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Since their discovery, neutrophil extracellular traps (NETs) have been characterized as 
a fundamental host innate immune defense mechanism. Conversely, excessive NET-
release may have a variety of detrimental consequences for the host. A fine balance 
between NET formation and elimination is necessary to sustain a protective effect during 
an infectious challenge. Our own recently published data revealed that stabilization of 
hypoxia-inducible factor 1α (HIF-1α) by the iron chelating HIF-1α-agonist desferoxamine 
or AKB-4924 enhanced the release of phagocyte extracellular traps. Since HIF-1α is 
a global regulator of the cellular response to low oxygen, we hypothesized that NET 
formation may be similarly increased under low oxygen conditions. Hypoxia occurs 
in tissues during infection or inflammation, mostly due to overconsumption of oxygen 
by pathogens and recruited immune cells. Therefore, experiments were performed 
to characterize the formation of NETs under hypoxic oxygen conditions compared to 
normoxia. Human blood-derived neutrophils were isolated and incubated under normoxic 
(21%) oxygen level and compared to hypoxic (1%) conditions. Dissolved oxygen levels 
were monitored in the primary cell culture using a Fibox4-PSt3 measurement system. The 
formation of NETs was quantified by fluorescence microscopy in response to the known 
NET-inducer phorbol 12-myristate 13-acetate (PMA) or Staphylococcus (S.) aureus 
wild-type and a nuclease-deficient mutant. In contrast to our hypothesis, spontaneous 
NET formation of neutrophils incubated under hypoxia was distinctly reduced compared 
to control neutrophils incubated under normoxia. Furthermore, neutrophils incubated 
under hypoxia showed significantly reduced formation of NETs in response to PMA. 
Gene expression analysis revealed that mRNA level of hif-1α as well as hif-1α target 
genes was not altered. However, in good correlation to the decreased NET formation 
under hypoxia, the cholesterol content of the neutrophils was significantly increased 
under hypoxia. Interestingly, NET formation in response to viable S. aureus wild-type or 
nuclease-deficient strain was retained under hypoxia. Our results lead to the conclusion 
that hypoxia is not the ideal tool to analyze HIF-1α in neutrophils. However, the data 
clearly suggest that neutrophils react differently under hypoxia compared to normoxia 
and thereby highlight the importance of the usage of physiological relevant oxygen level 
when studying neutrophil functions.
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introdUCtion

Neutrophils belong to the first line of defense of the innate immune 
system against various pathogens including bacteria, fungi, and 
protozoa. Besides degranulation and the intracellular killing 
of pathogens, neutrophils are able to entrap and kill pathogens 
by the release of extracellular structures, so-called neutrophil 
extracellular traps (NETs) (1). NETs are formed upon activation 
in response to a wide range of stimuli, like interferon-α, inter-
leukin-8 (IL-8), the pharmacological agent phorbol 12-myristate 
13-acetate (PMA), as well as numerous microbes and their 
products [reviewed by von Köckritz-Blickwede and Nizet (2)]. 
The formation of NETs is characterized by the disruption of the 
nuclear membrane, chromatin decondensation, and the mixing 
of nuclear contents with cytoplasmic and granular proteins. As 
a final step, the nuclear and granular components are released 
into the extracellular space (3). The fibrous DNA functions as 
a backbone in which histones, proteases [e.g., myeloperoxidase 
(MPO) and elastase], and antimicrobial peptides (AMPs) (e.g., 
cathelicidins) reside mediating their antimicrobial activity (4). 
The transcriptional regulation and intracellular signaling path-
ways of NET generation has not yet been fully investigated.

Generation of reactive oxygen species (ROS) is a key event for 
NET formation, and NET-based antimicrobial activity crucially 
depends on the formation of ROS through the membrane-bound 
NADPH oxidase enzyme complex as well as MPO (3, 5–9). 
Consequently, the most frequently used pathway to induce NETs 
is triggered by PMA, a protein kinase C (PKC) activator (1, 
10, 11). That, in turn, activates the NADPH oxidase complex-
subunit p47Phox (12) and thus strongly supports its activation. 
The produced superoxide anions serve as a starting product for 
additional ROS (13). Blocking the NADPH oxidase inhibits ROS 
generation and NET-release, respectively (14).

The downstream effects of ROS are extremely broad and range 
from the induction of NF-κB signaling (15), to peroxidation of 
phospholipids (16), or activation of the cell death receptor (17). 
Another interesting target of ROS is the hypoxia-inducible factor 
1α (HIF-1α) (18).

HIF-1α was initially known to act as a transcriptional activator 
functioning as a master regulator of cellular and systemic oxygen 
homeostasis. Nowadays, HIF-1α was additionally shown to play 
a role in the production of defense factors and to improve the 
bactericidal activity of myeloid cells (19, 20). Peyssonnaux and 
colleagues demonstrated in 2005 for the first time that HIF-1α 
expression regulates the antibacterial capacity of phagocytes 
focusing on neutrophils and macrophages. HIF-1α was induced by 
different bacterial pathogens including Staphylococcus (S.) aureus 
and Streptococcus pyogenes, even under normal oxygen levels 
(normoxia), and regulated the production of key immune effector 
molecules. Although the full spectrum of HIF-1α downstream 
targets remains to be determined, the expression of a number 
of molecular effectors of host defense, including AMPs, TNF-α, 
and the granule proteases cathepsin G and elastase, significantly 
correlated with HIF-1α levels (19). Mice lacking HIF-1α in their 
myeloid cell lineage showed decreased bactericidal activity and 
were not able to restrict a systemic spread of an infection from 
its initial tissue (19).

It was already shown that HIF-1α is crucial in the forma-
tion of extracellular traps in mast cells [mast cell extracellular 
traps (MCETs)]. Augmentation of HIF-1α-activity resulted in 
a boosting of the antimicrobial activity of human and murine 
mast cells by inducing extracellular trap formation (21). At 
the same time, HIF-1α-deficient mast cells exhibited reduced 
antimicrobial activity and ability to form extracellular traps. 
Recently, it was reported that the mammalian target of rapamycin 
(mTOR), a highly conserved PI3K-like serine/threonine kinase 
and a posttranscriptional regulator of HIF-1α protein expres-
sion, regulates the formation of NETs (22). As mTOR kinase is 
known as a key regulator of autophagy in many mammalian 
cells including neutrophils, it is hypothesized that mTOR plays 
a regulatory role in NET-release by regulating autophagic activ-
ity (23). Interestingly, McInturff et  al. (22) also demonstrated 
that the iron chelating HIF-1α agonist cobalt chloride (CoCl2) 
triggered NET formation (22). Several authors discussed that 
the regulation of ROS generation could be a key factor in these 
HIF-1α- and mTOR-mediated processes (22–24). Our own data 
confirm the hypothesis that HIF-1α might be involved in the 
formation of NETs: the HIF-1α-agonist desferoxamine enhanced 
the release of extracellular traps in human and bovine neutrophils 
in a ROS-dependent manner (25).

Although the importance of HIF-1α in the formation of NETs 
has already been stated, the impact of hypoxia on NET generation 
still needs to be clarified. Hypoxia was found to be able to enhance 
bactericidal activities of human neutrophils, increase their 
chemotactic, phagocytic, and respiratory burst capacities, and 
protect them from apoptosis (19, 26–29). Based on the described 
literature it may be hypothesized that NET formation increases 
under low oxygen conditions similarly to that shown by HIF-1α 
stabilizing agents.

MateriaLs and MetHods

Bacterial strains
Staphylococcus aureus strain USA 300 wildtype (wt) (LAC AH 
1263) and its nuclease mutant (Δnuc) (LAC AH 1680) (30) were 
used in this study. S. aureus was grown in brain heart infusion 
(BHI) medium at 37°C with shaking. Fresh overnight cultures 
were diluted 1:100 in BHI and then grown to mid-exponential 
growth phase (OD600  =  0.7) until usage. Heat inactivation was 
performed for 30 min in 95°C hot water.

neutrophil isolation
Human blood-derived neutrophils were isolated from healthy 
donors in agreement with the local ethical board by density gradi-
ent centrifugation at 500 × g using PolymorphPrep (Axis-Shield, 
Oslo, Norway) as previously described (31). Then, neutrophils 
were resuspended in RPMI 1640 (PAA, Freiburg, Germany) and 
plated on poly-l-lysine (# P4707, Sigma-Aldrich) coated cover-
slips at a concentration of 2 × 105 cells/well in 48-well plates or 
5 × 105 cells/well in 24-well plates (Nunc, Germany).

oxygen Measurements
Oxygen measurements were performed as previously described 
(32) using a Fibox4-PSt3 measurement system in 24-well plates 
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taBLe 1 | oligonucleotide primers used in rt-qpCr.

Gene primer sequence (5′-3′) forward primer sequence (5′-3′) reverse amplicon length (bp)

rps9 CTGACGCTTGATGAGAAGGAC CTCATCCAGCACCCCAAT 87
hif-1α GATGGAAGCACTAGACAAAGTTCA ATCAGTGGTGGCAGTGGTAGTG 360
ll-37 GCCCAGGTCCTCAGCTACAAG TGGTTGAGGGTCACTGTCCCC 260
vegf ATGAACTTTCTGCTGTCTTGGGT TGGCCTTGGTGAGGTTTGATCC 344
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(Nunc, Germany). Importantly, oxygen was measured non-inva-
sively and was not consumed during the process of measurement. 
Freshly isolated neutrophils from human blood were adapted to 
hypoxia. Using optical sensors (placed on the bottom of the wells 
in the medium), the dissolved oxygen level in the cell culture 
media was measured based on the oxygen-dependent quenching 
of phosphorescent probes (32–34). Oxygen measurements were 
performed over a time period of 5 h while the cells were incubated 
under hypoxic (7 mmHg, 1% O2) or normoxic (159 mmHg, 21% 
O2) conditions, respectively.

net induction and Visualization
Neutrophils were preincubated under normoxic or hypoxic 
conditions for 2 h before they were subsequently infected with 
living or heat-inactivated bacteria (MOI 2) and incubated at 
37°C and 5% CO2 for 3 h under the respective oxygen condition. 
As a positive control to stimulate NET formation, 25 nM PMA 
(Sigma, Hamburg, Germany) was used, while untreated neutro-
phils served as a negative control. Neutrophils were treated with 
10 μg/ml diphenyleneiodonium (DPI) to block NADPH oxidase 
activity. Finally, cells were fixed with 4% paraformaldehyde (PFA; 
Roth, Germany).

Neutrophil extracellular traps were stained with an antibody 
against the histone–DNA complex (Millipore, mouse monoclo-
nal anti DNA/Histone1 MAB 3864). Briefly, after blocking and 
permeabilization [2% BSA PBS + 0.2% Triton X-100 for 45 min 
at room temperature (RT)], samples were incubated for 1 h at 
RT with the primary antibody (2.2  mg/ml, diluted 1:5000 in 
PBS containing 2% BSA, 0.2% Triton X-100). An Alexa Fluor 
488-conjugated goat anti-mouse antibody (Thermo Scientific; 
diluted 1:1000 in PBS containing 2% BSA, 0.2% Triton X-100) 
was used as a secondary antibody. Slides were embedded in 
ProlongGold® antifade with DAPI (P36931, Molecular Probes) 
and analyzed by confocal fluorescence microscopy using a Leica 
TCS SP5 confocal microscope with a HCX PL APO 40× 0.75–1.25 
oil immersion objective. Settings were adjusted in accordance 
to control preparations using the respective isotype control 
antibody. The total number of neutrophils and the number of 
neutrophils releasing NETs per field of view were counted in six 
representative images per sample.

Lipid isolation and analysis
A total of 5 × 106 neutrophils were incubated in a 1.5 ml reaction 
tube for 3  h at either 1 or 21% oxygen. Samples were washed 
twice with PBS, resuspended in chloroform–methanol (1:1), 
and lysed by passing cells through a 45  mm cannula syringe 
15 times. Subsequent lipid isolation was performed as previously 
described (35).

Cholesterol content was analyzed with a Hitachi Chromaster 
HPLC using a Chromolith® HighResolution RP-18 endcapped 
100–4.6  mm column coupled to a 5–4.6  mm guard cartridge 
and heated to 32°C. Methanol was used as the mobile phase at a 
flow rate of 1 ml/min at 22 bar, and a UV detector measuring at 
202 nm to determine the amount of cholesterol in each sample. 
The results were quantified against an external standard ranging 
from 0.05 to 2  mg/ml cholesterol and expressed as nanogram 
cholesterol per 1 × 106 neutrophils.

Triglycerides, free fatty acids, monoacylglycerols, and phos-
pholipids were analyzed by thin layer chromatography (TLC) 
based on a method described previously (35). Briefly, isolated 
lipid samples were loaded on silica gel plates (Merck, Germany) 
and separated based on polarity. Lipids were visualized by copper 
sulfate solution and the band intensities subsequently analyzed 
by CP Atlas (Lazer Software). Lipids were identified against a 
known standard. Each sample was analyzed in repetition.

rna expression analysis
RNA was extracted from 5  ×  105 neutrophils after incubation 
under normoxia or hypoxia for 2 or 3 h, with the RNeasy Micro 
Kit (Qiagen) as described in the user’s manual. RNA quality was 
tested with a bioanalyzer (RNA 6000 Pico Kit, Agilent) following 
the manufacturer’s instructions. Real-time PCR of reverse tran-
scribed RNA (RT-qPCR) was designed to analyze expression of 
genes of interest and the housekeeping gene rps9. The respective 
primers are given in Table  1. The RT-qPCR was conducted as 
previously described (36) with the following modified program: 
initial denaturation at 95°C for 20 min and 40 cycles of denatura-
tion at 95°C for 25 s, annealing at 58°C for 30 s, and amplification 
at 72°C for 20 s using an AriaMX Real-Time PCR system. Products 
were verified by melting curve analysis and 1.5% agarose gel 
electrophoresis. Data were normalized to a non-regulated house-
keeping gene (rps9). The relative ΔCT values were determined 
for expression of the genes hif-1α, ll-37, and vegf. CT is the cycle 
number at the chosen amplification threshold, ΔCT  =  CT gene 

(ll-37) − CT reference (rsp9) and ΔΔCT = ΔCT sample − ΔCT calibrator. The 
fold change in expression (2−ΔΔCT) was calculated as the read-out 
parameter. The calibrator was neutrophils under normoxia.

statistical analysis
All experiments were performed at least three independent times 
unless indicated otherwise. Data were analyzed using Excel 2010 
(Microsoft) and GraphPad Prism 6.0 (GraphPad Software). 
Differences between two or more groups were analyzed by using 
a two-way ANOVA with Sidak’s multiple comparisons test if not 
otherwise stated. The significance is indicated as follows: n.s., not 
significant, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, and ****p < 0.0001.
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FiGUre 1 | oxygen levels in neutrophil suspension cultures. 
Neutrophils were incubated under normoxia (21%) or hypoxia (1%). Dissolved 
oxygen levels in neutrophil suspension culture were monitored for 5 h. Plotted 
values represent mean ± SEM and are displayed as % oxygen on the left 
y-axis and mmHg oxygen on the right y-axis. Starting at 21.5 ± 0.14% 
(normoxia) and 21.5 ± 0.21% (hypoxia) after 5 h, the oxygen level dropped to 
1.79 ± 0.03% under hypoxia, while it stayed relatively constant around 
22.3 ± 0.46% under normoxia.
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resULts and disCUssion

Low oxygen Levels in In Vitro neutrophil 
suspension Culture
At sites of infection and inflammation, the environmental oxygen 
concentration decreases and can drop to 1% due to invading 
pathogens and translocating immune cells, including neutro-
phils, with consequences for cellular functions (34, 37–39). To 
study the effect of hypoxia, freshly isolated human neutrophils 
were seeded and incubated under normoxic compared to 1% 
hypoxic conditions, and the oxygen level in the wells was meas-
ured over a time period of 5 h as described above. When cultured 
under normoxia, the neutrophil cultures maintained a constant 
oxygen level that reflected the atmospheric condition at around 
165 mmHg (22.3 ± 0.46% O2). In contrast, hypoxic incubation 
decreased the dissolved oxygen level in the culture to less than 
37  mmHg (4.9  ±  0.2% O2) within 45  min and resulted in an 
equilibration lower than 13.3 mmHg (1.79 ± 0.03% O2) within 
5 h (Figure 1). Our results indicate that the applied experimental 
settings by incubating neutrophils under hypoxia decrease the 
oxygen level and reflect physiological oxygen conditions that may 
occur in infected tissue.

spontaneous and pMa-induced net 
Formation under Hypoxia Compared to 
normoxia
To study the effect of hypoxia on the spontaneous and PMA-
induced NET formation, neutrophils were preincubated for 2 h 
at the defined oxygen concentration (normoxia and hypoxia, as 
shown in Figure 1). After an additional 3 h of incubation in the 

presence or absence of PMA, the neutrophils were analyzed for 
their NET-releasing capability.

An amount of 11.6  ±  1.0% of untreated neutrophils 
sponta neously formed NETs under normoxia (Figure  2). 
Interest ingly,  incubation under hypoxia distinctly reduced the 
number of spontaneously NET forming neutrophils to 7.1 ± 0.7% 
(Figures 2A,B).

However, as previously published (1, 3) and confirmed here 
(Figure  2), approximately 90% of cells were found to release 
NETs after incubation at an atmospheric oxygen concentra-
tion in response to PMA. Importantly, hypoxic pretreatment 
of neutrophils completely abolished the PMA-induced NET 
formation seen at normoxic conditions (Figure  2). It is well 
known, that the PMA-dependent NET formation is based on 
the generation of ROS (1, 7). In good correlation to these find-
ings, Kirchner et al. (40) recently confirmed that the formation 
of ROS is blocked at 2% O2 and also leads to an abrogated 
NET-release. Furthermore, a broad spectrum of antioxidative 
substances such as flavonoids, vitamin C, and aminosalicylic 
acid were also shown to inhibit NET formation through the 
reduction of ROS (41).

Gene expression of hif-1α and 
target Genes
As already mentioned in the Section “Introduction,” HIF-1α is 
an essential regulator to modulate cellular stress responses to 
low oxygen conditions and also has been shown to modulate the 
formation of NETs (22, 25). Therefore, the mRNA expression of 
this transcription factor as well as two of its target genes (vegf 
and ll-37) (42–44) were investigated in neutrophils incubated 
under normoxia versus 1% hypoxia with RT-qPCR.

As depicted in Figure 3, the expression level of hif-1α or its 
target genes did not change neither after 2  h (Figure  3A) nor 
after 3  h (Figure  3B) incubation under hypoxia compared to 
normoxia. All ΔΔCT values remained around 1 meaning that 
there were no differences in the gene expression levels of the neu-
trophils that were cultivated under normal oxygen level in com-
parison to those cultivated under low oxygen levels. Therefore, 
short-time treatment at 1% hypoxia for 2 or 3  h might not be 
the optimal model to study the HIF-1α-dependent response of 
neutrophils. Moreover, HIF-1α might not be responsible for the 
altered NET-phenotype under hypoxia shown in Figures 2A,B. 
It seems that neutrophils need an additional trigger to induce 
the expression of hif-1α as hypoxia alone does not alter the 
expression level under the selected conditions (Figures  3A,B). 
In good correlation to our RT-qPCR results, Kirchner et al. (41, 
40) also exhibited that hypoxia alone did not stabilize HIF-1α 
protein level. Interestingly, those authors demonstrated that 
HIF-1α is stabilized under hypoxia as wells as under normoxia 
by stimulating neutrophils with PMA (41).

Lipid alterations
Previous data revealed that lipid alterations modulate the forma-
tion of NETs (45): decreased level of cholesterol mediated by 
methyl-β-cyclodextrin in primary blood-derived neutrophils 
led to increased spontaneous NET formation. Furthermore, 
pharmacological treatment of neutrophils with statins that 
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FiGUre 2 | spontaneous and pMa-induced net-release is decreased under hypoxia. Neutrophils were incubated for 2 h under normoxia or hypoxia before 
treatment with 25 nM PMA for additional 3 h. Formation of NETs was visualized using a monoclonal antibody against histone–DNA complexes (green) in combination 
with DAPI to stain the nuclei (blue). (a) Under normoxia NET-release was stimulated with PMA in 87.7 ± 1.8% of the cells, while 11.6 ± 1.0% of the neutrophils 
formed NETs spontaneously. Incubation under hypoxia decreased the spontaneous NET-release to 7.1 ± 0.7% and abrogates the PMA-stimulatory effect to a rate 
of 8.8 ± 1.7%. (B) Representative fluorescence micrographs depicting NET-release of neutrophils. Statistical analysis of was performed with one-tailed paired 
Student’s t-test.

FiGUre 3 | Gene expression of hif-1α and target genes. Neutrophils were incubated under normoxia or hypoxia for 2 h (a) and 3 h (B) before RNA was 
isolated and gene expression of hif-1α and its target genes vegf and ll-37 was analyzed by RT-qPCR. Data were normalized to the non-regulated housekeeping 
gene rps9. The x-fold changes of the values from samples incubated under hypoxia were calculated against the normoxic samples. Independent of the time point, 
there was neither a regulation of hif-1α nor of its target genes vegf and ll-37 detectable, as all ΔΔCTs remain below 2 [hif-1α: 1.19 ± 0.3 (2 h) and 0.1 ± 0.5 (3 h); 
vegf: 0.87 ± 0.4 (2 h) and 0.9 ± 0.1 (3 h); ll-37: 1.25 ± 0.5 (2 h) and 1.0 ± 0.1 (3 h)].
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block cholesterol synthesis also induce formation of NETs 
(46). Therefore, we here compared the lipid composition of the 
neutrophils when incubated under normoxia versus hypoxia by 
TLC. The data shown in Figure 4A demonstrate substantial lipid 
alterations comparing hypoxic and normoxic conditions, e.g., 
cholesterol. To verify the results, HPLC was used to quantify the 
cholesterol level in the cells. In good correlation to these data, 
a significant higher cholesterol level was found in cells after 
incubation under hypoxia compared to normoxia (Figure  4B) 

at the same time when decreased spontaneous NET formation 
was detectable in control cells (Figures 2A,B). Thus, it may be 
speculated that hypoxia-mediated changes in lipid content, e.g., 
cholesterol accumulation in the cell may contribute to altered 
spontaneous NET formation under hypoxia.

S. aureus-induced net Formation
Even though the RT-qPCR results reveal no exclusive link of HIF-
1α to hypoxia, our data are consistent: the absence of sufficient 
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FiGUre 4 | the cellular cholesterol content increased under hypoxia. Neutrophils were incubated in either 1 or 21% oxygen, and their lipid composition was 
analyzed by TLC (a): triglycerides (TG), free fatty acids (FFA), cholesterol (chol), monoacylglycerols (MG), unknown (UN), phosphatidylethanolamine (PE), 
phosphatidylinositol (PI), phosphoserine (PS), phosphatidylcholine (PC), and sphingomyelin (SM). Furthermore, cholesterol content was analyzed via HPLC (B). 
Results are expressed as nanogram cholesterol per 1 × 106 neutrophils. A significant higher cellular cholesterol level was detectable after incubation under hypoxia 
compared to normoxia. Statistical analysis was performed with one-tailed paired Student’s t-test.
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oxygen combined with the lack of HIF-1α signaling and increased 
cholesterol level hamper the formation of extracellular traps in 
neutrophils.

Nevertheless, we were interested if a bacterial stimulus could 
affect NET-release even under the above described condition. 
Therefore, it was of special interest to analyze the S. aureus-induced 
NET formation at low oxygen levels in more detail. The S. aureus 
wt strain and its nuclease-deficient Δnuc mutant were used in 
parallel, since the Δnuc mutant enables better visualization of 
full length NETs, which are not shortened by S. aureus nuclease. 
However, both strains are known to induce NET formation at 
similar level (30). Similar to the PMA-stimulated approach, neu-
trophils were incubated under hypoxia or normoxia for 2 h before 
bacteria were added, and the cells were further cocultivated with 
S. aureus for 3 h under consistent oxygen conditions.

Interestingly, the amount of NET-releasing cells was not 
abrogated in the absence of O2: living bacteria induced compa-
rable amounts of NET-releasing cells under normoxia as well as 
under hypoxia (Figure 5A: S. aureus wt: 33.9 ± 10.8% normoxia 
compared to 36.6 ±  8.0% hypoxia; Figure 5B: S. aureus Δnuc: 
43.6  ±  4.96% normoxia compared to 43.6  ±  12.3% hypoxia). 
These results confirm the existing literature and emphasize that 
living S. aureus have the capacity to stimulate NET formation 
independent of oxygen concentration (47, 48). In contrast to 
viable S. aureus, h.i. S. aureus was no longer able to induce NET 
formation under hypoxia with the same efficiency compared to 
normoxia, indicating a different oxygen-dependent mechanism 
triggered by dead S. aureus (Figure 5C: 31.8 ± 4.3% normoxia 
compared to 20 ± 2.8% hypoxia).

So far, different bacterial factors that are released by viable 
bacteria have been described to trigger the formation of NETs in 
response to S. aureus infections: the N-terminal ArgD peptides 
(49), leukotoxin GH (47), and Panton–Valentin leukocidin (PVL) 
(48). Importantly, those exotoxins trigger formation of NETs 
by completely different mechanisms. The PVL-mediated NET 
formation is described as a vesicular release of nuclear DNA by 

a mechanism independent of NADPH oxidase. In contrast, the 
leukotoxin GH and ArgD peptides-mediated NET formation is 
associated with cytolysis (no vesicular release of nuclear DNA), 
which is in accordance with the initial data from Fuchs et al. (3), 
who described the NADPH-oxidase-dependent formation of 
NETs in response to S. aureus as a novel cell death later called 
“NETosis” (50).

To further characterize the role of NADPH oxidase-mediated 
production of ROS in the S. aureus-mediated NET formation 
under 1% oxygen, we treated neutrophils with DPI to block 
NADPH oxidase. As shown in Figure  5D, treatment of neu-
trophils with DPI significantly decreased the S. aureus Δnuc-
mediated formation of NETs under hypoxia and normoxia as 
also previously shown by Fuchs et al. (3) under normoxia. These 
data indicate that under hypoxic as well as normoxic conditions, 
NADPH oxidase contribute to the formation of NETs in response 
to S. aureus. Since residual NET formation is still detectable in 
the presence of DPI (Figure 5D), additional pathways might also 
contribute to the phenotype as described by Pilsczek et al. (48). 
Under consideration of the lipid data shown in Figure 4, it might 
also be speculated that lipid alterations found under hypoxia lead 
to altered susceptibility of the neutrophil to bacterial exotoxins 
and/or oxidative stress as also shown by Chow et  al. (46), and 
that these cellular changes modulate the neutrophil ability to 
release NETs. However, further studies are needed to prove this 
hypothesis.

Interestingly, our data obtained from the PMA- or S. aureus-
stimulated neutrophils revealed a highly specific response, 
namely a characteristic NET formation level, to a distinct 
stimulus under various oxygen conditions. Whereas the NET 
formation mediated by viable S. aureus remains preserved under 
hypoxia (Figures 5A,B), the NET formation in response to PMA 
(Figures 1 and 5D) or dead S. aureus (Figure 5C) is reduced under 
hypoxia. However, the data shown here highlight that neutrophils 
can react completely different to the same trigger under hypoxia 
compared to normoxia. Since neutrophils are prominent immune 
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cells found in inflamed tissue associated with low oxygen levels, 
hypoxia mimics the physiologic situation during an inflamma-
tion or infection much more accurately (34, 51). The described 
model should therefore be preferably used instead of the standard 
in vitro models, including the standardized NET induction assay, 
which are performed under normoxic conditions. Finally, in light 
of these results it should also be discussed if data obtained from 
studies performed under normoxia are really physiologically 
relevant. This is especially interesting since the formation of NETs 
was also implicated in the development of tumor-related diseases 
(52). Recently, Tohme et al. showed that NETs promote the devel-
opment and progression of liver metastases after surgical stress. 
Importantly, in growing metastatic tumors, the authors found that 
intratumoral hypoxia accentuated NET formation (53). In line of 
this study, Alfaro et al. (54) demonstrated that tumor-produced 
IL-8 leads to extrusion of NETs in human myeloid-derived sup-
pressor cells, which are considered an important T-cell immuno-
suppressive component in cancer-bearing hosts (54). Based on 
these data, it may be suggested that the elimination of NETs or 
pharmacological blocking of NET formation may reduce risks of 
tumor relapse. Thus, for a better understanding of the neutrophil 

biology as a target for new therapeutic interventions it is urgently 
needed to study its activity under specific physiological relevant 
oxygen conditions.

etHiCs stateMent

This study was carried out in accordance with the recom-
mendations of the Medizinische Hochschule Hannover Ethics 
Committee (Ethics Statement No. 3295-2016).

aUtHor ContriBUtions

MK-B, LV, and HN: conceived and designed the experiments; LV, 
KB-H, DH, NB, SB, FR, and GB: performed the experiments; LV, 
MK-B, KB-H, NB, and GB: analyzed the data; HM, KB-H, and 
MK-B: wrote the paper.

FUndinG

This work was supported by the grant KO 3552/4-1 (German 
Research Council).

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


8

Branitzki-Heinemann et al. NET Formation under Hypoxia

Frontiers in Immunology | www.frontiersin.org November 2016 | Volume 7 | Article 518

reFerenCes

1. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, 
et al. Neutrophil extracellular traps kill bacteria. Science (2004) 303:1532–5. 
doi:10.1126/science.1092385 

2. von Köckritz-Blickwede M, Nizet V. Innate immunity turned inside-out: anti-
microbial defense by phagocyte extracellular traps. J Mol Med (Berl) (2009) 
87(8):775–83. doi:10.1007/s00109-009-0481-0 

3. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel 
cell death program leads to neutrophil extracellular traps. J Cell Biol (2007) 
176:231–41. doi:10.1083/jcb.200606027 

4. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elas-
tase and myeloperoxidase regulate the formation of neutrophil extracellular 
traps. J Cell Biol (2010) 191(3):677–91. doi:10.1083/jcb.201006052 

5. Yost CC, Cody MJ, Harris ES, Thornton NL, McInturff AM, Martinez ML, 
et al. Impaired neutrophil extracellular trap (NET) formation: a novel innate 
immune deficiency of human neonates. Blood (2009) 113(25):6419–27. 
doi:10.1182/blood-2008-07-171629 

6. Nishinaka Y, Arai T, Adachi S, Takaori-Kondo A, Yamashita K. Singlet oxygen 
is essential for neutrophil extracellular trap formation. Biochem Biophys Res 
Commun (2011) 413(1):75–9. doi:10.1016/j.bbrc.2011.08.052 

7. Kirchner T, Möller S, Klinger M, Solbach W, Laskay T, Behnen M. The impact 
of various reactive oxygen species on the formation of neutrophil extracellular 
traps. Mediators Inflamm (2012) 2012:849136. doi:10.1155/2012/849136 

8. Metzler KD, Goosmann C, Lubojemska A, Zychlinsky A, Papayannopoulos 
V. A myeloperoxidase-containing complex regulates neutrophil elastase 
release and actin dynamics during NETosis. Cell Rep (2014) 8(3):883–96. 
doi:10.1016/j.celrep.2014.06.044 

9. Stoiber W, Obermayer A, Steinbacher P, Krautgartner WD. The role of reactive 
oxygen species (ROS) in the formation of extracellular traps (ETs) in humans. 
Biomolecules (2015) 5(2):702–23. doi:10.3390/biom5020702 

10. Tahara E, Kadara H, Lacroix L, Lotan D, Lotan R. Activation of protein 
kinase C by phorbol 12-myristate 13-acetate suppresses the growth of lung 
cancer cells through KLF6 induction. Cancer Biol Ther (2009) 8(9):801–7. 
doi:10.4161/cbt.8.9.8186

11. Bylund J, Brown KL, Movitz C, Dahlgren C, Karlsson A. Intracellular 
generation of superoxide by the phagocyte NADPH oxidase: How, where, 
and what for? Free Radic Biol Med (2010) 49:1834–45. doi:10.1016/ 
j.freeradbiomed.2010.09.016

12. El Benna J, Faust RP, Johnson JL, Babior BM. Phosphorylation of the respiratory 
burst oxidase subunit p47phox as determined by two-dimensional phospho-
peptide mapping. Phosphorylation by protein kinase C, protein kinase A, 
and a mitogen-activated protein kinase. J Biol Chem (1996) 271(11):6374–8. 
doi:10.1074/jbc.271.11.6374

13. Dekker LV, Leitges M, Altschuler G, Mistry N, McDermott A, Roses J, et al. 
Protein kinase C-beta contributes to NADPH oxidase activation in neutro-
phils. Biochem J (2000) 347(Pt 1):285–9.

14. Hakkim A, Fuchs TA, Martinez NE, Hess S, Prinz H, Zychlinsky A, et  al. 
Activation of the Raf-MEK-ERK pathway is required for neutrophil extracel-
lular trap formation. Nat Chem Biol (2011) 7:75–7. doi:10.1038/nchembio.496 

15. Mendes AF, Carvalho AP, Caramona MM, Lopes MC. Diphenyleneiodonium 
inhibits NF-kappaB activation and iNOS expression induced by IL-1beta: 
involvement of reactive oxygen species. Mediators Inflamm (2001) 10(4):209– 
15. doi:10.1080/09629350120080401 

16. Arroyo A, Modrianský M, Serinkan FB, Bello RI, Matsura T, Jiang J, et  al. 
NADPH oxidase-dependent oxidation and externalization of phosphatidylser-
ine during apoptosis in Me2SO-differentiated HL-60 ells: role in phagocytic 
clearance. J Biol Chem (2002) 277:49965. doi:10.1074/jbc.M204513200 

17. Scheel-Toellner D, Wang K, Craddock R, Webb PR, McGettrick HM, 
Assi LK, et al. Reactive oxygen species limit neutrophil life span by activat-
ing death receptor signaling. Blood (2004) 104(8):2557–64. doi:10.1182/
blood-2004-01-0191 

18. Galanis A, Pappa A, Giannakakis A, Lanitis E, Dangaj D, Sandaltzopoulos R. 
Reactive oxygen species and HIF-1 signalling in cancer. Cancer Lett (2008) 
266(1):12–20. doi:10.1016/j.canlet.2008.02.028 

19. Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, Gallo RL. 
HIF-1α expression regulates the bactericidal capacity of phagocytes. J Clin 
Invest (2005) 115(7):1806–15. doi:10.1172/JCI23865 

20. Zinkernagel AS, Johnson RS, Nizet V. Hypoxia inducible factor (HIF) function 
in innate immunity and infection. J Mol Med (Berl) (2007) 85(12):1339–46. 
doi:10.1007/s00109-007-0282-2 

21. Branitzki-Heinemann K, Okumura CY, Völlger L, Kawakami Y, Kawakami T, 
Naim HY, et al. Novel role of the transcription factor HIF-1α in the formation 
of mast cell extracellular traps. Biochem J (2012) 446(1):159–63. doi:10.1042/
BJ20120658 

22. McInturff AM, Cody MJ, Elliott EA, Glenn JW, Rowley JW, Rondina MT, 
et  al. Mammalian target of rapamycin regulates neutrophil extracellular 
trap formation via induction of hypoxia-inducible factor 1 α. Blood (2012) 
120(15):3118–25. doi:10.1182/blood-2012-01-405993 

23. Itakura A, McCarty OJ. Pivotal role for the mTOR pathway in the formation 
of neutrophil extracellular traps via regulation of autophagy. Am J Physiol Cell 
Physiol (2013) 305(3):C348–54. doi:10.1152/ajpcell.00108.2013 

24. Hervouet E, Cízková A, Demont J, Vojtísková A, Pecina P, Franssen-van 
Hal NL, et al. HIF and reactive oxygen species regulate oxidative phosphor-
ylation in cancer. Carcinogenesis (2008) 29(8):1528–37. doi:10.1093/carcin/ 
bgn125 

25. VÖllger L, Akong-Moore KA, Cox L, Goldmann O, Wang Y, Schäfer S, et al. 
Iron chelating agent desferrioxamine stimulates formation of neutrophil 
extracellular traps (NETs) in human blood-derived neutrophils. Biosci Rep 
(2016) 36:e00333. doi:10.1042/BSR20160031 

26. Mecklenburgh KI, Walmsley SR, Cowburn AS, Wiesener M, Reed BJ, 
Upton PD, et al. Involvement of a ferroprotein sensor in hypoxia-mediated 
inhibition of neutrophil apoptosis. Blood (2002) 100(8):3008–16. doi:10.1182/
blood-2002-02-0454 

27. Walmsley SR, Cowburn AS, Clatworthy MR, Morrell NW, Roper EC, 
Singleton  V, et  al. Neutrophils from patients with heterozygous germline 
mutations in the von Hippel Lindau protein (pVHL) display delayed apop-
tosis and enhanced bacterial phagocytosis. Blood (2006) 108(9):3176–8. 
doi:10.1182/blood-2006-04-018796 

28. Wang JS, Liu HC. Systemic hypoxia enhances bactericidal activities of human 
polymorphonuclear leuocytes. Clin Sci (2009) 116(11):805–17. doi:10.1042/
CS20080224 

29. Wang JS, Chiu YT. Systemic hypoxia enhances exercise-mediated bactericidal 
and subsequent apoptotic responses in human neutrophils. J Appl Physiol 
(2009) 107(4):1213–22. doi:10.1152/japplphysiol.00316.2009 

30. Berends ET, Horswill AR, Haste NM, Monestier M, Nizet V, von Köckritz-
Blickwede M. Nuclease expression by Staphylococcus aureus facilitates 
escape from neutrophil extracellular traps. J Innate Immun (2010) 6:576–86. 
doi:10.1159/000319909 

31. von Köckritz-Blickwede M, Chow O, Ghochani M, Nizet V. Visualization 
and functional evaluation of phagocyte extracellular traps. Method Microbiol 
(2010) 37:139–60. doi:10.1016/S0580-9517(10)37007-3

32. Zeitouni NE, Fandrey J, Naim HY, von Köckritz-Blickwede M. Measuring 
oxygen levels in Caco-2 cultures. Hypoxia (2015) 3:53–66. doi:10.2147/
HP.S85625

33. Vanderkooi JM, Maniara G, Green TJ, Wilson DF. An optical method for 
measurement of dioxygen concentration based upon quenching of phospho-
rescence. J Biol Chem (1987) 262(12):5476–82. 

34. Carreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C. Why 
is the partial oxygen pressure of human tissues a crucial parameter? 
Small molecules and hypoxia. J Cell Mol Med (2011) 15(6):1239–53. 
doi:10.1111/j.1582-4934.2011.01258.x 

35. Brogden G, Propsting M, Adamek M, Naim HY, Steinhagen D. Isolation 
and analysis of membrane lipids and lipid rafts in common carp (Cyprinus 
carpio  L.). Comp Biochem Physiol B Biochem Mol Biol (2014) 169:9–15. 
doi:10.1016/j.cbpb.2013.12.001 

36. Willenborg J, Fulde M, de Greeff A, Rohde M, Smith HE, Valentin-
Weigand  P,  et  al. Role of glucose and CcpA in capsule expression and 
virulence  of Streptococcus suis. Microbiology (2011) 157(Pt 6):1823–33. 
doi:10.1099/mic.0.046417-0 

37. Melican K, Boekel J, Månsson LE, Sandoval RM, Tanner GA, Källskog O, 
et  al. Bacterial infection-mediated mucosal signalling induces local renal 
ischaemia as a defence against sepsis. Cell Microbiol (2008) 10(10):1987–98. 
doi:10.1111/j.1462-5822.2008.01182.x 

38. Campbell EL, Bruyninckx WJ, Kelly CJ, Glover LE, McNamee EN, Bowers BE, 
et  al. Transmigrating neutrophils shape the mucosal microenvironment 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1126/science.1092385
https://doi.org/10.1007/s00109-009-0481-0
https://doi.org/10.1083/jcb.200606027
https://doi.org/10.1083/jcb.201006052
https://doi.org/10.1182/blood-2008-07-171629
https://doi.org/10.1016/j.bbrc.2011.08.052
https://doi.org/10.1155/2012/849136
https://doi.org/10.1016/j.celrep.2014.06.044
https://doi.org/10.3390/biom5020702
https://doi.org/10.4161/cbt.8.9.8186
https://doi.org/10.1016/j.freeradbiomed.2010.09.016
https://doi.org/10.1016/j.freeradbiomed.2010.09.016
https://doi.org/10.1074/jbc.271.11.6374
https://doi.org/10.1038/nchembio.496
https://doi.org/10.1080/09629350120080401
https://doi.org/10.1074/jbc.M204513200
https://doi.org/10.1182/blood-2004-01-0191
https://doi.org/10.1182/blood-2004-01-0191
https://doi.org/10.1016/j.canlet.2008.02.028
https://doi.org/10.1172/JCI23865
https://doi.org/10.1007/s00109-007-0282-2
https://doi.org/10.1042/BJ20120658
https://doi.org/10.1042/BJ20120658
https://doi.org/10.1182/blood-2012-01-405993
https://doi.org/10.1152/ajpcell.00108.2013
https://doi.org/10.1093/carcin/bgn125
https://doi.org/10.1093/carcin/bgn125
https://doi.org/10.1042/BSR20160031
https://doi.org/10.1182/blood-2002-02-0454
https://doi.org/10.1182/blood-2002-02-0454
https://doi.org/10.1182/blood-2006-04-018796
https://doi.org/10.1042/CS20080224
https://doi.org/10.1042/CS20080224
https://doi.org/10.1152/japplphysiol.00316.2009
https://doi.org/10.1159/000319909
https://doi.org/10.1016/S0580-9517(10)37007-3
https://doi.org/10.2147/HP.S85625
https://doi.org/10.2147/HP.S85625
https://doi.org/10.1111/j.1582-4934.2011.01258.x
https://doi.org/10.1016/j.cbpb.2013.12.001
https://doi.org/10.1099/mic.0.046417-0
https://doi.org/10.1111/j.1462-5822.2008.01182.x


9

Branitzki-Heinemann et al. NET Formation under Hypoxia

Frontiers in Immunology | www.frontiersin.org November 2016 | Volume 7 | Article 518

through localized oxygen depletion to influence resolution of inflammation. 
Immunity (2014) 40(1):66–77. doi:10.1016/j.immuni.2013.11.020 

39. Schaffer K, Taylor CT. The impact of hypoxia on bacterial infection. FEBS J 
(2015) 282(12):2260–6. doi:10.1111/febs.13270 

40. Kirchner T. Die Bedeutung reaktiver Sauerstoffspezies für die Bildung von 
Neutrophil Extracellular Traps (NETs). [Dissertation/Doctoral Thesis]. Lübeck: 
Universität zu Lübeck (2013). Available from: https://www.deutsche-digi-
tale-bibliothek.de/binary/2OGR5WY6BE3IKL3CQ65IEVHB4STUJX5O/
full/1.pdf

41. Kirchner T, Hermann E, Möller S, Klinger M, Solbach W, Laskay T, et  al. 
Flavonoids and 5-aminosalicylic acid inhibit the formation of neutrophil 
extracellular traps. Mediators Inflamm (2013) 2013:710239. doi:10.1155/ 
2013/710239 

42. Liu Y, Cox SR, Morita T, Kourembanas S. Hypoxia regulates vascular endo-
thelial growth factor gene expression in endothelial cells. Identification of a 5′ 
enhancer. Circ Res (1995) 77:638–43. 

43. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, et al. Activation 
of vascular endothelial growth factor gene transcription by hypoxia-inducible 
factor 1. Mol Cell Biol (1996) 16:4604–13. doi:10.1128/MCB.16.9.4604 

44. Peyssonnaux C, Boutin AT, Zinkernagel AS, Datta V, Nizet V, Johnson RS. 
Critical role of HIF-1α in keratinocyte defense against bacterial infection. 
J Invest Dermatol (2008) 128(8):1964–8. doi:10.1038/jid.2008.27 

45. Neumann A, Brogden G, Jerjomiceva N, Brodesser S, Naim HY, von 
Köckritz-Blickwede M. Lipid alterations in human blood-derived neutrophils 
lead to formation of neutrophil extracellular traps. Eur J Cell Biol (2014) 
93(8–9):347–54. doi:10.1016/j.ejcb.2014.07.005 

46. Chow OA, von Köckritz-Blickwede M, Bright AT, Hensler ME, Zinkernagel AS, 
Cogen AL, et al. Statins enhance formation of phagocyte extracellular traps. 
Cell Host Microbe (2010) 8(5):445–54. doi:10.1016/j.chom.2010.10.005 

47. Malachowa N, Kobayashi SD, Freedman B, Dorward DW, DeLeo FR. 
Staphylococcus aureus leukotoxin GH promotes formation of neutrophil 
extracellular traps. J Immunol (2013) 15:6022–9. doi:10.4049/jimmunol. 
1301821 

48. Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, et  al. 
A novel mechanism of rapid nuclear neutrophil extracellular trap formation 

in response to Staphylococcus aureus. J Immunol (2010) 185(12):7413–25. 
doi:10.4049/jimmunol.1000675 

49. Gonzalez DJ, Corriden R, Akong-Moore K, Olson J, Dorrestein PC, Nizet V. 
N-terminal ArgD peptides from the classical Staphylococcus aureus Agr system 
have cytotoxic and proinflammatory activities. Chem Biol (2014) 21:1457–62. 
doi:10.1016/j.chembiol.2014.09.015 

50. Steinberg BE, Grinstein S. Unconventional roles of the NADPH oxidase: 
signaling, ion homeostasis, and cell death. Sci STKE (2007) 379:pe11. 
doi:10.1126/stke.3792007pe11

51. Zeitouni NE, Dersch P, Naim HY, von Köckritz-Blickwede M. Hypoxia 
decreases invasin-mediated Yersinia enterocolitica internalization into Caco-2 
cells. PLoS One (2016) 11(1):e0146103. doi:10.1371/journal.pone.0146103 

52. Cedervall J, Olsson AK. NETosis in cancer. Oncoscience (2015) 2(11):900–1. 
doi:10.18632/oncoscience.264

53. Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, et al. 
Neutrophil extracellular traps promote the development and progression 
of liver metastases after surgical stress. Cancer Res (2016) 76(6):1367–80. 
doi:10.1158/0008-5472.CAN-15-1591 

54. Alfaro C, Teijeira A, Oñate C, Pérez G, Sanmamed MF, Andueza MP, et al. 
Tumor-produced interleukin-8 attracts human myeloid-derived suppressor 
cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin Cancer 
Res (2016) 22(15):3924–36. doi:10.1158/1078-0432.CCR-15-2463 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2016 Branitzki-Heinemann, Möllerherm, Völlger, Husein, de Buhr, 
Blodkamp, Reuner, Brogden, Naim and von Köckritz-Blickwede. This is an  open-access 
article distributed under the terms of the Creative Commons Attribution License (CC 
BY). The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) or licensor are credited and that the original publication in this 
journal is cited, in accordance with accepted academic practice. No use, distribution 
or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1016/j.immuni.2013.11.020
https://doi.org/10.1111/febs.13270
https://www.deutsche-digitale-bibliothek.de/binary/2OGR5WY6BE3IKL3CQ65IEVHB4STUJX5O/full/1.pdf
https://www.deutsche-digitale-bibliothek.de/binary/2OGR5WY6BE3IKL3CQ65IEVHB4STUJX5O/full/1.pdf
https://www.deutsche-digitale-bibliothek.de/binary/2OGR5WY6BE3IKL3CQ65IEVHB4STUJX5O/full/1.pdf
https://doi.org/10.1155/2013/710239
https://doi.org/10.1155/2013/710239
https://doi.org/10.1128/MCB.16.9.4604
https://doi.org/10.1038/jid.2008.27
https://doi.org/10.1016/j.ejcb.2014.07.005
https://doi.org/10.1016/j.chom.2010.10.005
https://doi.org/10.4049/jimmunol.1301821
https://doi.org/10.4049/jimmunol.1301821
https://doi.org/10.4049/jimmunol.1000675
https://doi.org/10.1016/j.chembiol.2014.09.015
https://doi.org/10.1126/stke.3792007pe11
https://doi.org/10.1371/journal.pone.0146103
https://doi.org/10.18632/oncoscience.264
https://doi.org/10.1158/0008-5472.CAN-15-1591
https://doi.org/10.1158/1078-0432.CCR-15-2463
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Formation of Neutrophil Extracellular Traps under Low Oxygen Level
	Introduction
	Materials and Methods
	Bacterial Strains
	Neutrophil Isolation
	Oxygen Measurements
	NET Induction and Visualization
	Lipid Isolation and Analysis
	RNA Expression Analysis
	Statistical Analysis

	Results and Discussion
	Low Oxygen Levels in In Vitro Neutrophil Suspension Culture
	Spontaneous and PMA-Induced Net Formation under Hypoxia Compared to Normoxia
	Gene Expression of hif-1α and Target Genes
	Lipid Alterations
	S. aureus-Induced NET Formation

	Ethics Statement
	Author Contributions
	Funding
	References


