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Although the dynamics of germinal center (GC) formation, follicular helper T (TFH) cell 
recruitment to B cell follicles within lymphoid organs, and changes of lymphoid tissue 
architecture in HIV/SIV infection have been documented, the underlying immunopathol-
ogy remains unclear. Here, we summarize what is known regarding the kinetics of TFH 
cells and GC B cells during the course of infection as well as the potential immunopatho-
logical features associated with structural changes in the lymphoid compartment. This 
review also explores the implications of cell dynamics in the formation and maintenance 
of viral reservoirs in hyperplastic follicles of secondary lymphoid organs before and after 
viral suppressive antiretroviral therapy.
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iNTRODUCTiON

The ongoing human immunodeficiency virus (HIV) pandemic continues unabated with over 37 
million people infected in spite of the availability of a large number of antiretroviral drugs (1). 
The current combination antiretroviral therapy (ART) while highly effective at controlling viral 
replication, is however unable to eliminate the virus, which readily rebounds upon ART cessation. 
Therefore, the development of a protective vaccine remains a priority, though this task is complicated 
by a relatively poor understanding of immune correlates of protection at this time. In addition, 
the persistence of HIV infection in spite of potent combinations of drugs also remains to be fully 
elucidated. Even more puzzling, the ongoing vigorous but inadequate antiviral immune response 
both during and post ART remains unable to contain chronic virus replication. Most active HIV 
replication occurs in CD4 T cells in secondary lymphoid organs (2, 3), and recent data also highlights 
these sites as important reservoirs of latent infection during ART (4, 5). Moreover, these reservoirs 
are seeded early postinfection (6), and early ART may decrease the size of cells harboring HIV DNA 
(7, 8), although an exact temporal relation between seeding magnitude of various anatomical reservoirs 
and specific cell lineages remains to be fully elucidated for both HIV and SIV. During the course of 
infection, virus has been shown to remain in the germinal center (GC) of hyperplastic follicles, while 
the architecture of the lymph node experiences gradual remodeling (2, 9).

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2016.00522&domain=pdf&date_stamp=2016-11-22
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2016.00522
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:fjv5939@louisiana.edu
https://doi.org/10.3389/fimmu.2016.00522
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00522/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00522/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00522/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00522/abstract
http://loop.frontiersin.org/people/377002
http://loop.frontiersin.org/people/15939


FiGURe 1 | Abnormal accumulation of TFH cells in hyperplastic GC during Hiv/Siv primary infection. Naïve mature CD4 T cells are activated through 
dendritic cells. The persistent viral antigens stimulate primed CD4 T cells, resulting in the formation of hyperplastic GC with the massive B cell expansion, TFH 
accumulation, and development of network of follicular dendritic cells. Treg and PD-L1 expressing cells within GCs are capable of modulating GC TFH cells to 
suppress GC-related responses at the end stage of HIV infection.
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GeNeRATiON OF FOLLiCULAR 
HYPeRPLASiA/iNvOLUTiON

Persistent immune activation is a hallmark of chronic HIV/
SIV infections, which induces a progressive pathology not only 
in peripheral blood but also in secondary lymphoid tissues, 
causing a profound remodeling of the lymph node architecture 
throughout the course of infection. Histological patterns of 
structural alteration of lymphoid architecture were already well 
described in the 1980s, in the context of HIV infection (10–13). 
Specifically, lymph node morphology in HIV patients with or 
without AIDS is characterized initially by follicular hyperpla-
sia, followed by involution, resulting in the lymphadenopathy 
and destruction of follicular architecture, which helped in the 
original diagnosis of AIDS (14). In SIV and SHIV infection of 
non-human primate models of human HIV infection, rhesus 
macaques that followed an accelerated disease course and died 
within 6  months, severe follicular involution was observed 
in their lymphoid tissues, while on the contrary, animals that 
survived longer had lymphadenopathy with confluent GCs and 
follicular hyperplasia (15, 16). Histologic and cellular charac-
terization of lymph nodes during infection revealed similar 
structural alterations among SIV-infected rhesus macaques 
and HIV-infected patients. Although the mechanisms are not 
fully elucidated yet, gradual histological alterations such as the 

deposition of collagen and non-amyloid substance may be asso-
ciated with follicular involution at the end stage of HIV infec-
tion (17, 18). Exposure of follicular dendritic cells to HIV may 
create an inflammatory environment and lead to the impaired 
survival of follicular B cells (19). The magnitude of GC reactions 
in follicular hyperplasia or involution, if any, is closely linked to 
the regulation of follicular helper T (TFH) cells.

FOLLiCULAR HeLPeR T CeLLS iN THe 
GCs OF HYPeRPLASTiC FOLLiCLeS 
DURiNG THe COURSe OF Hiv iNFeCTiON

Specific CD4 T helper cells termed TFH cells differentiate from 
precursors under the control of the transcription factor Bcl6 and 
are characterized by their function, which is to provide T cell help 
for B cells, and are distinct from other CD4 T cell subsets such 
as Th1, Th2, and Th17 cells (20). In lymphoid tissues, informa-
tion on the location of CD4 T cells within follicles is also vital 
to identifying resident TFH cells (Figure 1). Although there is 
no single marker for distinguishing TFH cells from other CD4 
subsets, they are defined by their expression of surface co-
stimulatory molecules CXCR5, CD200, ICOS, and a high density 
of PD-1 (20, 21). These memory type cells generally express low 
levels of CCR7 but are able to migrate toward B cell follicles 
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FiGURe 2 | Hyperplastic follicle in gut tissue during chronic Siv 
infection. Representative H&E (upper) and immunofluorescence image 
(lower) of hyperplastic follicle staining with Ki67 (blue), PD-1 (green), and 
CD20 (red) in ileum from a chronically SIV-infected rhesus macaque.
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in lymphoid organs, produce IL-21, and deliver B cell help in 
the GC environment for the development of T cell-dependent 
humoral adaptive immunity (22, 23). Studies using knock-out 
mice for IL-6 and IL-21 have shown that both are necessary for 
TFH differentiation and GC development in secondary follicles. 
IL-6-deficient mice exhibited a marked defect in GCs formation, 
STAT1 and STAT3 signaling, downstream IL-21 production, and 
IgG production primarily due to the lack of TFH differentiation 
in vivo (24). IL-21 deficiency also results in a severe reduction of 
GCs though this signal seems downstream of the one caused by 
IL-6 deficiency (25). Moreover, IL-6 and IL-21 appear to regulate 
the generation of TFH cells in the absence of Th1, Th2, and Th17 
cells (26), suggesting that conversely, increases in the expression 
of IL-6, IL-21, or both cytokines may lead to lymphoid hyper-
plasia and rapid development of GCs, as observed during HIV 
and SIV infection. In fact, in HIV-infected individuals, a decrease 
in levels of circulating IL-21 and decreased production of IL-21 
by CD4 cells was noted in blood (27). Similar to HIV infection, 
substantial depletion of IL-21+ CD4 T cells was reported in the 
blood in SIV-infected macaques (28). In lymphoid tissues of HIV 
patients, however, a marked expansion of IL-21-secreting TFHs 
was noted (29). Moreover, concurrent accumulation of TFH cells 
and particularly within the GCs of lymph node follicles and more 
precisely at the periphery of the GC had significantly increased 
IL-21 expression during SIV infection (30), suggesting trafficking 
of IL-21-producing TFH cells during the chronic immune activa-
tion characteristic of chronic SIV infection.

Upon HIV infection, there is a rapid infiltration of these TFH 
cells and formation of numerous GCs within lymphoid organs, 
characteristic of lymphocyte hyperplasia seen early in chronic 
infection. Recent studies demonstrated that HIV-infected patients 
displayed an aberrant accumulation of TFH cells compared to 
uninfected individuals (29). Similar observations were reported 
in lymph nodes, spleen, and gut tissues of rhesus macaques, in 
which the resident TFH cells (PD-1high CD4+ T cells) within GCs 
of hyperplastic follicles were markedly expanded, with a parallel 
increase and accumulation of Ki67+ GC B cells during chronic 
SIV infection (31, 32) (Figure  2). Of interest though, was the 
observation that as TFH accumulated within GCs, their expres-
sion of Ki67 decreased with up to 80% of TFH negative for this 
proliferation marker, suggesting that the continued input of this 
lineage to be contributed from cells migrating into follicles rather 
than local proliferation (30), and potentially, these cells have 
reached a terminal differentiation stage and function, which is to 
deliver help to local B cell differentiation and maturation. These 
findings are consistent with the limited proliferative capacity of 
human TFH cells whereby cross-linking their high level of PD-1 
may dissociate continuous TCR signaling.

Understanding whether GC TFH cells accumulated during 
HIV/SIV infection are viral antigen-specific is also important. 
However, this has, hitherto, rarely been addressed because of 
the difficulty in identifying their responses. In this respect, there 
is also little experimental evidence demonstrating the dynam-
ics between antigen-specific TFH cells and hyperplastic GCs. 
Interestingly, two recent articles have reported a novel assay to 
determine the frequencies of antigen-specific TFH cells within 
secondary lymphoid tissues of humans and macaques using 

cytokine-independent activation-induced markers CD25 and 
OX40 (33, 34). Such new technique is expected to markedly 
enhance our comprehension of the role of antigen specificity 
in the lymphoid hyperplasia that is observed during SIV/HIV 
infection.

NeGATive ReGULATiON OF TFH CeLLS 
iN HYPeRPLASTiC FOLLiCLe

Unlike GC B cells, the frequency of proliferating GC TFH cells 
drops once hyperplastic follicles are established during infection. 
There are several potential negative regulators able to suppress 
resident TFH cells from the persistent division in the local envi-
ronment. First, a series of recent findings suggest that Foxp3+ 
regulatory T (Treg) cells also arise in the lymphoid compartment 
and may play an important role in the downregulation of TFH 
cell-mediated GC development. In mouse and human studies, a 
subset of TFH cell with a surface profile of Treg cells has been 
detected within GCs, which negatively regulated TFH cell-
dependent B cell responses in vitro (35–37). So far, monitoring 
follicular Treg cells during follicular hyperplasia by HIV has been 
described, but few studies have focused on this issue. In both 
HIV and SIV infections, the density of Treg cells increase in the 
T cell zone but not in follicular area (38) (Figure  3). Petrovas 
et al. defined Foxp3+ cells among TFH cells in a SIV model and 
reported no expansion during the course of infection (32). In 
situ analyses using immunofluorescent staining for Foxp3, PD-1, 
CD20, and nuclei revealed that Foxp3+ cells are more abundant 
outside than inside follicles, and only few FoxP3+ PD-1high cells 
were present within GCs of hyperplastic follicles in SIV-infected 
macaque (Figure 1). Indeed, the frequency of Treg cells among 
TFH cells is decreased in chronic SIV infection (39). The abun-
dance of IL-21 may be associated with the suppression of Treg 
cells in select chronic inflammatory situations (40).

Another possible mechanism of down-modulation of TFH 
cells is signaling through PD-1, leading to decreased T cell 
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FiGURe 3 | Follicular T regulatory cells in a hyperplastic follicle of 
lymph node from chronic SIV infection. Foxp3+ cells and PD-1 high cells 
in an expanded GC of a hyperplastic follicle. The lymph node biopsies were 
stained with CD20 (blue), PD-1 (green), Foxp3 (red), and Hoechst dye (white). 
Scale bars = 50 μm.
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proliferation; TFH cells are likely very sensitive to this mechanism 
because of their high-level expression of PD-1. In the setting of 
chronic HIV infection, PD-1 ligands on antigen-presenting cells 
including B cells were upregulated in both blood and lymph nodes 
(41–43), leading to functional impairment of PD-1 expressing T 
cells. Macaque studies have shown that PD-L1 expression was 
increased on dendritic cell populations in blood and lymph node 
post SIV infection, compared to uninfected controls (44). Of note, 
DC-like cells expressing PD-L1 were markedly increased locally 
with exaggerated GC formation, and they eventually interact with 
TFH cells in hyperplastic follicles during chronic SIV infection 
(31). PD-1/PD-L1 interaction was shown to induce a decrease 
in the proliferation, survival, and cytokines secretion of human 
TFH cells (43). These findings suggest that the suppression of 
proliferation of resident TFH cells may be more readily associated 
with the cross-linking of PD-1 with PD-L1 in hyperplastic fol-
licles than the presence of Foxp3+ Treg cells during HIV infection.

Third, Chronic immune activation of lymphoid tissues leads 
to a gradual remodeling of the architecture, resulting in follicular 
involution. In HIV patients, collagen was gradually deposited into 
T cell zone of lymphoid node (45). This fibrosis inversely corre-
lates with the presence of naïve CD4 T cells (46). TFGβ activated 
by inflammation induces collagen deposition, resulting in the loss 
of the fibroblastic reticular cells (FRCs) network that is associ-
ated with the production of growth factors such as IL-7. This loss 
leads to the death of T cells and then decrease in lymphotoxin-β 
essential for the survival of FRCs (47), suggesting the disruption 
of cell to cell contact between FDCs, TFH, and B cells.

TFH SeRve AS A LONG-LiveD viRAL 
ReSeRvOiR

Resident TFH appear to not express CCR5 (48, 49), yet many 
are infected and replicate HIV-1 (50) and SIV (51). This leads to 
the question of site of infection: are they being infected before 
migrating into the GC, infected by cell–cell transmission from 
FDCs in GCs, or is there enough co-receptor expression to allow 
for infection even though CCR5 levels are too low to be detected 
by flow or in situ techniques? This aspect of TFH infection will 
require additional work to be resolved, though what has become 

readily apparent is that hyperplastic follicles with high density of 
resident TFH cells can serve as the latent virus reservoir during 
the course of infection even in elite controllers (51). Thus, the 
extent of infection in TFH of hyperplastic follicles in lymph nodes 
needs to be taken into account in any strategy aimed at reducing 
or eliminating latent viral reservoirs. Moreover, the analyses of 
antiretroviral drug penetration and conversion to their active 
form have only begun to be examined. Recent data suggest that 
treatment with ART appears to decrease the relative frequency of 
GC TFH cells in lymph nodes of HIV patients, perhaps secondary 
to partial resolution of the immune activation, though the relative 
frequency is still higher than in uninfected individuals (29, 52), 
and evidence of lower concentrations of ART in lymphatic tissues 
and relative to peripheral blood have been reported (53) including 
data showing lower conversion within GCs relative to the other 
lymphoid areas (personal communication). Although HIV RNA 
is rarely detected in the GCs of lymph node during antiretroviral 
therapy, viral proteins such as Gag p24 and HIV DNA remain 
detectable over a substantial period time (54, 55). Blood, Lymph 
node, and splenic TFH cells show higher level of SIV RNA 
compared with non-TFH cells in the presence of combined ART 
(51, 56). Other lymphoid tissues such as gut possess latently 
infected cells despite undetectable plasma HIV RNA in patients 
with long-term ART treatment (57), which would be conducive 
to reseed and rekindle of infection in blood and other secondary 
lymphoid organs. Importantly, hyperplastic follicles still exist in 
HIV patients’ after extended ART (58). It is quite possible that GC 
TFH cells accumulated may reactivate virus replication upon ART 
cessation, serving as a major source of virus rebound. Overall, the 
existence of hyperplastic GCs may represent an impediment to 
a cure for HIV-1 infection and must expressly be addressed in 
HIV-1 therapeutic strategies.

CONCLUSiON

In conclusion, TFH cells not only are a critical component of the 
immune response but also serve an active and latent reservoir for 
HIV/SIV infection. A better understanding of TFH cell kinet-
ics and their role as a latent cell reservoir is clearly needed for 
any ART and/or immune-based interventions to control virus 
replication in the absence of ART. Therefore, the recent efforts at 
an understanding of TFH-related GC immune responses during 
HIV disease will, in spite of much difficulty, likely provide major 
advances in the generation of therapeutic strategies to target the 
potential latent reservoirs of HIV and ultimately its eradication.
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