent priming is maintained and the 
antigen-dependent clustering of effector T cells is associated 
with their high capacity for proliferation. We found that the 
presence of exogenous adoptively transferred Treg cells increased 
the velocity and motility of antigen-specific T cells and reduced 
the contact time between T cells and DCs (41). Furthermore, 
Treg cells inhibited the clustering of T cells and suppressed T cell 
proliferation in vivo, preferentially affecting Th1 rather than Th17 
cell expansion during the late phase of the immune response 
(41). Previous studies have shown that the modulation of T cell 
proliferation by Treg cells depends on the strength of the antigenic 
stimulus, whereas the modulation of chemokine production in 
DCs by Treg cells does not (87). In this scenario, our data suggest 
that Treg cells may inhibit pro-inflammatory cytokine/chemokine 
production and secretion by DCs, which is responsible for T cell 
clustering and may efficiently inhibit weaker antigen-specific 
T cell activation 7 days after immunization during the late phase 
of the immune response in EAE (41).

The role of P-selectin glycoprotein ligand 1 (PSGL-1), a 
trafficking receptor for leukocytes during inflammation, is not 
restricted to its function as an adhesion molecule. Indeed, its role 
extends to the regulation of immune responses (41, 88). PSGL-1 is 
associated with a DC tolerogenic phenotype in mice, and PSGL-1 
deficiency has been correlated with increased T-cell proliferation 
and autoimmunity in several disease models including EAE, sug-
gesting a role for PSGL-1 in tolerogenic mechanisms (41, 89–92). 
To investigate the function of PSGL-1 in the amelioration of EAE 
by Treg cells, we recently used TPLSM to compare T cell dynamics 
in the presence of wild-type and PSGL-1 deficient Treg cells in the 
LNs of CD11c-YFP-immunized mice. We found that the transfer 
of exogenous wild-type Treg cells restored the motility of effector  
T cells by reducing the cell-cell contact time between effector  
T cells and DCs in immunological synapses during early-phase 
EAE (1  day after immunization) induced by MOG35–55. In this 
context, the presence of Treg cells lacking PSGL-1 increased the 
velocity of T cells to the same extent as wild-type Treg cells, con-
firming that PSGL-1 does not play any role during strong antigenic 
stimulation. At the later, preclinical phase of the disease (7 days 
after immunization) when the antigen-dependent activation of  
T cells declines but is still maintained in the LNs, Treg cells reduced 
the duration of contact between MOG35–55 T cells and DCs, as well 
as their spatial clustering. However, the presence of exogenous 
transplanted PSGL-1 deficient Treg cells was unable to inhibit the 
characteristic swarming into organized clusters and the resulting 
proliferation of MOG35–55 T effector cells (41). These data suggest 
that PSGL-1 is a key mediator of Treg-dependent suppression dur-
ing the later stages of preclinical EAE, when antigenic stimulation 
in the LNs appears to be less efficient (41). The molecular mecha-
nisms used by Treg cells to modulate later-phase immune responses 
are still unknown, but we propose that PSGL-1 expression on 
the surface of Treg cells could regulate DC activity by controlling 
contacts between the two cell types, as previously shown for 
LFA-1 (85). The molecular basis of such interactions may involve 
PSGL-1 on the surface of Treg cells binding to L-selectin on the 
surface of DCs, although mature DCs express such low levels of 
this molecule that alternative ligands are more likely (93). PSGL-1 
may also inhibit antigen-dependent chemokine secretion by DCs 

(80, 94). Therefore, the recruitment of inflammatory cells by LNs 
and the co-localization of antigen-bearing DCs with antigen-
specific T cells suggests that the regulation of interactions between 
Treg cells and DCs by PSGL-1 could modulate the local cytokine/
chemokine profile in the LNs by reducing the clustering and 
activation of antigen-specific T cells (80, 94). In addition, PSGL-1 
expressed on the surface of Treg cells may sequester chemokines, 
such as CCL19/CCL21, and thus prevent interactions between 
newly arrived CCR7+ T cells and APCs during EAE (95, 96).

Another aspect of tolerance induction during EAE that 
remains unclear is the requirement for antigen-specific Treg cells. 
The transfer of polyclonal Treg cells ameliorated EAE in one study 
(97), but conflicting results were produced in another (98). 
However, two independent TPLSM studies have demonstrated 
that polyclonal naïve Treg cells rapidly affect the motility of 
antigen-specific T cells, suggesting that antigenic specificity is not 
required by Treg cells to modulate the development of EAE in the 
secondary lymphoid organs (40, 41). These results are supported 
by studies suggesting that Treg cells may produce suppressive 
cytokines, thus overriding their antigen specificity (99, 100). Even 
so, studies in other experimental models support the need for 
antigen specificity, so further investigation is required to clarify 
whether antigen-specific suppression by Treg cells is required in 
the LNs during EAE (39, 101, 102).

THe DYNAMiCS OF T CeLL ACTivATiON 
iN THe SPiNAL CORD DURiNG eAe

In organ-specific autoimmune disease models, pathogenic auto-
reactive T cells are activated in the periphery of the lymphoid 
organs before entering the target organ. For example, in an intra-
venous injection model of transfer EAE, encephalitogenic T cells 
activated in vitro migrate into lymphoid organs before they cross 
the BBB and enter the CNS (103). The reactivation of primed 
CD4+ T cells in the CNS requires interactions with local APCs 
during the initiation of an inflammatory response (Figure 2). The 
behavior of autoreactive T cells was investigated in vitro for the 
first time using a combination of TPLSM and fluorescence video 
microscopy to study SC slices obtained at the onset of EAE in 
a rat model (55). The results showed that MBP-specific effector 
T cells move through the CNS with two distinct migratory pat-
terns: ~65% of the cells moved rapidly and randomly through 
the compact white and gray matter, whereas the remaining ~35% 
appeared tethered to a fixed point, suggesting the formation of 
immune synapses (55). Importantly, pretreatment of the SC tissue 
with neutralizing anti-MHC-II monoclonal antibodies signifi-
cantly reduced the number of arrested autoreactive T cells (55). In 
contrast to the MBP-specific T cells, OVA-specific T cells did not 
form synapse-like contacts in the SC in this model but invaded 
the CNS and moved rapidly through the tissue (55). More recent 
in vivo TPLS studies based on laminectomy in the lumbar SC of a 
rat EAE model were used to visualize T cells within the meningeal 
areas and the adjacent white matter. These studies revealed that an 
intravenous infusion of soluble MBP during the acute EAE phase 
caused rapid antigen uptake by APCs in the CNS, resulting in the 
deceleration of MBP-specific T cells, a higher frequency of T cell 
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FiGURe 2 | TPLSM imaging of autoreactive T cells interacting with 
perivascular MHC-ii+ APCs in the exposed spinal cord during eAe. 
TPLSM was performed in MHC-II-GFP transgenic mice to visualize 
perivascular APCs (green) in contact with autoreactive T cells (blue). In order 
to investigate the types of APCs that can establish contacts with T cells, 
perivascular phagocytes were identified by intrathecally infused Texas 
Red-tagged dextran in MHC-II-GFP transgenic mice. These cells were 
located strategically around vessels, monitoring the environment with their 
cellular processes and sharing some morphological features with DCs, and 
others with macrophages. The merge of Texas Red and GFP positive cells 
provided evidence that perivascular phagocytes are functional APCs, 
expressing MHC-II determinants. The figure is original. Scale bar = 50 micron.
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immobilization, a stronger activating state, and the enhanced 
production of inflammatory cytokines (56). In this EAE model, 
BBB leakage allowed the uptake of circulating antigen that was 
quickly processed by CNS cells expressing MHC-II, which were 
preferentially located in meningeal areas and in the vicinity of 
vessels, i.e., the regions mainly infiltrated by T cells. However, 
effector and resting memory T cells specific for the non-CNS 
antigen OVA were also recruited to EAE lesions and moved there 
without contacting APCs. As shown for the MPB-specific T cells, 
the OVA-specific T cells were activated and arrested following 
the intravenous infusion of OVA, which increased the severity 
of disease symptoms. This suggested that effector T cells home 
toward acute EAE lesions and can be reactivated locally by 
exogenous antigen regardless of the specificity of the intruding 
T cell population (56). Thus, non-CNS antigens leaking into the 
chronically inflamed CNS through the bloodstream may trigger 
relapses in MS (56).

The MHC-II+ APCs located in the CNS during EAE mainly 
comprise perivascular macrophages and DCs, which induce the 
local reactivation of primed myelin-reactive T cells resulting in 
CNS inflammation and EAE progression (Figure  2) (55, 58). 
Flow cytometry showed that the most rapidly labeled phagocytes 
(30 min after the administration of intravenous antigen during 
the acute phase of EAE) share characteristics with macrophages, 
which express high levels of CD45, suggesting that these cells 
originate from the blood and are not resident cells (56). Later, the 
proteolytic digestion of the fluorescent antigen was observed in 
monocytes/macrophages, microglial cells, and B cells, suggesting 
these cells are involved in antigen presentation during EAE (56). 
The quantification of cell types in SC homogenates from mouse 
EAE models has confirmed the presence of CD11c+ DCs in the 
CNS, which are similar in phenotype and genotype to splenic 

DCs (104, 105). CNS-derived DCs can induce the proliferation 
of MOG-specific T cells, suggesting their importance in antigen 
presentation during EAE (105). Near-infrared imaging of DC 
transmigration has confirmed that these APCs can also migrate 
from the periphery into the CNS during EAE, and that their 
migration correlates with the severity of inflammation (106).

Recently, TPLSM imaging allowed the visualization of dynamic 
contacts between T cells and perivascular phagocytes (57, 107, 
108). These results demonstrated that the leptomeninges and CSF 
are major routes for the migration of encephalitogenic T cells into 
the CNS during early phases of EAE in rats, and a site for T cell 
activation before the invasion of CNS parenchymal vessels (57, 
107, 108). These studies showed that intravenously administrated 
MBP-specific T cells arrested on the leptomeningeal vessels 
and crawled intravascularly, preferentially against the blood 
flow (57). Following extravasation, T cells continue to scan the 
abluminal vascular surface and the underlying pial membrane, 
encountering phagocytes that effectively present antigens. These 
contacts induce the effector T cells to produce pro-inflammatory 
mediators, trigger tissue invasion and promote the formation of 
inflammatory infiltrates (57). Other reports confirm that T cells 
become activated in the perivascular space, but not within the 
vascular lumen, although previous in vitro studies have shown 
that endothelial cells can present antigen to adherent myelin-
specific T cells (107, 109). In a MBP transfer EAE rat model, the 
comparison of highly immunogenic MBP-specific and modestly 
immunogenic MOG-specific T cells revealed that regardless of 
antigen specificity, the two cell types crawled with similar veloci-
ties in blood vessels (107). Once inside the CNS, the MBP-specific 
T cells moved within the leptomeningeal space with a lower 
velocity and mean square displacement than the MOG-specific 
T cells and had longer lasting contacts, whereas the MOG-specific 
T cells moved continuously in a straight line. However, activation 
signaling was not sufficient to completely arrest the highly immu-
nogenic myelin-specific T cells in the leptomeningeal space, sug-
gesting that contacts with APCs in the leptomeningeal area guide 
immigrant autoimmune T cells into the CNS parenchyma, rather 
than arresting them for extended periods of time (107). Before 
entering the CNS parenchyma, effector T cells traffic between the 
leptomeninges and CSF, with less adherent and activated T cells 
being flushed from the leptomeningeal network of collagen fibers 
by the CSF flow (108). TPLSM studies have shown that T cell 
adhesiveness to leptomeningeal structures is enforced by VLA-4 
and LFA-1 integrins, CCR5/CXCR3-dependent signaling, and the 
antigenic stimulation of T cells in contact with leptomeningeal 
macrophages (108). However, T cells from the CSF fully retained 
their encephalitogenic potential and were able to reattach to the 
leptomeninges and invade the parenchyma (108). Together, these 
studies show that leptomeninges represent a key checkpoint for 
T-cell infiltration into the CNS during autoimmune inflamma-
tion or immune surveillance (57, 58, 108, 110).

It is unclear whether FRC structures like those in the LNs 
are present in the CNS parenchyma, but activated T cells can 
move in a similar manner in the CNS and LNs, suggesting 
analogous stromal structures are present in the CNS (111). 
Accordingly, TPLSM analysis in an experimental model of 
toxoplasmic encephalitis indicated the presence of an analogous 
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FiGURe 3 | TPLSM imaging of the exposed spinal cord after MOG35–55 
immunization. TPLSM representative dynamics (yellow tracks) of 
autoreactive Th1 cells (red) injected into C57Bl/6 EAE mice in the absence 
(A) or presence (B) of exogenous transplanted Treg cells (blue). Spinal cord 
vessels (green) were labeled by the systemic injection of 525 nm non-
targeted quantum dots. All figures are original. Scale bar = 100 micron.
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reticular system associated with areas of parasite replication and 
local CNS inflammation, but not in normal brain tissues (111). 
CD4+ T-cell motility is actively promoted in the SC during EAE 
(112), and CD4+ T cells can gain access to CNS parenchyma 
and partially migrate along inflammation-induced extracellular 
matrix (ECM) structures, which are similar to those seen in 
LNs (112). These observations suggest that preexisting scaffolds 
guide lymphocyte migration in lymphoid tissues, but specialized 
structures are induced during CNS inflammation and guide T 
cell migration, potentially facilitating the screening of APCs and 
integrating relevant stimulatory, costimulatory, and regulatory 
signals (111–114).

The disease phase of effector T cell activation is crucial for 
the subsequent inflammatory process and the clinical disease 
(115). Using TPLSM, it was previously shown that the migration 
of myelin-specific T cells was mostly restricted to leptomeninges 
and perivascular areas during the preclinical phase and disease 
onset. However, during chronic phase of disease, T cells were 
spread throughout the white and gray matter (115). These studies 
have also shown that leptomeningeal phagocytes are responsible 
for the initial activation of encephalitogenic T cells in the CNS 
by mediating short cell–cell contacts with T cells (115). T cell 
activation process continues during disease progression and 
extends deeper in the CNS parenchyma through contacts with 
microglia and recruited phagocytes. However the initial activa-
tion during the preclinical phase of EAE seems to determine the 
clinical outcome of the autoimmune process (115). The visualiza-
tion of effector T cells in their natural environment could also 
represent a useful tool to investigate the functional mechanisms 
behind therapeutic approaches during EAE. Using TPSLM, it was 
previously shown that administration of soluble myelin peptides 
or soluble intact MBP protein during the preclinical phase of dis-
eases leads to a drastic reduction of antigen-specific T cell velocity 
in lymphoid peripheral organs (116). This efficiently prevented 
T cell migration into the CNS and abrogated CNS inflammation 
and disease development (116). In contrast, soluble antigen 
administration during established disease phase led to a strong 
aggravation of the clinical symptoms, increasing T cell activation 
and trafficking in the CNS (56).

TOLeROGeNiC DYNAMiCS iN THe 
SPiNAL CORD DURiNG eAe

The presence of Treg cells during early-phase autoimmune diseases 
increases the motility of antigen-specific T cells in the LNs and 
reduces their contact time with DCs in lymphoid organs, con-
tributing to the maintenance of self-tolerance (39–41). This view 
of preventive immune suppression in the LNs during EAE may 
be too simplistic because Treg cells have also been detected in the 
inflamed CNS, where they can modify the motility behavior of 
antigen-specific T cells and their reactivation inside the CNS 
(Figure  3) (36, 37). The trafficking of Treg cells to peripheral 
inflammation sites is necessary for their suppression of inflam-
mation (117). In actively and passively induced EAE models, the 
accumulation of Treg cells in the CNS correlates with restrained 
inflammation and recovery (36, 38). Also, Treg cells are enriched 

in the CSF of relapsing–remitting MS patients (118) suggesting 
they migrate to the inflamed CNS and are potentially responsible 
for immunosuppression also during human disease.

Two-photon laser scanning microscopy was recently com-
bined with the in vivo depletion of Treg cells in a mouse EAE model 
to investigate the function of these cells in the CNS during EAE 
(119). Effector T cells were shown to move in confined trajecto-
ries in the meningeal SC of Treg cell-depleted mice, with a reduced 
mean velocity and linearity index compared to the control non-
depleted animals. In parallel, the stationary phase of T effector 
cells was increased in the absence of Treg cells, indicating enhanced 
interactions with potential APCs within the inflamed SC during 
EAE associated with the increased capacity of T effector cells to 
proliferate in in the CNS. The suppression of T cell proliferation 
in the CNS of control mice with the normal complement of Treg 
cells was associated with lower levels of IFNγ but similar levels 
of IL-17 compared to Treg cell-depleted mice (119). These studies 
agree with previous data showing that CNS-derived Treg cells 
obtained during recovery suppress the in  vitro proliferation of 
CNS-derived T effector cells in response to antigen by limiting 
the activation of cells producing IFNγ but not those producing 
IL-17 (38). Furthermore, CNS-derived Treg cells fail to control 
pathogenic T cells at peak EAE due to the local presence of IL-6 
and TNF-α, potentially secreted by Th17 cells (37). Finally, the 
rapid progression of CNS autoimmunity can be prevented by 
Treg cells via their ability to suppress IFNγ-mediated immune 
responses (120). Collectively, these results suggest that Treg cells 
have a selective role at the site of CNS inflammation, depending 
on the local inflammatory setting, and the composition of the 
effector T cell population.

CONCLUSiON

TPLSM allows the visualization of cell motility and interaction 
dynamics in the immune system of living animals, revealing 
the behavior of effector T-cells in LNs and peripheral tissue 
sites during inflammation and autoimmunity. Efficient T cell 
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motility in the SC parenchyma is regulated by CNS resident 
cells and the ECM. Therefore, inhibiting the movement of effec-
tor T cells or their interactions with local APCs, or potentiating 
the activity of Treg cells in the CNS, may affect the development 
and progression of EAE/MS. The molecular mechanisms con-
trolling the intra-tissue motility of activated T cell subsets, such 
as Th17 and Th1 cells in the CNS, and their interactions with 
local APCs could help to identify new treatments, ultimately 
for intrathecal administration, to complement existing systemic 
therapies for neurodegenerative autoimmune diseases. TPLSM 
could also be used to determine the molecular mechanisms by 
which Treg cells regulate the immune response during EAE/MS, 
which is necessary to fully understand their role. Advanced 
imaging techniques will also help in the future to provide 
insights into the mechanisms controlling T cell activation dur-
ing different disease phases, such as the chronic phase, and may 
lead to the development of novel therapeutic strategies based 

on the inhibition of stage-specific mechanisms to delay the  
progression of the disease.
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