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Studies on NETosis demand reliable and convenient markers to monitor the progress of 
this form of cell death. Because a determining step in the release of nuclear chromatin 
NETs requires the conversion of arginine residues to citrulline residues in histones by 
peptidylarginine deiminase, citrullinated histones can provide such a marker. Here, we 
evaluate antibody reagents for the detection of citrulline residues in histones and observe 
alarming differences between commercial antisera and mouse and rabbit monoclonal 
antibodies in their ability to detect their nominal target residues. Differences between 
antibodies that are currently used to detect citrulline residues in histones could jeopar-
dize efforts to reach a scientific consensus and instead lead to inconsistent and even 
conflicting conclusions regarding the regulation of histone deimination. Our results will 
assist others in planning their initial or ongoing studies on peptidylarginine deiminase 
activity with the use of currently available antibodies. Furthermore, we argue that, along 
with the careful attention to experimental conditions and calcium concentrations, vali-
dated antibody reagents are urgently needed to avoid possible setbacks in the research 
on NETosis.
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The years since 2004 have seen an explosive rise in interest in neutrophil cell death mechanism. 
Much of the interest was sparked by the discovery of NETosis by Brinkmann et  al. (1), which 
implicated this unique form of cell death in infectious and autoimmune diseases. It is difficult to 
adequately summarize all the remarkable discoveries since that landmark paper was published. Some 
examples include the relation between NETosis, autophagy (2), apoptosis (3), necroptosis (4), and 
granzyme-mediated cell death (5). Insights into the regulation of NETosis have defined the roles of 
cell surface receptors (6), protein kinases (7), elastase, and myeloperoxidase (8). The participation 
of NETs has been demonstrated in inflammatory diseases such as acute lung injury (9), thrombosis 
(10), cystic fibrosis (11), vasculitis (12), gout (13), diabetes (14), and even Alzheimer’s (15). NETosis 
also directly contributes to the induction of autoantibodies in major autoimmune diseases such as 
rheumatoid arthritis (16) and systemic lupus erythematosus (17). The process of chromatin NET 
release may not be unique to vertebrates, as plants (18) and slime molds (19) have mechanisms to 
release nuclear chromatin under specific circumstances. Subtypes of NETs have been reported and 
an important form of NETosis has been identified in which neutrophils release nuclear DNA but 
continue certain functions such as chemotaxis despite the casting of NETs (20). Similarly, NETs 
consisting of mitochondrial DNA have been characterized that may be compatible with continued 
functions of neutrophils (21–23). NETs are also released by other granulocytes (24), macrophages 
(25), and mast cells (26).
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NETosis is characterized by large-scale morphological transi-
tions that can be seen as the swelling of the lobed nucleus, the 
rupture of the nuclear envelope, and the release of NETs that can 
stretch to many times the size of a single neutrophil (27). Thus, 
NETosis has been measured by automated image analysis (28), by 
quantitative fluorescence activated cytometry (29), and by immu-
nofluorescence detection of colocalized DNA and neutrophil 
granule components (30). The detection of deiminated histones 
represents an important hallmark of NETosis because the enzyme 
responsible for histone modification, peptidylarginine deiminase 
IV (PAD4), is activated on a massive scale during the progress 
of NETosis (31). Indeed, the activation of PAD4 is intimately 
linked with the production of autoantibodies to citrullinated 
proteins. These antibodies are sensitive and predictive criteria 
in a number of autoimmune diseases (3, 32–34). Importantly, 
several groups of researchers have provided evidence that NET 
release is dramatically impaired by the genetic deficiency (35) 
or the pharmacological inhibition of PAD4 (36), and that PAD4 
inhibitors offer promising starting points to develop autoimmune 
disease therapies (37, 38).

The detection of deiminated histones in vivo has been inter-
preted as evidence for NETs, as may occur in nephritis associ-
ated with vasculitis (39), thrombus formation (29), lung injury 
(40), and due to alum adjuvant stimulation (41). Detection of 
histone deimination has also been helpful in testing aspects of 
PAD4 regulation (42). However, inconsistencies between results 
reported by different labs have also appeared in the literature. For 
example, one widely used stimulus, PMA, has resulted in conflict-
ing results in the literature. Thus, PMA was observed to induce 
deimination (35) or suppress deimination (7). Our result was 
surprising due to the frequent use of PMA to induce the release of 
NETs, and the common assumption that PAD activity is required 
for NET release to occur. Therefore, we carefully analyzed the 
phenomenon and observed that PMA also suppressed histone 
deimination in the presence of A23187 ionophore, a compound 
that by itself is a strong inducer of deimination (7). We further 
established that PMA inhibited PAD4 via activation of PKCα/β. 
Our results have been confirmed by Douda et al. who character-
ized two alternate forms of neutrophil cell death leading to NET 
release (42). In addition, apoptosis induction may block histone 
deimination (3) or promote it (5). Certainly, the conflicting 
results could be explained by various differences in the execu-
tion of these experiments, including details of buffers and media 
used during stimulation, yet one testable possibility was that the 
reagents for detecting deimination were inconsistent.

The most convenient way to measure histone deimination is 
with antibodies that recognize citrulline residues within their 
specific antigenic epitope. Various commercial antibodies based 
on polyclonal sera or monoclonal antibodies (Mab) are available 
for immunochemical detection of deiminated histones. Caution 
is advised, as polyclonal antisera may differ from animal to animal 
according to stochastic events that generate antibody specificity. 
Conversely, Mabs can be highly specific but may also be sensitive 
to subtle changes in the epitope due to contributions from flank-
ing residues.

Thus, we set out to assess the reliability and consistency of 
different commercial antibodies against deiminated histones.  

To provide samples for our analysis, we prepared whole cell 
lysates from freshly isolated human neutrophils that were treated 
with diverse stimuli to induce or suppress histone deimination. 
For a commonly accepted baseline, we analyzed the lysates with 
antibodies to diacetyl monoxime/antipyrine-modified citrullines 
(Figure 1A), using a detection kit from Millipore (43). To assess 
the quantity and integrity of the core histones, we used antibod-
ies to total histone H3 (Cell Signaling Technologies, #4620S) to 
generate the blot shown in Figure 1B. All incubations, except for 
unstimulated neutrophils (lanes 1), contained 200 μM calcium 
in addition to the diverse stimuli. In all cases, the yields of intact 
H3 were comparable, except in samples treated with 20 μM chel-
erythrine along with ionophore (lanes 5) or lanthanum 200 μM 
(lanes 11), which showed partial cleavage of H3 (Figure 1B). Most 
treatments induced moderate to high levels of histone deimina-
tion, except, as previously reported, 20  μM chelerythrine and 
20 nM PMA (lanes 5 and 9, Figure 1A), which showed little to no 
deimination (7). The most intense deimination was observed in 
cells that were incubated with 5 μM chelerythrine and ionophore 
(lanes 4), and cells incubated with lanthanum (Figure 1A).

A widely used polyclonal antibody that recognizes histone H3 
with citrulline residues at positions 2, 8, and 17 (Abcam #ab5103, 
Lot GR247556) could detect histone deimination (Figure  1C) 
in roughly similar measure as the modified citrulline antibody 
(Figure 1A), although the Abcam antibody also reacted weakly 
with unstimulated and 20  nM PMA-treated neutrophil lysates. 
We have compared different lots of this antibody and observed 
lot-to-lot variability (data not shown). This lot detected a small 
increase in deimination in the presence of extracellular calcium 
(lane 2), presumably reflecting the enzyme’s requirement for 
calcium. However, a significant increase was noted, once iono-
phore opened access for calcium across the plasma membrane 
(lane 3). There was an even greater enhancement of deimina-
tion with 5  μM chelerythrine (lane 4), a selective inhibitor of 
certain protein kinase C isozymes. Raising the concentration 
of chelerythrine to 20  μM impaired histone deimination (lane 
5). Mechanical damage to the plasma membrane, as may be 
induced by frustrated phagocytosis of hydroxyapatite crystals, 
also enhanced deimination (lane 6, Figure 1C), and this effect 
could be further stimulated by addition of LPS or fMLP (lanes 7 
and 8). In contrast, incubation in calcium with 20 nM PMA did 
not stimulate deimination (lane 9), despite the fact that NETosis is 
greatly induced by this compound (data not shown). Manganese, 
and, more intensely, the combination of calcium and lanthanum 
(lanes 10 and 11), induced deimination.

To compare the rabbit antisera to MAbs, which represent more 
stable immunological reagents, we examined three commercially 
available MAbs that were promoted as detection reagents for 
citrulline residues. A mouse MAb to citrullinated histone H3 
(Abcam, #ab80256, clone 7C10), which was listed as reacting 
against H3 with citrullines at positions 2, 8, and 17, showed a 
drastically different pattern of reactivity than the antisera used 
above (Figure 1D). In this instance, the antibody appeared insen-
sitive to large increases in deimination, as the antibody did not 
distinguish between unstimulated lysates and lysates prepared 
following the incubation with ionophore. In fact, the signal was 
low to absent in the samples treated with 5 μM chelerythrine or 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGUre 1 | Differences among commercial antibody-based reagents 
for the detection of deiminated core histones. Human neutrophils were 
purified from healthy donor blood according to published procedures and 
incubated for 2 h in HBSS (lane 1) or HBSS with 200 μM calcium chloride 
(lane 2) and A27632 ionophore (lane 3), ionophore with 5 μM chelerythrine 
(lane 4), or 20 μM chelerythrine (lane 5). Cells were also incubated in the 
presence of 200 μM calcium chloride and hydroxyapatite (lane 6) with added 
LPS (lane 7), or fMLP (lane 8), 20 nM PMA (lane 9), manganese chloride (lane 
10), or lanthanum chloride (lane 11). The whole cell lysates were run on  
 

a denaturing 12% PAGE and blotted to nitrocellulose membrane prior to 
reaction with diacetyl monoxime/antipyrine and detection of modified 
citrullines with the antibody and following instructions from Millipore (A). 
Alternatively, blots were blocked for 1 h at RT with 5% bovine serum albumin 
(BSA) or 5% milk in TBST [Tris-buffered saline (TBS) and Tween 20, 25 mM 
Tris (pH 7.2), 150 mM NaCl, and 0.1% Tween 20] and rinsed before overnight 
incubation at 4°C with a dilution of primary Abs (as recommended by the 
supplier) in 2.5% BSA in TBST. Subsequently, membranes were washed and 
incubated for 1 h with donkey anti-rabbit secondary Ab IR800 (catalog 
#925-32213) or goat anti-mouse (catalog #926-32210) as secondary 
antibodies available from LI-COR, washed three times with TBST and twice 
with TBS alone and developed on an Odyssey imaging system. Blots were 
reacted with antibodies to total histone H3, obtained from Cell Signaling 
Technologies (B), rabbit antisera to citrullines at positions 2, 8, and 17 of 
histone H3, Abcam, catalog #ab5103 (c), mouse Mab to citrullines at the 
same positions, also from Abcam, clone 7C10 (D), a rabbit Mab to citrulline 
at position 2 of H3, Abcam, catalog #176843 (e), and a mouse IgM Mab to 
poly-citrulline, F95 from Millipore (F). For comparison, we used a rabbit 
antiserum to citrullines in the amino terminus of H4, supplied by Millipore 
under #07-596 (G). Filled arrowheads indicate position of H3 on the 
membrane, whereas the open symbol points to the position of H4. The 
membrane in (A) displays additional reactivity to proteins of slower mobility 
on the gel (lane 4). The distance to which marker proteins had migrated and 
their masses in kilodaltons are indicated on the margin of (A).

FiGUre 1 | continued

(Continued)
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lanthanum, which gave the most intense signals with the two 
antisera used above (Figures 1A,C).

In contrast, a rabbit Mab from the same supplier (Abcam, 
#176843) that binds to citrulline at the second position of his-
tone H3, could detect a strong increase of H3 deimination with 
ionophore treatment and a further enhancement with 5  μM 
chelerythrine (Figure 1E). This antibody also gave a strong signal 
with the lysate treated with lanthanum, although it showed only 
a marginal signal increase with lysates from cells incubated with 
hydroxyapatite in combination with LPS or fMLP, and no reac-
tion with manganese or PMA-treated cell lysates.

Results with F95 (Figure 1F), a mouse IgM reported to rec-
ognize citrullines in a context-independent manner (Millipore, 
MABN328), further emphasized the drastic differences between 
MAbs to citrulline epitopes. The same neutrophil lysates as used 
in the examples above showed no increase in histone deimina-
tion with addition of ionophore or hydroxyapatite treatment in 
calcium buffer. Thus, the signal that was detected with histones 
from unstimulated cells showed little to no modulation following 
induction of deimination. In addition, enhanced deimination 
that was induced with 5 μM chelerythrine or with lanthanum was 
nearly completely undetectable (Figure 1F). These results were 
inconsistent with the previous observations. On a longer expo-
sure, F95 IgM could detect citrullination of other proteins, as seen 
by the increased reactivity with proteins of increased molecular 
weights (data not shown). Thus, there is a specific problem with 
the detection of citrullines in histones by F95.

To extend our analysis to antibodies to other deiminated core 
histones, we tested a rabbit antiserum to the citrullinated amino 
terminus of histone H4 (Millipore, #07-596). This polyclonal 
antibody detected the enhanced level of deimination in the pres-
ence of 5 μM chelerythrine and lanthanum (Figure 1G), but it was 
somewhat less sensitive to calcium/ionophore or hydroxyapatite 
than the mouse antiserum to H3 (Figure  1C). This antibody 
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showed cross-reactivity with proteins of greater molecular weight 
than H4, as acknowledged by the supplier, which could be due 
to a shared amino acid motif between histone H4 and H2A. 
Nevertheless, the results with this antibody were comparable to 
those obtained with the tri-citrullinated H3 antibody (Figure 1C) 
and the rabbit MAb (Figure 1E).

In conclusion, we uncover a surprising level of inconsist-
ency between commercially available antibodies to citrulline-
containing epitopes. Others have recently pointed out the 
need for commercial suppliers of antibodies to more carefully 
assay and validate different lots of antibodies (44–48). This is 
especially relevant for antibodies to histone post-translational 
modifications, as histones incur numerous modifications that 
are relevant for the functional properties of chromatin. An 
International Working Group for Antibody Validation was 
recently convened and published a set of recommendations for 
antibody validation because of the enormous losses of research 
funds due to the inconsistent data that arise based on currently 
available antibody reagents (49). One useful resource is an online 
repository of antibody-binding specificities that currently lists 
over 100 antibodies to histone post-translational modifications 
(47). Our results argue for a cautious approach to interpretations 
of any single antibody for the determination of deiminase activ-
ity in neutrophils or other cell types of interest. Although the 
modified citrulline antibody is more complicated to use than 
the other antibodies, a prudent approach may include the use of 

this antibody for comparison to the other reagents. Other ways 
of detecting citrulline have been reported, but they may require 
more sophisticated equipment or more complicated analyses. 
Generally, the current challenge in the field of NETosis research 
with regard to histone deimination is acute and requires reliable, 
accepted, and broadly available reagents. Increased efforts to 
isolate monoclonal mouse or rabbit Ab, including possibly by 
recombinant methods, should be promoted. Notably, advances in 
phage display technology have led to the discovery of antibodies 
that are specific for various post-translational protein modifica-
tions, including acetylation, phosphorylation, methylation, and 
citrullination (50) and that allow their efficient conversion into 
IgG molecules (51).
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