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Lymphatics and lymphatic endothelial cells (LECs) possess multiple immunological 
functions besides affecting immune cell migration, such as inhibiting T cell proliferation 
and antigen presentation by dendritic cells. Moreover, they control the trans-endothelial 
transport of multiple molecules and antigens. Emerging evidence suggest their active 
involvements in immunregulation, tumor, and metastases formation. In the liver, increased 
lymphangiogenesis, specifically at the portal area has been associated with multiple liver 
diseases in particular primary biliary cirrhosis, idiopathic portal hypertension, and liver 
malignancies. Nevertheless, the exact role and contribution of LECs to liver diseases are 
poorly understood. The review summarizes the current understanding of LECs in liver 
diseases.
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LiveR AS A LYMPHOiD ORGAn

The liver primarily operates as a metabolic center to maintain homeostasis that includes processing 
of gut-derived nutrients, the clearance of toxins, and the production of the bile (1). Besides these 
well-known functions, it is also considered as a lymphoid organ (2). This is on one hand due to the 
fact that non-parenchymal cells, such as hepatic stellate cells (HSCs) and liver sinusoidal endothelial 
cells (LSECs), take on antigen presenting and immunomodulatory functions to create a tolerant 
microenvironment (2, 3). On the other hand, the liver encompasses large populations of resident 
immune cells, such as Kuppfer cells, NK, T, and NKT cells that shape the local immune response, 
respond to danger signals and closely interact with parenchymal and non-parenchymal liver cells 
(3). These resident immune cells are located within the sinusoids where the mixture of arterial and 
venous blood carrying oxygen and gut-derived metabolic products arrives into the liver. From the 
sinusoids blood flows toward the central vein and finally leaves the liver conveying blood to the vena 
cava inferior. It is less known about the lymphatic circulation of the liver despite of the fact that it 
produces between 25–50% of the total lymph received by the thoracic duct (4, 5). This review sum-
marizes the current understanding of the lymphatics of the liver and their known functions under 
steady state and during liver injury. Liver injuries manifest in various diseases including autoimmune 
hepatitis, infectious [hepatitis C virus (HCV)- and hepatitis B virus (HBV)-induced liver hepatitis], 
and metabolic disorders. Major causes of metabolic injuries are alcoholic liver damage (manifesting 

Abbreviations: CCL21, CC-chemokine ligand 21; CCl4, carbon tetrachloride; CCR7, C–C chemokine receptor type 7; CD, 
cluster of differentiation; cDC1/2, conventional dendritic cells type 1/2; FACS, fluorescence-activated cell sorting; FRCs, fibro-
blastic reticular cells; HSCs, hepatic stellate cells; LECs, lymphatic endothelial cells; LNs, lymph nodes; MS, mechanosensors; 
SLO, secondary lymphoid organs; SR, scavenger receptors; TLRs, toll-like receptors.
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in liver steatosis, hepatitis, and cirrhosis) and the diet-related 
non-alcoholic fatty liver disease (NAFLD). Biliary injuries involve 
primary sclerosing cholangitis and primary biliary cirrhosis that 
are considered as immune-mediated liver disorders. Independent 
of the diverse etiology, liver inflammation and damage trigger a 
wound healing process that progressively leads to liver fibrosis, 
cirrhosis, and end-stage liver disease (6).

THe LYMPHATiC SYSTeM OF THe LiveR

The hepatic lymphatic system is divided into a deep and a super-
ficial fraction (5, 7). The former follows the hepatic vein and the 
portal tracts, and the later collects lymph from the convex and 
inferior surfaces of the liver. The lymph itself originates in the 
perisinusoidal space of Disse (4). At the hepatic sinusoids, the 
interstitial space contains collagen fibers that connect LSECs and 
hepatocytes and form the portal limiting plate. Thus, fluid from 
the sinusoids flows through this structure and moves toward the 
perilobular space (it is referred as the space of Mall) and finally 
enters the portal lymphatic vessels (4, 5, 7, 8). This fluid move-
ment is attainable due to the hydrostatic pressure differences 
observed between the portal vein and the interstitial space (9). 
Additionally, because of pressure gradient between arterial capil-
laries and the interstitial space, some blood is filtered through the 
peribiliary capillaries that surround the interlobular bile ducts. 
Nevertheless, the contribution of this process for the total liver 
lymph output is less than 10% (10). Besides the above-described 
route, the interstitial fluid can also follow the interstitial space 
connected with the hepatic capsule that contains superficial 
lymphatic vessels (5, 7). Both, the deep and superficial lymphat-
ics of the liver drain primarily to the hepatic/celiac lymph nodes 
(LNs) (7, 11).

LYMPHATiC COnTenT AnD  
CeLLULAR TRAnSPORT

The lymph generated in the perisinusoidal space contains 80% 
of the proteins present in plasma (5). The content of the lymph 
gains increasing attention as it contains self-peptides derived 
from intracellular, membrane-associated, and matrix proteins 
(12, 13). Moreover, it carries apoptotic cellular materials, infec-
tious agents and represents a remote communication system 
for small molecules (e.g., cytokines) and cell-derived vesicles 
between the organ and its draining LN (13–16). The relevance 
of small molecule/vesicle trafficking via the lymphatics to the 
etiology of liver diseases is entirely unexplored. Such self-antigen 
delivery can be a key in autoimmune liver diseases. Moreover, 
biliary content during bile obstruction leaks to the lymphatics 
at the portal tract (5, 17) and probably reaches the draining 
LNs. Since bile acids might trigger inflammatory responses and 
necroptosis, it could influence hepatic immune responses arising 
within the draining LN.

Due to the resident immune, parenchymal and non- 
parenchymal cells, a tolerogenic environment is created for 
immune responses within the liver (3). Nevertheless, if immu-
nity is required as a response to for example pathogens either 

monocyte-derived DCs present in intrahepatic myeloid-cell 
aggregates for T cell population expansion (iMATEs) provide bases 
for efficient T cell responses (18) or cytotoxic T lymphocytes are 
generated by migratory DCs reaching the draining LN (19, 20). 
On the other side of the immune spectrum, migratory DCs are 
likely involved in the generation of regulatory T cells toward 
dietary antigens in the liver-draining LN (21). The lymphatics 
thus represent a crucial channel for a potential immunogenic and 
tolerogenic response outside of the liver suppressive environment 
(19, 22). To ensure this function, the lymph transports various 
immune cells. Accordingly, electron microscopy studies revealed 
the presence of DCs in between the limiting plate of hepatocytes 
and in the interstitial space of portal tract (4). This migratory 
process is more active after LPS injection (4). Not only liver 
resident but also circulating DCs can enter the lymphatic system 
in the liver, and this DC blood-lymph translocation seems to alter 
DCs and creates a more tolerogenic phenotype under steady state 
(23, 24). This could be due to DC interaction en route with liver 
non-parenchymal cells such as LSECs (25) or with lymphatic 
endothelial cells (LECs) along the lymphatics (26). Thus, the 
lymphatic circulation of liver-resident DCs and the circulating 
DC translocation might contribute to important peripheral 
tolerogenic responses under steady state. The major migratory 
cell population is the cDC1 (CD11c+CD103+CD11b−) cells, and 
it remains to be elucidated whether monocyte-derived DCs or 
cCD2 (CD11c+CD103−CD11b+) cells contribute to the migratory 
cell population under differing circumstances (20, 27).

DC migration is maintained by CCR7–CCL21 interaction, 
where CCL21 is secreted by LECs that are also positive for various 
adhesion molecules and glycoproteins that are involved in cel-
lular transport, such as gp38, ICAM-1, and E-selectin (28, 29). 
Besides LECs, EM study revealed the presence of fibroblast-like 
cells close to collagen fibers at the portal area representing fibro-
blastic reticular cells (FRCs) (4). Migratory DCs display close 
correlation with FRCs near the portal tract (4). Accordingly, in 
human liver, a low number of gp38+ FRCs are present at the portal 
area under steady state (30). FRCs secrete CCL19 that guides DC 
migration and provide survival factors for immune cell homeo-
stasis (28, 31). Importantly, under pathological conditions, such 
as in primary biliary cirrhosis, the portal FRC and LEC network 
extends and is associated with structures similar to tertiary 
lymphoid organs (30). Similarly, in murine P.  acnes-induced 
granulomatous hepatitis, portal tract-associated lymphatic struc-
tures, so called PALTs, are formed where T and B cell responses 
arise (32). Further studies are necessary to clarify that such 
tertiary lymphoid structure formation is related to migratory and 
lymphatic changes in liver diseases or represent a pathological 
structure where LN-independent immune responses influence 
disease progression.

Besides DCs, lymphocytes, plasma cells, and mast cells could 
be identified within the lymphatic vessels of the liver and near the 
portal tract under steady state (4, 5). While memory lymphocytes 
and plasma cells are common travelers within lymphatic vessels, 
the exact function of mast cells remains uncertain within the 
healthy liver. The later is especially intriguing, since mast cells 
release inflammatory mediators during various liver diseases and 
contribute as accessory cells to disease progression (33). The liver 
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TABLe 1 | Summary of surface markers for identifying murine and human 
lymphatic endothelial cells.

endothelial markers  
(LeCs and BeCs)

endothelial markers excluded from BeCs

ICAM-1 (CD54) Lyve-1a

CD44 Prox-1
VEGFR3

CD31 CCL21
CD34 Desmoplakin

Integrin α9, α1
E-, P-selectin B-chemokine receptor D6
Plakophilin Cadherin-13

MMR
Gp38 (podoplanin)

aPresent in liver LSECs and some liver macrophages.
BECs, blood endothelial cells; MMR, macrophage mannose receptor.
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is especially rich in lymphocytes involving not only conventional 
T cells but also innate lymphoid cells that express lymphoid 
homing markers, such as CCR7 (34, 35). Nevertheless, future 
studies are necessary to determine to which extent the various 
lymphocyte subpopulations travel via the lymphatics from the 
liver and what are the biological consequences of their migration.

LYMPHATiC enDOTHeLiAL CeLLS  
OF THe LiveR

Lymphatic endothelial cells are the building blocks of lymphatic 
capillaries and vessels and express variety of molecules that 
distinguish them from blood endothelial cells (BECs) such as 
CCL21 or cadherin-13 (Table  1) (29, 36). Most of these mol-
ecules refer to LECs within secondary lymphoid organs (SLO); 
however, some differences due to the liver environment could be 
observed (Table 1). For example, lymphatic vascular endothelial 
hyaluronan (Lyve-1) is specific for LECs in lymphoid organs but 
is present in LSECs and in some liver macrophages (37). The best 
way is to identify liver LECs based on their expression of CD31 
and gp38 (podoplanin). Liver LECs are CD45−CD31+gp38+ and 
thus can be distinguished from FRCs (CD45−CD31−gp38+), from 
LSECs (CD45−CD31+gp38−), and from the recently described 
gp38+ liver progenitor cells (CD45−CD31−CD133±gp38+) (38).

Lymphatic endothelial cells not only provide the structural 
unit for the vessels but also are involved in additional biological 
processes. As discussed already, via its expression of cytokines 
and adhesion molecules, LECs guide immune cell migration. 
Additionally, they are active participants in the nearby arising 
immune responses. They directly diminish DC maturation and 
T  cell proliferation and thus function as a negative regulatory 
circuit during immune responses (26, 29, 39). A variety of immu-
noregulatory factors are expressed by LECs that enable these 
functions. For example, LECs secrete TGFβ and nitric oxide, all of 
which are immunosuppressive (39, 40). Additionally, LECs lack 
the expression of co-stimulatory molecules and instead are rich in 
co-inhibitory markers, such as PDL1 (29, 39, 41, 42).

Lymphatic endothelial cells also possess the ability to express 
self-antigens and induce CD8 T cell deletion and serve as 
antigen reservoir for CD4 T cell tolerance (41–43). They also 

possess surface receptors for endocytotic activity and able to 
sample from their environment (44). Importantly, most of these 
immunomodulatory potentials are connected with LECs present 
in SLO, thus raising the question what are the similarities and dif-
ferences between SLO-associated LECs and LECs present along 
the lymphatic vessels. Unfortunately, such comparison studies 
have not been conducted. It is also uncertain whether liver LECs 
are able to acquire soluble antigens from the lymph and have 
antigen-presenting capacity.

Lymphatic endothelial cells are also actively involved in cho-
lesterol homeostasis, and the removal of cholesterol by lymphatic 
vessels is dependent on the uptake of HDL by scavenger receptor 
class B type I expressed in LECs (45–47). In line with this, endothe-
lial O-glycan deficiency led to disorganized lymphatic vessels and 
resulted in the development of fatty liver disease (NAFLD) due to 
the missing lymphatic removal of gut-derived lipid products (48). 
Since lipid metabolic changes are associated with various liver 
diseases, it will be interesting to evaluate in more details how this 
affects lymphatic function and vice versa how lymphatic changes 
are reflected in liver metabolic alterations.

LYMPHATiCS AnD LiveR DiSeASeS

Chronic Liver Diseases
Multiple studies have demonstrated that the lymphatic system is 
significantly altered during liver diseases. The number of lym-
phatic vessels as well as the lymphatic flow increases in fibrotic 
and cirrhotic livers (37, 49–52). This is in line with observations 
that VEGF-C and VEGF-D expression is elevated during fibrosis 
(51, 53, 54). More importantly, the increased lymphangiogenesis 
is positively correlated with disease severity (49, 52). Moreover, 
the higher flow observed within the lymphatics during liver dis-
eases could have additional consequences. Increased interstitial 
flow elevates the expression of cell recruiting cytokines (e.g., 
CCL21) and thus influences immune cell migration toward the 
draining LN (29). The flow at the same time likely reduces the 
portal pressure via channeling the excess fluid in cirrhosis and in 
portal hypertension (55).

Increased number of LECs is present during idiopathic portal 
hypertension (56), HCV-associated cirrhosis (52), and primary 
biliary cirrhosis (50). Given the wide-range of biological pro-
cesses where LECs are involved, it is likely that the increase in 
the number of lymphatic vessels possesses functions exceeding 
fluid handling. The inflammatory environment triggers cytokine 
production in LECs and therefore increases immune cell recruit-
ment (29). Additionally, bacterial products such as LPS (that is 
increased in portal vein during cirrhosis) induce not only chemo-
attracting cytokine production but also can activate Nf-Kb in 
LECs and thus consequently upregulate Prox1 and VEGFR-3 (57). 
Both molecules raise the sensitivity to VEGF-C and VEGF-D and 
thus influence lymphangiogenesis (57, 58). Within the liver, this 
remains to be elucidated.

Liver Tumor and Metastases Development
One of the consequences of liver diseases is the development 
of hepatocellular carcinoma (HCC). Human HCC samples 
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FiGURe 1 | The functional role of the lymphatics within the liver. (A) Besides fluid handling, the hepatic lymphatics transport various immune cell types, 
proteins, and vesicles to the draining LN. The LN provides the environment where not only tolerogenic but also immunogenic T cell response can arise that target 
liver pathogens/antigens. (B) LECs exhibit a variety of immunoregulatory functions that might be relevant for liver diseases. Future studies are necessary to evaluate 
all of these possibilities. Liver diseases with lymphatic/LEC alterations are depicted. CCC, colorectal carcinoma; ER, endocytic receptor; HCC, hepatocellular 
carcinoma; ICC, intrahepatic cholangiocytes carcinoma; MS, mechanosensors; SR, scavenger receptors, TLRs, toll-like receptors.
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displayed Lyve-1+ cells in the tumor-surrounding environment 
(37), and lymphatic vessels are present in the vicinity of meta-
static liver tumors (37, 59, 60). In line with this observation, 
VEGF-C- or VEGF-D-expressing liver tumors are more prone 
to spread within the liver (60). The liver metastases of colorectal 
cancer also exhibit gp38+ peri- and intra-tumoral lymphatic 
vessels that were correlated with tumor growth and metastases 
potential (61). Accordingly, intrahepatic invasion was the main 
prognostic marker for colorectal cancer and for intrahepatic 
cholangiocarcinoma and likely represents the main route of 
cancer dissemination in the liver (62–64). Indeed, intrahepatic 
cholangiocarcinoma is often associated with LN metastasis that 
translates to poorer outcome and reduced patient survival (63).

Lymphatic endothelial cells could facilitate such tumor cell 
spreading via CCL21–CCR7 interaction. Some colorectal cancer 
cells express CCR7 and thus could migrate toward the homeo-
static chemokine CCL21 expressed by LECs (29). Additionally, 
lymphatic flow-induced chemokine gradient (e.g., CCl21 or 
CXCL12) could be sufficient to drive metastases of tumors 
positive for cytokines as observed in gliomas (29, 65). The 
exact mechanisms for HCC and other liver cancers are not well 
understood. Similarly, LECs display multiple immunomodula-
tory roles within the tumor microenvironment. LECs induce 
the recruitment of regulatory T cells, alter features of tumor-
associated stroma, and contribute to the immunosuppressive 
milieu favoring tumor growth (29, 66, 67). Additional studies 
are necessary to evaluate these possibilities also for liver cancers 
and metastases.

SUMMARY AnD OUTLOOK

Taken together, the liver is a unique metabolic and immuno-
logical niche within the body. Its lymphatic system represents 
a complex anatomical organization with a large lymph output. 
Based on the repertoire of the biological functions associated 
with lymphatics and LECs (Figure 1), it is suggested that LEC 
expansion is not only a passive accompanying event during liver 
diseases. This is particularly interesting since LEC changes seem 
to be reflective of the type of peripheral inflammation (68). Thus, 
this line of research urges more attention and studies that clarify 
its exact contribution to liver disease pathogenesis. This is pos-
sible, as improved marker combinations allow the flow cytometry 
detection and sorting of these cells from the liver. This, together 
with other techniques (e.g., histological analyses), provides solid 
basis for further functional investigations. This could raise our 
understanding of liver diseases and open novel therapeutic 
opportunities.
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