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Traumatic brain injury (TBI) affects an ever-growing population of all ages with  long-term 
consequences on health and cognition. Many of the issues that TBI patients face are 
thought to be mediated by the immune system. Primary brain damage that occurs 
at the time of injury can be exacerbated and prolonged for months or even years by 
chronic inflammatory processes, which can ultimately lead to secondary cell death, neu-
rodegeneration, and long-lasting neurological impairment. Researchers have turned to 
rodent models of TBI in order to understand how inflammatory cells and immunological 
signaling regulate the post-injury response and recovery mechanisms. In addition, the 
development of numerous methods to manipulate genes involved in inflammation has 
recently expanded the possibilities of investigating the immune response in TBI models. 
As results from these studies accumulate, scientists have started to link cells and signal-
ing pathways to pro- and anti-inflammatory processes that may contribute beneficial or 
detrimental effects to the injured brain. Moreover, emerging data suggest that targeting 
aspects of the immune response may offer promising strategies to treat TBI. This review 
will cover insights gained from studies that approach TBI research from an immunological 
perspective and will summarize our current understanding of the involvement of specific 
immune cell types and cytokines in TBI pathogenesis.

Keywords: traumatic brain injury, neuroinflammation, cytokine, inflammasome, innate immunology, 
neuroprotection, microglia, neurodegeneration

iNTRODUCTiON

Traumatic brain injury (TBI) affects millions of people worldwide every year, and current estimates 
from the World Health Organization (WHO) suggest that TBI will be the third leading cause of 
death and disability by the year 2020 (1). In the US alone, upwards of 1.7 million Americans seek 
medical treatment for some form of brain trauma each year (2, 3), and nearly 2% of the American 
population, or approximately 5–6 million people, currently suffer from TBI-related disabilities (4). 
TBI is a particularly serious threat to health in newborns, children, the elderly, military service 
personnel, and athletes involved in contact sports. Trauma to the brain can result in persistent 
and debilitating impairments in cognition, sensory function, mental health, and motor function. 
Furthermore, TBI-induced inflammation and pathology have been strongly linked to increased risks 
of developing numerous neurological disorders including anxiety, depression, PTSD, Alzheimer’s 
disease (AD), chronic traumatic encephalopathy (CTE), Parkinson’s disease, and amyotrophic lateral 
sclerosis (ALS) (5–10).

Despite being a prevalent and pressing global medical issue, there are currently no FDA-approved 
therapeutics to treat TBI. In recent years, mounting evidence from both TBI patients and animal 
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FiGURe 1 | Beneficial and detrimental roles for the immune system in TBi. Common consequences of neuroinflammation after TBI include neuronal death 
and tissue loss, BBB breakdown and edema, upregulation of inflammatory mediators, and gliosis and cell infiltration. Researchers have evaluated these processes in 
order to understand which inflammatory cells and molecules potentiate (blue arrows) and inhibit (orange bars) the inflammatory environment of the brain. While we 
are beginning to link certain cells and molecules to their beneficial and detrimental effects in CNS injury, an important takeaway from these findings is that facilitators 
of inflammation may be involved in multiple processes at different points in time after injury.
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models of brain injury implicate dysregulated immune responses 
in the potentiation of TBI-induced neurological dysfunction and 
brain pathology (11–16). For instance, elevated cytokine produc-
tion is one of the strongest prognostic indicators of poor clinical 
outcomes in TBI (17–21), and brain trauma has been shown to 
induce immune-mediated inflammatory responses that can last 
for years post-injury (22, 23).

In addition to providing vital protective measures against 
pathogens and tumors, the immune system is also centrally 
involved in the restoration of tissue homeostasis following 
injury. Critical functions that are carried out by the immune 
system in response to injury include the sequestration of tissue-
damaging irritants, engulfment and disposal of cellular debris, 
and the promotion of the wound-healing response. Tissue 
damage that results from trauma, ischemia-reperfusion injury, 
metabolic distress, and environmental irritants provokes the 
release of damage-associated molecular patterns (DAMPs) [e.g., 
ATP, reactive oxygen species (ROS), damaged mitochondria, 
and necrotic cells] and alarmins [e.g., interleukin (IL)-1α, IL-33, 
HMGB1]. The recognition of DAMPs and alarmins by immune 
receptors then stimulates the local production of cytokines and 
chemokines at the site of injury, which subsequently coordinates 
the activation, expansion, and recruitment of immune cells to 
areas of tissue damage.

Brain trauma results in two phases of tissue injury. The 
first round of injury is a direct result of exorbitant mechanical 
impact to the brain tissue. The aftermath of a severe blow to the 
head results in immediate neuronal and glial cell death, axonal 
injury, disruption of the blood–brain barrier (BBB), edema, 
and the release of DAMPs and excitotoxic agents (24). The 
immune response to TBI is intended to promote neuroprotec-
tion and repair, but can become maladaptive if dysregulation 
occurs. Whether the immune response contributes to repair or 
further destruction ultimately depends on the nature, duration, 
and magnitude of the immunological events that develop in 
response to brain injury. If not properly controlled, the immune 
system can provoke a secondary phase of tissue damage and 
neuroinflammation. In contrast to the acute nature of the 
primary brain injury, the secondary tissue damage generally 
results in a diffuse, long-lasting injury. The fundamental role 
that the immune system plays in driving the secondary phase 
of tissue damage following brain trauma has led many to believe 
that immunomodulatory approaches may offer a much-needed 
strategy to treat TBI. In this review, we discuss how aspects of the 
immune response can influence clinical outcomes following TBI. 
In particular, we highlight recent findings from experimental 
models of TBI that define central roles for individual immune 
cell types and cytokines in TBI pathogenesis (Figure 1; Table 1).

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TABLe 1 | Key immune mediators involved in TBi pathogenesis.

Cell types Mediators Functions

Neutrophils CXCR2 (C–X–C motif chemokine receptor 2) Chemokine that mediates neutrophil migration
NE (neutrophil elastase) Enzyme released by neutrophils to degrade extracellular matrix

Macrophages 
and microglia

CD11b (cluster of differentiation 11b) Integrin that regulates migration of immune cells through tissues

CCR2 (C–C motif chemokine receptor 2) Chemokine receptor that coordinates monocyte chemotaxis
CX3CR1 (C–X3–C motif chemokine receptor 1) Chemokine receptor mediating macrophage and microglia migration
IBA1 (ionized calcium-binding adapter molecule 1) Calcium-binding protein associated with microglia and macrophage activation

T cells Rag1 (recombination activating gene 1) Enzyme that is required for B and T cell development
IL-4 (interleukin 4) Cytokine that aids in B and T cell proliferation and differentiation

Others IL-1 (interleukin 1) Pro-inflammatory cytokine that regulates transcription and production of 
multiple downstream inflammatory mediators

Caspase-1 Enzyme that cleaves pro-IL-1β and pro-IL-18 to induce inflammation
IL-18 (interleukin 18) Pro-inflammatory cytokine that activates NK and T cells
IL-6 (interleukin 6) Pleiotropic cytokine that induces a multitude of inflammatory responses
GFAP (glial fibrillary acidic protein) Intermediate filament protein expressed by astrocytes
TNFα (tumor necrosis factor α) Pleotropic cytokine that can promote cell death, inflammatory cytokine 

production, and cell proliferation
G-CSF (granulocyte colony-stimulating factor) Stimulates proliferation and differentiation of hematopoietic cells as well as 

neural progenitors
GM-CSF (granulocyte-macrophage colony-stimulating factor) Promotes generation and activation of myeloid cells and neurons
Type 1 IFN (type 1 interferon) Regulates transcription of pro-inflammatory cytokines and chemokines
IL-10 (interleukin 10) Negatively regulates pro-inflammatory cytokine production
TGF-β (transforming growth factor β) Controls proliferation and differentiation of multiple immune cell types
TREM2 (triggering receptor expressed on myeloid cells 2) Activates myeloid cells upon sensing lipoproteins, may be involved in debris 

removal and cell survival
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THe KiNeTiCS OF THe iMMUNe 
ReSPONSe TO BRAiN iNJURY

Upon brain injury, DAMPs and alarmins are released into the 
extracellular space where they can then signal through pattern-
recognition receptors (PRRs) and cytokine receptors on CNS 
resident cells. This promotes the production of cytokines and 
chemokines that are involved in coordinating the recruitment of 
immune cells to sites of tissue damage (Figure 2). Neutrophils are 
the first immune cells that are recruited to the brain in response 
to trauma (25, 26). They first appear in the sub-arachnoid and 
vascular space surrounding the site of tissue damage within 
hours of injury. Neutrophils then begin to infiltrate into the brain 
parenchyma at 24 h post-injury (27). As the first responders, they 
play critical roles in the containment of the injury lesion and in 
the removal of cellular debris and damaged cells. Neutrophils 
predominate during the first days following injury; however, 
their numbers diminish greatly between days 3 and 5 post-
injury. This time point coincides with the recruitment of other 
peripheral immune cells and the local activation of microglia and 
astrocytes. CCR2-expressing monocytes are the major immune 
cell population that infiltrates into the damaged tissue at days 
3–5 post-injury, although T cells, natural killer (NK) cells, and 
dendritic cells (DCs) can also be detected around the injury 
site (15, 28–30). The coordinated production of chemokines 
following trauma orchestrates the recruitment of immune cells 
to areas of brain injury. The major chemokine pathways that are 
involved in mobilizing immune cells to brain damage have been 
comprehensively reviewed recently (11, 31–33) and will not be 
covered in great detail in this review. By 2 weeks post-injury, the 

brain is largely devoid of any infiltrating immune cells. However, 
activated microglia and astrocytes and elevated levels of inflam-
matory cytokines can be detected for months to years following 
brain injury (22, 23, 34, 35). This is unlike what is seen following 
tissue damage in other peripheral organs, where tissue resident 
macrophages and stromal cells typically return to a resting 
or immunologically quiescent state within weeks post-injury. 
The existence of activated glial cells and aberrant regulation of 
cytokine expression for months to years post-TBI suggests that 
the immune response to TBI can persist for long periods beyond 
the initial trauma.

iNvOLveMeNT OF iMMUNe CeLL 
TYPeS iN TBi

Neutrophils
Considering their role in vascular permeability and edema in 
peripheral tissues, neutrophils have largely been implicated in 
BBB breakdown and edema in TBI. However, it is still unclear 
how their activity is related to these processes. Early TBI papers 
agree that neutrophils can accumulate at sites of injury within 
hours post-injury (26, 36) and that the number of neutrophils 
that are recruited to sites of brain trauma typically correlates with 
the severity of the injury (37). However, studies on the role of 
neutrophils in mediating BBB breakdown, edema, and neurode-
generation have been inconclusive. Although neutrophilia has 
been reported to coincide with BBB breakdown and neurode-
generation, these processes seem to be disconnected spatially and 
temporally from the invasion of neutrophils (26). Furthermore, 
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FiGURe 2 | Timeline of the immune response to TBi. Upon an impact to the head, cellular damage results in the rapid release of damage-associated molecular 
patterns (DAMPs) that prompt resident cells to release cytokines and chemokines. These signals quickly call in neutrophils, which aid in the containment of the injury 
site and promote the removal of debris and damaged cells. As neutrophil numbers begin to decline after a period of days, infiltrating monocytes and activated glia 
begin to accumulate around the site of injury to perform reparative functions. Depending on the severity of the brain injury, T and B cells can also be recruited to 
sites of brain pathology at later time points in the response (3–7 days post-injury).
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efforts to deplete neutrophils have been unsuccessful in linking 
them to loss in BBB integrity (36), which was thought to be the 
event responsible for subsequent edema and neuronal death.

Due to these early findings, researchers began to think of 
neutrophil activity and tissue edema as having important con-
sequences independent of BBB breakdown. Kenne et al. used an 
anti-Gr-1 antibody to deplete neutrophils in a cortical controlled 
impact (CCI) model and found that neutrophil depletion led to 
decreased edema for at least 48 h after injury, but did so without 
ameliorating BBB permeability (38). Neutrophil depletion was 
associated with decreased numbers of apoptotic cells, reduced 
macrophage/microglia activation in the cortex, and mitigated 
tissue loss. These data are similar to results from CXCR2 knock-
out mice, which were used by Semple et al. to reduce CXCR2-
mediated infiltration of neutrophils after TBI (39). These mice 
did show reduced neutrophil infiltration into the brain, but BBB 
breakdown appeared similar to wild-type mice. While they also 
showed significantly less cell death within the lesion, this did not 
have an impact on functional outcome. Collectively, these two 
studies suggest that neutrophil depletion may have neuropro-
tective effects in TBI without necessarily being linked to BBB 
breakdown.

Further research into the importance of neutrophil activity 
post-TBI has begun to characterize the mechanisms involved in 
neutrophil-mediated neurodegeneration at early time points. For 
instance, Semple et al. used neutrophil elastase (NE) knockout 
mice in a CCI model to investigate how neutrophil effector 

functions contribute to secondary tissue damage and neuro-
logical dysfunction following brain trauma (40). They found that 
NE-deficient mice exhibit significantly diminished edema at 24 h 
after injury. However, this was not associated with reductions in 
neutrophil numbers or decreased production of matrix metal-
loproteinase-9 (MMP-9), which is known to regulate neutrophil 
migration by promoting extracellular matrix breakdown and/
or through the modulation of chemokine activity. NE knockout 
mice also had reduced numbers of apoptotic neurons as well as 
lower heme-oxygenase levels in the hippocampus at 24  h after 
injury, indicating attenuated cell death and a less severe oxidative 
state. However, these early neuroprotective effects did not prevent 
cortical or hippocampal volume loss in the long-term, which may 
explain why NE deficiency was not found to improve behavioral 
performance at 2  months post-injury. These findings suggest 
that NE activity contributes to injury-induced edema and early 
neurodegeneration.

Thus, it is becoming clearer that neutrophils are linked to 
cerebral edema and neuronal death in TBI, but the relationship 
between neutrophil activity and BBB breakdown is not as clear 
as previously thought. It is likely that the distinct differences 
between the BBB and other vascular barriers outside the brain 
mean that the BBB structure has a different relationship with 
neutrophils that remains to be elucidated. In future studies, it 
will be important to investigate whether vascular edema in TBI is 
directly responsible for releasing cytotoxic substances that cause 
neuronal death following TBI or whether neutrophils and other 
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inflammatory cells within the parenchyma are the primary source 
of neurotoxic factors that promote cytotoxic edema and early 
neurodegeneration in TBI.

Macrophages and Microglia
There has been tremendous interest in defining the discrete roles 
of macrophages and microglia in TBI. Activated microglia and 
macrophages release pro- and anti-inflammatory factors that 
can signal to resident and peripheral cells to promote or resolve 
the inflammatory response to trauma. Chronically activated 
microglia and macrophages have been found in rodent models 
and humans after TBI (22, 23, 41, 42) and are considered to be 
one of the hallmarks of unresolved inflammation that may have 
long-term consequences (43, 44).

Groups have utilized different methods to deplete microglia 
and macrophages in vivo in order to characterize their roles in 
TBI-induced neuroinflammation, tissue damage, and neurologi-
cal dysfunction. Two of these methods use targeted depletion of 
CD11b-expressing cells with transgenic CD11b-TK (thymidine 
kinase) and CD11b-DTR (diphtheria toxin receptor) mice (45, 
46). While both methods were effective in reducing their target 
cell types post-TBI, neither attenuated signs of tissue damage 
such as axonal injury and lesion size. However, it should be 
noted that both of the treatment approaches that were used to 
deplete CD11b-expressing cells in these studies were found to 
cause inflammation even in uninjured mice. Therefore, it is likely 
that triggering inflammation before injury had an effect on the 
outcomes that were observed in these studies.

The chemokine receptor CCR2 plays critical roles in the 
recruitment of monocytes/macrophages to the brain, and, as a 
result, suppression of CCR2 signaling is often exploited to reduce 
the effects of infiltrating monocytes/macrophages in TBI studies. 
Numerous recent reports have shown that abrogating CCR2-
mediated events can markedly limit both TBI-induced neuroin-
flammation and cognitive decline. For instance, Morganti et al. 
found that the CCR2 antagonist CCX872 reduces accumulation 
of peripheral macrophages in the brain and alters the regula-
tion of several pro- and anti-inflammatory cytokines as well as 
NADPH oxidase (NOX2) production after CCI (47). These effects 
were associated with less severe hippocampal-dependent cogni-
tive dysfunction. Similarly, CCR2 deficiency in another CCI 
study reduced numbers of infiltrating monocytes and rescued 
long-term spatial learning and memory deficits in the Morris 
water maze (MWM) test (48). Another group disrupted CCR2 
activity by knocking in a red fluorescent protein (RFP) protein 
at the Ccr2 gene locus in mice. In their studies, they found that 
impaired CCR2 signaling prevents monocyte recruitment into 
the brain and reduces cavity volume and axonal pathology fol-
lowing fluid percussion injury (FPI) (49). Taken together, these 
studies indicate that inhibition of CCR2-mediated cell infiltration 
limits neurodegeneration and neurological decline following 
brain trauma.

A recent study by Zanier et al. used CX3CR1 knockout mice 
to disrupt CX3CL1 chemokine signaling in order to understand 
its importance in controlling myeloid cell activity in TBI (50). 
After receiving a CCI injury, CX3CR1 knockout animals showed 
neurological protection 4 days following TBI. However, while 

wild-type mice returned to pre-injury levels of neuroscore per-
formance by 5 weeks post-injury, CX3CR1-deficient mice still 
exhibited appreciable impairments in neuroscore performance 
at this time point. This decline in neuroscore performance 
at later time points in Cx3cr1−/− mice was associated with 
persistent neuronal death and an overall decrease in neuronal 
numbers. Further investigation into the effects of disrupted 
CX3CR1 signaling on macrophages and microglia showed that 
these cell types exhibit a more protective, anti-inflammatory 
phenotype in injured CX3CR1-null mice than seen in injured 
controls at early time points. However, at 5  weeks post-TBI, 
CX3CR1-deficient mice showed signs of elevated myeloid cell 
activation as compared to wild-type animals. Taken together, 
these results indicate that while early CX3CR1 signaling may 
have detrimental effects, this signaling is necessary at later time 
points post-brain injury to prevent long-term inflammation and 
cognitive impairment.

Another issue facing the TBI field is how to best define inflam-
matory cell types. Using principal component analysis (PCA) 
and microarray analysis of brain macrophages, Hsieh et al. found 
that the subset of macrophages expressing the M2 (alternatively 
activated macrophages)-associated marker arginase-1 (Arg1) 
had a distinctly different transcriptional profile from arginase-
1-negative cells, but that the genes they expressed after TBI did 
not match traditional M2 markers (51). They found that while 
Arg1+ and Arg1− macrophages expressed a variety of M1 and M2 
markers, they differed distinctly in their chemokine profiles and 
several genes involved in injury protection and wound healing. 
These data indicate that delineating macrophages by an M1 (clas-
sically activated macrophages) or M2 phenotype in TBI obscures 
other macrophage subsets that may have distinct roles in the 
injury response.

Emerging data also suggest that macrophage phenotypes may 
be more flexible than once thought. Wang et al. set out to charac-
terize the timeline of M1 and M2 macrophage/microglia activity 
after CCI. By tracking M1 macrophages/microglia with the 
marker CD16/32 and M2 macrophages/microglia with CD206, 
they found that at 3 and 7 days after injury the majority of Iba1+ 
cells assumed an M1 phenotype, yet at day 5 there was a rise in 
M2 macrophage/microglial cell numbers (52). This shift from an 
M1 state to an M2 phenotype and back may provide protection 
from possible detrimental effects of a prolonged state of either 
phenotype. The authors also found that white matter injury cor-
related with M1 cells, peaking at 3 and 7 days.

Clarifying the activation timeline and phenotypes of mac-
rophages and microglia will likely be important in understanding 
how unresolved inflammation can lead to long-term detrimental 
consequences. An emerging body of literature is beginning to 
define how microglia and macrophages can be primed by TBI and 
generate exaggerated immune response and functional deficits 
upon secondary immune challenge. For example, injection of 
LPS at 30 days after injury in an FPI model induced more robust 
inflammatory cytokine production by CD11b-expressing cells 
in TBI animals than in controls (53). This was associated with 
decreased social exploratory behavior at 24 h after LPS injection 
as well as depressive behaviors. This same group found that 
secondary immune challenge also caused learning and memory 
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deficits that could be linked to TBI-mediated microglia priming 
(54). These data indicate that at long-term time points, when 
behavioral deficits appear to have normalized following brain 
injury, a second immune challenge can produce further cognitive 
decline.

Taken together, these studies provide examples of how the 
TBI field is beginning to characterize macrophage and microglia 
migration, activation, and priming in relation to functional 
deficits after TBI. An important consideration for this field is that 
many authors choose to study both macrophages and microglia 
as a combined population, acknowledging that it is difficult to 
distinguish them within an inflammatory context using current 
markers, such as CD11b, CD45, CX3CR1, and IBA1. However, 
considering the importance of these cells in both the short 
and long-term inflammatory states, more specifically targeted 
techniques would help to define their discrete roles. In addition, 
considering the timeline of their activation, adapting methods 
to study macrophage and microglia signaling over the acute and 
chronic phases of TBI will be necessary in order to uncover time-
dependent beneficial and detrimental effects as well as identifying 
effective therapeutic windows.

T Cells
The kinetics of T cell infiltration have been described in TBI 
patients and animal models (55–57), but it still remains unclear 
what role(s) they play in brain trauma-associated wound-healing 
responses. In a study by Weckbach et al., Rag1−/− mice were used 
to investigate how the absence of B and T cells influences brain 
pathology and neurological impairment following weight drop-
induced TBI (58). Surprisingly, lacking the adaptive arm of the 
immune system did not appreciably affect neurological outcome, 
BBB integrity, pro- or anti-apoptotic mediators, hippocampal 
architecture, or astroglial activation in these studies.

In a separate study, Mencl et al. used the sphingosine-1-phos-
phate receptor agonist and lymphocyte sequesterer FTY720 to 
inhibit T cell migration to the brain following TBI (59). While 
FTY720 did decrease the numbers of circulating lymphocytes, it 
did not provide any protection to TBI animals in terms of lesion 
volume, neuroscore, apoptotic neurons, BBB maintenance, or 
edema. However, FTY720 was found to reduce the numbers of 
neutrophils and macrophages/microglia in the ipsilateral hemi-
sphere at 1  day after injury. Thus, future investigations should 
evaluate the ability of T cells to regulate the infiltration of other 
immune cells into sites of brain injury.

In future studies, it will be important to move away from 
methods that promote global defects in T cell responses and 
consider more specific effects of T cell subsets on TBI progres-
sion. In other models of CNS injury, T cells have been found 
to confer neuroprotection (60–62). For example, Walsh et  al. 
recently reported that protection after spinal cord injury (SCI) 
is guided by specific T cell-derived cytokines, particularly IL-4 
(63). Their interest in IL-4 stemmed from the observation that 
T cells within the site of injury were the major producers of 
IL-4 in their model and that functional recovery was markedly 
delayed following SCI in IL-4 knockout mice. They found that 
reconstituting Rag1−/− mice with IL-4-deficient T cells prior 
to injury did not lead to functional recovery, but transfer of 

wild-type T cells did. In addition, a MyD88-dependent Th2 
skew of T cells was necessary to produce IL-4 and induce 
elevated neurotrophin signaling and axonal outgrowth both 
in  vitro and in  vivo. This insight into T cell subsets in injury 
recovery may apply to the TBI field, and thus warrants more 
specific investigations.

iNFLAMMATORY MeDiATORS iN TBi

interleukin-1
Interleukin-1 is a potent pro-inflammatory cytokine that has 
been implicated in numerous inflammatory and neurological 
disorders. Secretion of IL-1 must be tightly regulated in the 
brain, as unchecked IL-1 production has been shown to provoke 
neuroinflammation and neurodegeneration. There are two dis-
tinct forms of IL-1 – IL-1α and IL-1β – both of which can induce 
similar levels of inflammatory signaling following engagement of 
IL-1 receptor (IL-1R). Although IL-1α and IL-1β evoke almost 
identical downstream inflammatory responses, their expression 
patterns and requirements for activation differ greatly. IL-1α is 
constitutively expressed by all nucleated cells, and secreted full-
length IL-1α can transmit inflammatory signaling without the 
need for further modification or processing. In contrast, IL-1β is 
generated as a biologically inactive pro-form protein that requires 
cleavage to elicit its inflammatory properties and secretion (64). 
Caspase-1 activation in inflammasome complexes has emerged 
as a major mechanism for both IL-1β cleavage and IL-1α release 
(14, 65–69), although recent studies have also begun to identify 
additional inflammasome-independent pathways that promote 
IL-1 production (64, 70–72).

Interleukin-1β is one of the most frequently measured cytokines 
in the TBI literature, and it has been shown to be increased after 
TBI in humans and mouse models (46, 47, 53, 73–83). During 
neuroinflammation, IL-1β is known to have profound effects on 
BBB permeability, glial activation, immune cell recruitment, and 
neurodegeneration (84–86) and is likely one of the first immune 
mediators as it peaks early after injury. IL-1β is known to strongly 
enhance inflammatory responses following TBI, and this has led 
many to postulate that IL-1 production may negatively impact 
clinical outcomes following brain trauma (75).

Recently, progress has been made using methods to neutral-
ize or antagonize the activity of IL-1β in TBI. In two different 
studies, Clausen et al. administered an anti-IL-1β neutralizing 
antibody to CCI-injured animals through 14  days after TBI 
(87, 88). In these studies, IL-1β neutralization led to a decrease 
in the numbers of microglia/macrophages, neutrophils, and T 
cells in the brain, especially at 7 days after injury. Although they 
did not report appreciable differences in motor coordination 
performance during the rotarod test, they did observe better 
performance during learning trials in the MWM, as well as 
decreased tissue loss at experimental endpoints for anti-IL-1β-
treated animals.

In other models of CNS injury, IL-1α upregulation precedes 
that of IL-1β and IL-1α deletion limits neuronal damage and pro-
motes accelerated functional recovery (89). IL-1α has also been 
suggested to jump start an inflammatory loop that is sustained 
and enhanced upon the upregulation of IL-1β, accounting for the 
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excess of IL-1 signaling commonly seen in inflammatory states 
(90). Thus, future studies should investigate the effects of IL-1α 
separately from IL-1β, as their baseline expression, regulation, 
and secretion differ significantly and may thus control the kinet-
ics of inflammation in different ways.

In humans, the recombinant IL-1 receptor antagonist anak-
inra is currently being tested to treat severe TBI, as it has shown 
some promise in the treatment of stroke (91). Helmy et al. used 
anakinra with PCA analysis to demonstrate that IL-1 signaling 
is a pivotal upstream regulator of TBI-induced cytokine produc-
tion (92), which, they showed in a later trial, may lead to a shift 
in macrophages to express higher levels of pro-inflammatory 
cytokines such as granulocyte-macrophage colony-stimulating 
factor (GM-CSF) and IL-1β (93). This result is somewhat 
surprising considering the antagonistic effect on IL-1 signaling 
anakinra would be expected to have, but it suggests that further 
exploration into the mechanisms involved as well as delineation 
of the distinct functions of IL-1α and IL-1β during neuroinflam-
mation will likely yield critical insights into the regulation of TBI 
pathogenesis by IL-1 signaling.

As described briefly above, inflammasome signaling has 
emerged as a major mechanism involved in IL-1 production. 
Inflammasomes are multiprotein complexes that coordinate 
caspase-1-mediated inflammatory cytokine production and 
cell death. Recent studies have shown that aberrant regulation 
of inflammasome signaling is a major driver of inflammation 
and pathology in multiple models of tissue damage, including 
stroke, macular degeneration, and renal ischemia (16, 66, 73, 94, 
95). Inflammasomes consist of a sensor molecule such as a Nod-
like receptor (NLR) or a pyrin/HIN domain-containing protein 
(PYHIN) family receptor, the adaptor protein ASC (apoptosis 
associated speck-like protein containing a CARD), and cas-
pase-1. To date, five receptors – NLRP1, NLRP3, NLRC4, AIM2, 
and PYRIN – have been discovered to promote inflammasome 
signaling. Following the detection of their cognate danger- or 
pathogen-associated triggers, inflammasome-associated NLRs 
and PYHIN family receptors promote rapid inflammasome 
complex formation. The coordinated assembly of this multi-
protein inflammasome platform promotes activation-inducing 
auto-cleavage of caspase-1. Activated caspase-1 can then cleave 
both pro-IL-1β and pro-IL-18, which is required to elicit their 
inflammatory properties and for their secretion. Bioactive 
caspase-1 also provokes pyroptosis, which is a gasdermin 
D-mediated inflammatory form of cell death that is associated 
with the release of the pro-inflammatory alarmins IL-1α and 
HMGB-1 (96, 97).

Since the finding that inflammasome proteins are upregu-
lated after TBI in human patients (98), significant attention has 
been paid to identify the inflammasome-associated signaling 
events that are engaged in response to brain trauma (14, 99, 
100). Inflammasome literature has identified the expression of 
NLRP1, NLRP2, and NLRP3 as well as AIM2 inflammasomes 
in microglia, neurons, and astrocytes in the CNS (100–104). 
Furthermore, recent studies in CNS injury models have 
uncovered critical roles for inflammasome signaling in driving 
inflammatory responses following tissue damage in the CNS. 
For instance, SCI leads to the upregulation and assembly of 

NLRP1 inflammasome components in spinal cord neurons 
(105). Moreover, neutralizing anti-ASC antibody treatment 
was also found to improve histopathological and functional 
outcome following SCI in these studies. In stroke models, 
methods to reduce inflammasome signaling, such as anti-
NLRP1 neutralizing antibodies and caspase-1 inhibitors, as well 
as NLRP3, ASC, NLRC4, and AIM2 knockout mice, have all 
shown signs of improved functional recovery and reductions 
in inflammasome signaling (73, 103, 106, 107). Similarly, in an 
intracerebral hemorrhage model, both small interfering RNA 
and a selective inhibitor of the purinergic receptor P2X7R, 
which has been shown to promote NLRP3 activation in some 
experimental settings (108), limited inflammasome activation 
and led to neuroprotection (109). Considering the consistent 
benefits of inhibiting inflammasome components across these 
models, the inflammasome provides a tempting target for 
alleviating CNS injury.

Additional insights into the timing and importance of inflam-
masomes in CNS injury have been gained from recent TBI studies. 
In an FPI model, inflammasome components, such as ASC and 
caspase-1, were shown to be upregulated in cortical neurons for 
up to 24 h post-injury (110). Co-immunoprecipitation of inflam-
masome proteins also demonstrated that NLRP1 and ASC could 
be detected in multiprotein complexes in the brain. Treatment 
with an ASC-neutralizing antibody reduced caspase-1 activa-
tion and IL-1β production while also decreasing lesion volume, 
suggesting beneficial effects of targeting inflammasome activity. 
Liu et  al. also recently showed that TBI results in upregulated 
expression of NLRP3, ASC, and caspase-1. Moreover, they report 
that the expression of these inflammasome-associated proteins 
can remain elevated out to 7 days post-injury (111). Importantly, 
inflammasome components in this model localized not only to 
neurons, but also to astrocytes and microglia, suggesting a wide 
range of inflammasome activation across cell types. Measurements 
of IL-1β and IL-18 protein levels also demonstrated that while 
IL-1β peaks around 6 h after injury and subsequently decreases 
over time, IL-18 expression remains elevated through 7 days after 
injury. In agreement with these findings, a separate study also 
reported elevated IL-18 production for at least a week post-TBI in 
both humans and experimental animals (112). These data suggest 
that early inflammasome production of IL-1β may be involved 
in acute inflammation and tissue damage, while inflammasome-
driven IL-18 may contribute to the perpetuation of TBI-induced 
inflammation. It should be noted, however, that in a more recent 
study neither NLRP1 nor ASC knockout mice exhibited any 
improvements in lesion volume, histopathology, cell death, or 
motor function following CCI injury (81). It is possible that dif-
ferences in the extent of caspase-1 abrogation and/or the timing 
of inflammasome inhibition or differences in injury models may 
help explain the disparate results that were reported in these 
studies.

Although key roles for inflammasomes have been clearly 
identified in other models of sterile inflammation and trauma, 
the specific contributions of inflammasome activation to TBI 
pathogenesis have only recently been investigated and multiple 
questions remain. For instance, although the formation of 
inflammasome complexes has been reported following TBI, the 
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roles that specific inflammasomes play in driving TBI-associated 
pathology and neurological dysfunction have not been studied 
in great detail in animal models. In addition, the individual 
contributions of inflammasome-derived cytokines (i.e., IL-1α, 
IL-1β, and IL-18) and caspase-1-mediated cell death in TBI 
pathogenesis still remain poorly characterized. The major cell 
types in which inflammasomes operate to promote TBI progres-
sion have also not been formally defined to date. The genetic 
targeting of inflammasome signaling components in mice has 
aided in the discovery of critical roles for inflammasomes in other 
models of sterile inflammation. Future in vivo TBI studies that 
utilize these genetic tools should help to more fully characterize 
the contributions of specific aspects of inflammasome signaling 
in brain trauma.

interleukin-6
Interleukin-6 has frequently been associated with TBI outcome in 
humans, but it is unclear whether its role is primarily beneficial 
or detrimental. Microdialysis fluid detection of parenchymal IL-6 
production has been associated with improved survival in TBI 
patients (21). However, more recent evidence points to a detri-
mental role for IL-6 in TBI (113). In these studies, plasma levels of 
IL-6 were shown to be significantly higher in severe TBI patients 
over moderate TBI patients. Both subacute and chronic serum 
levels of IL-6 have been associated with unfavorable short and 
long-term outcomes (75). In separating human patients by high 
or low cerebrospinal fluid (CSF) IL-6 trajectory, high trajectory 
patients are much more likely to have unfavorable clinical out-
comes (76). Thus, while the role of IL-6 in TBI is still somewhat 
unclear, data from TBI patients indicate that IL-6 is consistently 
upregulated after TBI and can remain elevated in chronic stages, 
making it a potentially important mediator of long-term outcome.

Early animal studies verified that IL-6 is elevated in CSF and 
serum after TBI (114). Evidence from IL-6 knockout mice has 
also confirmed it as a pro-inflammatory cytokine that recruits 
activated glia and immune cells to sites of injury. Indeed, genetic 
ablation of IL-6 in cryolesioned mice resulted in fewer reactive 
astrocytes and macrophages and increased neuronal death 
(115). Conversely, overexpression of IL-6 in astrocytes enhanced 
recruitment of glia and immune cells to the lesion site and 
decreased both oxidative stress and neuronal death (115, 116). 
These studies suggest that IL-6’s role in inducing inflammation 
and glial scar formation is important in reducing prolonged 
cell death. A later CCI study also pointed to beneficial effects of 
IL-6 by showing that its deficiency leads to significantly poorer 
performance on behavioral tests as well as higher IL-1β protein 
levels in the cortex, suggesting that IL-6 may be an important 
regulator of IL-1β in TBI (117). However, a more recent study 
using a weight drop model showed that systemic neutralization 
of IL-6 mitigates some of the inflammatory and behavioral effects 
of hypoxia on exacerbating post-injury responses, implying that 
reducing the inflammatory response induced by IL-6 can indeed 
provide neuroprotection and lead to better outcome (118). When 
considering these types of studies, it is important to keep in mind 
the difference between complete or partial removal of a gene and/
or its product. It is likely that some level of IL-6 is necessary to 
produce an inflammatory state that positively affects outcome 

such that either complete elimination or overexpression of IL-6 
can be detrimental.

Tumor Necrosis Factor α
Early work on the role of tumor necrosis factor (TNFα) in TBI 
mouse models suggested that it has early deleterious effects after 
TBI while exhibiting more protective effects in chronic stages 
(119). However, other work suggested that TNFα is necessary 
to protect from early mortality within a week of injury (120). 
Regardless of these contradictions, literature on TNFα in TBI 
consistently shows an upregulation of this cytokine after injury 
(74, 75, 113, 121), suggesting an important role for TNFα in both 
the acute and chronic phases.

The importance of TNFα early after injury was recently 
confirmed in a weight drop model. In this study, mice receiving 
a TNFα inhibitor at 1 and 12  h after injury showed improved 
cognitive performance 1 week post-injury, but mice administered 
the inhibitor at 18 h post-injury did not, implying a very short 
window for TNFα-targeting therapeutics after TBI (122). Further 
investigation of the mice given the inhibitor at 1 h showed fewer 
apoptotic neurons and less astrogliosis at 72 h after injury in both 
the cortex and dentate gyrus. This study outlines a 12-h window 
after injury during which the detrimental effects of TNFα may be 
attenuated, and points toward a tentative link between TNFα and 
prolonged astrogliosis and neuronal death.

Aside from defining the timing of TNFα activity in TBI, it 
will be important to elucidate the pro-apoptotic and pro-survival 
pathways in which it participates following brain trauma. In 
conjunction with its role as a major inflammatory switch, TNFα 
is known to induce both cell proliferation and apoptosis through 
several signaling pathways. While its activation of transcription 
factors, such as NF-κB and AP-1, can lead to transcription of 
inflammatory and apoptotic mediators, signaling through death 
receptors to activate caspases can also play an important part in 
determining cell death or survival. A recent article by Longhi 
et  al. showed that separate deletion of either TNF receptor 1 
(TNFR1) or 2 (TNFR2) can have opposite effects on cell survival 
and behavioral deficits (123). Using p55 (TNFR1) and p75 
(TNFR2) knockout mice in a CCI model of TBI, they showed that 
TNFR1 deletion attenuated neuroscore deficits through 4 weeks 
post-injury and led to a shift to pro-survival signaling along with 
attenuated neuronal death and smaller lesion volume. TNFR2 
knockout had the opposite effect in worsening neuroscore with 
no signs of pro-survival signaling or protection from cell and 
tissue loss. The TNFR1 knockout mice also showed a smaller 
area stained for CD11b as well as a higher area stained for Ym1, 
a marker for anti-inflammatory macrophage phenotypes, com-
pared to the TNFR2 knockout group, suggesting opposite roles 
for the two receptors in recruiting inflammatory macrophages 
and microglia to the site of injury. These data agree with a paper 
by Yang et al. in which TNFR2/Fas knockout mice showed worse 
motor and cognitive performance after CCI TBI, although in that 
study neither TNFR1 or TNFR2 knockout alone had an effect on 
lesion volume or the number of dead cells in the cortex (124). 
Together, these studies indicate that the TNF receptors may play 
different roles post-injury, with TNFR2 providing a neuroprotec-
tive role and TNFR1 playing a detrimental one.
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An important consideration about TNFα signaling is that due 
to the much wider expression of TNFR1 across cell types as well 
as its ability to respond to both forms of TNF (both soluble and 
transmembrane), this receptor could have more potent inflam-
matory consequences than its counterpart TNFR2. In addition, it 
has been shown that TNFR1 can signal through NF-κB, JNK, and 
caspase-mediated apoptotic pathways, while it is more common 
for TNFR2 to engage NF-κB and PI3K to induce pro-inflamma-
tory and pro-survival signaling (125, 126). Thus, consolidating 
seemingly contradictory evidence for the role of TNFα in TBI 
with regards to cell death and clinical outcome will likely involve 
understanding the conditions under which its various forms and 
receptors participate in different survival or death pathways and 
the timeline on which this signaling can occur.

Granulocyte Colony-Stimulating Factor/
Granulocyte Macrophage Colony-
Stimulating Factor
Both granulocyte colony-stimulating factor (G-CSF) and 
GM-CSF are involved in the expansion and mobilization of 
immune cells from the bone marrow and act as key cytokines in 
the inflammatory response. Interestingly, some recent evidence 
suggests that both G-CSF and GM-CSF may play a protective role 
in TBI. A recent paper using G-CSF administration after a CCI 
injury showed that G-CSF injection improves cognitive recovery 
and increases neurogenesis in the hippocampus (127). This was 
accompanied by higher activation of astrocytes and microglia as 
well as higher levels of brain-derived neurotrophic factor (BDNF) 
and glial cell line-derived neurotrophic factor (GDNF), indicat-
ing that G-CSF may regulate production of neurotrophic factors 
by activated glia post-TBI to promote neurogenesis. Similarly, 
a study using GM-CSF knockout mice showed that GM-CSF 
deficiency in TBI results in more cognitive deficits with higher 
tissue and neuronal loss after FPI (128). GM-CSF knockout mice 
also showed reductions in astrogliosis, which may suggest that 
GM-CSF plays a role in activating astrocytes to protect cells and 
boost tissue repair. Understanding how both of these molecules 
interact with glia to promote neuronal protection and regen-
eration may elucidate how other neuroprotective processes may 
involve glial functions.

Type 1 interferon
Increasing evidence points toward central roles of type 1 
interferon (IFN) signaling in inflammatory CNS disorders and 
age-related cognitive decline (129–132). A recent study by Karve 
et al. is one of the first to investigate the involvement of type 1 IFN 
signaling in TBI pathogenesis (82). They found that deficiency 
in type 1 IFN signaling produced by either type 1 IFN receptor 
(IFNAR) knockout or an IFNAR blocking antibody reduces 
lesion volume. This neuroprotection was associated with a shift 
toward more anti-inflammatory cytokine signaling; however, 
this also coincided with increased GFAP and IBA1 staining. In 
addition, using a bone marrow chimera, they found that IFNAR 
deficiency in hematopoietic cells alone was sufficient to confer 
lesion volume protection and elevated GFAP and IBA1 staining. 
Importantly, they also showed that brain trauma in humans 

promotes enhanced expression of type-1 IFN, which suggests that 
type-1 IFN signaling may potentially influence clinical outcome 
in TBI patients.

interleukin-10
Interleukin-10 has been shown to be elevated in TBI patients 
(78, 133–135) and has been associated with unfavorable outcome 
and mortality (75, 134, 135). Despite these associations, Chen 
et al. found a role for IL-10 in conferring neuroprotection with 
hyperbaric oxygen (HBO) treatment (80). They found that the 
protective effects of HBO in TBI included reduced lesion volume 
and edema, improvements in cognitive performance, and the 
dampening of pro-inflammatory cytokine production in the 
cortex. It also led to a shift from apoptotic to cell survival path-
ways and greater BBB integrity. This wide range of positive effects 
was diminished in IL-10-knockout mice, and IL-10 injection by 
itself improved lesion volume, edema, and cognitive outcome 
in both wild-type and IL-10-knockout animals. This indicates 
an important protective role for IL-10 in TBI as well as a way to 
induce its production through HBO treatment. It is possible that 
the association between IL-10 (and likely many other cytokines) 
and poor outcome is primarily due to a widespread upregulation 
of cytokines after TBI, and that a more informative approach to 
understanding the role of IL-10 after brain injury involves dis-
secting its specific roles in damage responses.

Transforming Growth Factor β
Transforming growth factor β (TGFβ) increases acutely in the 
serum and CSF of TBI patients (136). Several mediators of TGFβ 
signaling have been shown to be upregulated in TBI models (79, 
137, 138). For example, transforming growth factor beta-activated 
kinase 1 (TAK1) was shown to increase in expression and is 
detected in cortical neurons and astrocytes after weight drop TBI 
(79). Inhibition of TAK1 signaling improved neuronal survival 
and motor function and also decreased NF-κB activity and 
inflammatory cytokine release. Transforming growth-interacting 
factor (TGIF), a transcriptional co-repressor of TGFβ that can 
inhibit transcriptional activation of TGFβ, was demonstrated to 
be upregulated in TBI animals and localized to both neurons and 
microglia (138). Using small hairpin RNA to knockdown TGIF 
levels in the brain, the authors found that lower TGIF levels led 
to a decrease in infarct volume and microglia number around the 
lesion, as well as a change in microglia morphology. Knockdown 
of TGIF also improved motor function through 2  weeks after 
injury. These data indicate that mediators of TGFβ signaling can 
have important inflammatory consequences.

FUTURe PeRSPeCTiveS

As highlighted in this review, increasing experimental evidence 
indicates that the immune system can profoundly influence clini-
cal outcomes following TBI. Importantly, various recent studies 
have shown that targeting immune signaling with genetic and 
pharmacological approaches can lead to significant improve-
ments in neurological function and tissue repair post-TBI. 
Both neuroprotective and detrimental roles have been assigned 
to the immune system in TBI. Whether the immune response 
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TABLe 2 | Genetic models used to characterize the role of immune cell types and signaling pathways in TBi.

Cell type Animal line/model Purpose Major findings in TBi animals Reference

Neutrophils IgM RP-3 Neutrophil depletion No significant decrease in BBB permeability (36)
Anti-Gr1 antibody Neutrophil depletion Decreased edema, apoptosis, and microglia/macrophage activation, 

no significant changes in BBB integrity
(38)

CXCR2 knockout Reduce neutrophil infiltration Decreased cell death, no significant changes in BBB permeability or 
behavior

(39)

Neutrophil elastase 
knockout 

Reduce neutrophil effector 
functions

Decreased edema and apoptotic neurons, but no decrease in tissue 
volume loss or behavioral improvement

(40)

Macrophages  
and microglia

CD11b-TK Deplete CD11b-expressing cells Reductions in microglia numbers in the brain, no improvement in 
axonal injury, treatment toxic at high dosage

(45)

CD11b-DTR Deplete CD11b-expressing cells No change in lesion size, treatment caused inflammatory response 
without injury

(46)

CCX872 (CCR2 
antagonist)

Reduce CCR2 signaling 
functions

Reduced macrophages in the brain, altered pro- and anti-inflammatory 
cytokine expression, less cognitive dysfunction

(47)

CCR2 knockout Limit CCR2-mediated 
recruitment of monocytes

Reduced numbers of infiltrating monocytes, improved learning and 
memory

(48)

CCR2RFP/RFP Disrupt recruitment of 
monocytes

Reduced monocyte recruitment, cavity volume, and axonal pathology (49)

CX3CR1 knockout Abrogate CX3CR1 signaling 
functions in macrophages and 
microglia

Short-term neuroprotection and lower inflammatory response, long-
term functional impairments and elevated myeloid cell activation

(50)

T cells Rag1 knockout Genetic ablation of B and T cells No changes in neurological outcome, BBB integrity, pro- or anti-
apoptotic mediators, hippocampal architecture, or astroglial activation

(58)

FTY720 Sequester lymphocytes and 
reduce their migration to the 
brain

Decreased circulating lymphocytes, decreased neutrophils and 
macrophages/microglia in ipsilateral hemisphere

(59)

inflammatory 
mediator

Animal line/model Purpose Major findings in TBi animals Reference

IL-1 Anti-IL-1β antibody Blockade of IL-1β signaling Reductions in macrophages/microglia, neutrophils, and T cell numbers 
in the brain, improvement in learning tasks, and decreased tissue loss

(87, 88)

IL-1R antagonist Neutralize IL-1 Higher expression of proinflammatory cytokines in macrophages (93)

ASC Anti-ASC Limit inflammasome assembly Reduced caspase-1 activation and IL-1β production, decreased lesion 
volume

(110)

ASC knockout Abrogate inflammasome 
assembly

No improvements in lesion volume, histopathology, cell death, or motor 
function

(81)

NLRP1 NLRP1 knockout Prevent NLRP1 inflammasome 
assembly

No improvements in lesion volume, histopathology, cell death, or motor 
function

(81)

IL-6 IL-6 knockout Ablation of IL-6 signaling Fewer reactive astrocytes and macrophages, increased neuronal death (115)
IL-6 knockout Ablation of IL-6 signaling Poor behavioral performance, higher IL-1β levels in the cortex (117)
GFAP-IL-6  
overexpression

Increase IL-6 expression in 
astrocytes

Greater recruitment of glia and immune cells to the lesion, decreased 
oxidative stress and neuronal death

(116)

Anti-IL-6 antibody Neutralize IL-6 Reduced some inflammatory and behavioral effects of post-injury hypoxia (118)

TNFα TNFα inhibitor 
post-TBI

Inhibit TNFα signaling Early administration improved cognitive performance, and decreased 
neuronal apoptosis and astrogliosis

(122)

TNFR1 knockout Disrupt TNFα signaling through 
TNFR1

Improved neurological function and neuronal survival/lesion volume, 
decreased numbers of CD11b+ cells in the brain

(123)

TNFR2 knockout Reduce TNFR2 signaling Worsened neurological function and no protection from tissue loss (123)

(Continued)
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contributes to beneficial tissue repair or further brain damage 
largely depends on the nature, kinetics, and magnitude of the 
inflammatory response. Although targeting the immune system 
has emerged as an exciting potential strategy to treat TBI, there 
are numerous outstanding questions that need to be addressed 
to better characterize the involvement of immune signaling in 
TBI etiology and to realize the full potential of immune-based 
therapeutics.

For one, there is still an overall lack of consensus on the over-
arching roles that discrete immune cell types and pathways play 
in TBI. Future efforts are needed to help reconcile the biological 
reasons that account for the disparate results that have been 
reported on immune mediators in TBI by different labs. Much 
of the inconsistency in the literature can be attributed to the 
utilization of different approaches to induce brain trauma and 
modulate immune signaling between labs (Table 2). Pinpointing 
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inflammatory 
mediator

Animal line/model Purpose Major findings in TBi animals Reference

TNFR2/Fas knockout Abrogate TNFα signaling 
through TNFR2

Impaired motor and cognitive performance (124)

G-CSF G-CSF injection 
post-TBI

Enhance G-CSF signaling Improved cognitive performance and increased hippocampal 
neurogenesis, higher glial activation and production of BDNF and 
GDNF

(127)

GM-CSF GM-CSF knockout Disrupt GM-CSF signaling Worsened cognitive deficits as well as cell and tissue loss, reduced 
astrogliosis

(128)

Type 1 IFN IFNAR knockout 
or IFNAR blocking 
antibody

Block type 1 IFN signaling Reduced lesion volume, more anti-inflammatory cytokine signaling, 
increased glial activation, these effects were hematopoietic 
cell-dependent

(82)

IL-10 IL-10 knockout, IL-10 
injection

Modulate IL-10 signaling Diminished protective effects of hyperbaric oxygen treatment, including 
lesion volume, edema, cognitive improvement, and decreased cytokine 
production in IL-10 knockout mice, while IL-10 injection improved 
these outcomes

(80)

TGF-β TAK1 inhibition Disrupt signaling downstream 
of TGF-β

Improved neuronal survival and motor function, decreased NF-κB 
signaling and inflammatory cytokine production

(79)

TGIF shRNA 
knockdown

Ablation of downstream TGF-β 
signaling

Decreased infarct volume and microglia numbers, improved motor 
function

(138)

APOE APOEϵ4 
overexpression

APOEϵ4 overexpression Worsened brain pathology, BBB breakdown, and neurological 
impairments

(156, 157)

TREM2 TREM2 knockout Abrogate TREM2 signaling Altered macrophage distribution, hippocampal neuroprotection, and 
fewer cognitive deficits

(83)

TABLe 2 | Continued
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what is mechanistically responsible for the conflicting findings 
in the TBI literature will help to uncover the important nuances 
of the immune response to brain trauma and will aid in the 
identification of optimal therapeutic regimens to treat discrete 
types of CNS injury.

One thing that is largely agreed upon in the literature is that 
no two brain injuries are alike and that seemingly similar types 
of trauma can result in diverse clinical outcomes. Unfortunately, 
the reasons for the heterogeneity in disease sequelae and recov-
ery time associated with comparable forms of trauma remain 
poorly understood. Heterogeneity in recovery time and extent of 
neurological dysfunction in the TBI patient population can only 
be partially explained by differences in brain injury severity and 
location. This has led to greater appreciation for the roles of host 
genetics, environmental factors, lifestyle choices, and previous 
TBI history in overall clinical outcome. It is currently difficult to 
predict how interplay between these diverse non-injury factors 
affect TBI pathogenesis, and future studies are greatly needed 
to uncover their influence on TBI. Unfortunately, current TBI 
treatment approaches do not fully take into consideration many 
of the non-injury factors that are described above. The utilization 
of immune-based biomarkers in the future may offer a strategy 
to improve the stratification and treatment of TBI patient groups. 
Recent advancements from experimental TBI models indicate 
that the nature and kinetics of the immune responses can vary 
depending on brain injury location and severity. Furthermore, 
immune responses are also significantly affected by environmen-
tal and lifestyle factors (e.g., diet, antibiotics usage, prescription, 
or recreational drug use), microbiome composition, individual 

genetic factors, and previous TBI history. Therefore, it is feasible 
that immune cell frequencies and cytokine production in patients 
may serve as valuable biomarkers to predict clinical outcomes, 
stratify patient groups, and to maximize therapeutic approaches 
to treat TBI.

Mounting epidemiological evidence indicates that TBI is a 
major risk factor for developing numerous neurological disor-
ders including AD, ALS, CTE, and posttraumatic stress disorder 
(PTSD) (5–10, 139, 140) and also possibly MS (141–143). 
Although it is widely appreciated that TBI predisposes individuals 
to other neurological disorders, how TBI mechanistically contrib-
utes to CNS disease later in life still remains poorly understood. 
Dysregulated immune responses have been identified to play key 
roles in the pathogenesis of the majority of neurological disorders 
and mental illnesses that have been linked to TBI. As a result, it is 
tempting to speculate that the aberrant inflammatory conditions 
that are generated in response to brain trauma may set in motion 
a series of events that can contribute to the development of other 
neurological disorders over time. Indeed, recent advances have 
been made in characterizing how TBI can contribute to AD 
pathogenesis. These studies have shown that brain trauma can 
spur the aberrant release and deposition of both amyloid beta 
(Aβ) and tau (144). The accumulation of neurotoxic forms of 
Aβ and tau are believed to be major drivers of AD pathogenesis 
(145), and studies of postmortem brains following brain trauma 
indicate that Aβ and tau deposition are also hallmarks of TBI 
(144, 146–152). The mechanism(s) by which Aβ and tau promote 
AD is still a matter of great debate; however, emerging data clearly 
point to roles for Aβ- and tau-induced neuroinflammation in 
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this process (153). Therefore, it is conceivable that neuroinflam-
mation and neuronal damage that is incited by the deposition 
of Aβ and tau following TBI may instigate a pathological cycle 
of continued Aβ and tau release and inflammation that initiates 
early AD progression. Furthermore, targeting the hyperinflam-
matory responses that are generated in response to Aβ and tau 
accumulation post-brain trauma could help to limit the risk of 
AD development in TBI patients (154, 155).

Interest in the link between TBI and AD has also extended to 
some of the major genetic susceptibility factors that are associ-
ated with AD. Genome-wide association studies (GWAS) have 
determined that carrying an allele of APOEϵ4 (apolipoprotein E 
ϵ4) or a mutation in TREM2 (triggering receptor expressed on 
myeloid cells 2) is associated with significantly higher rates of 
AD in humans (156). Interestingly, recent reports suggest that 
manipulation of either TREM2 or APOE biology can also affect 
the severity of brain pathology and neurological dysfunction fol-
lowing TBI (83, 157). For instance, it was shown that TBI results 
in more severe memory and functional impairments in individu-
als who carry the APOEϵ4 allele than in people who possess other 
APOE alleles (154, 158). Moreover, transgenic overexpression of 
APOEϵ4 in mice was also found to cause worsened brain pathol-
ogy, BBB breakdown, and neurological impairments following 
brain injury (159, 160).

TREM2 is an immunoglobulin-superfamily receptor that is 
predominantly expressed on myeloid cells including microglia, 
macrophages, and osteoblasts. Recent studies have shown that 

TREM2 is involved in the removal of debris, misfolded proteins, 
and phospholipids from the CNS (161). An important feature 
of both AD and TBI is that Aβ can accumulate into plaques 
(157), which are thought to lead to detrimental effects on 
neurological function if not cleared by phagocytes. TREM2 can 
help microglia and infiltrating macrophages detect lipoprotein-
bound Aβ in the brain and trigger phagocytosis (162) and may 
also participate in maintaining the survival of these cells (163) 
(Figure 3). These activated cells can then recruit more phago-
cytes to the sites of Aβ accumulation. Downstream effects of 
this phagocytic response remain unclear, but multiple studies 
have agreed that TREM2 deficiency in various CNS disorders 
does lead to a decreased number of phagocytes, which likely 
impairs debris clearance (83, 164–166). In such cases of TREM2 
mutation or dysfunction, it is possible that Aβ and other 
misfolded proteins may not only be insufficiently cleared, but 
may also accumulate faster. A recent article by Saber et al. used 
an FPI injury model to explore the effect of TREM2 on TBI-
induced neuroinflammation, tissue loss, and neurological func-
tion (83). They found that TREM2-knockout mice did indeed 
show fewer macrophages throughout the brain, but more were 
present close to the site of injury. This was associated with hip-
pocampal neuroprotection and fewer cognitive deficits in the 
TREM2 knockouts. Interestingly, sham TREM2-knockout mice 
appeared to have some differences from sham wild-type mice in 
certain behaviors. This paper shows that TREM2 is also likely to 
be important in TBI recovery; thus, it will be interesting going 

A

B

C

FiGURe 3 | The involvement of TReM2 in post-TBi amyloid beta clearance. (A) Aβ released after TBI quickly forms into plaques and may bind to lipoproteins. 
TREM2 assists surrounding myeloid cells in sensing Aβ-lipoprotein complexes, engulfing and breaking down the Aβ, and recruiting other phagocytes to the site of 
injury. (B) In the case of TREM2 mutations or dysfunction, these cells may not be able to properly sense and clear Aβ or recruit other cells, so that more Aβ builds up 
over time and leads to plaque formation as seen in Alzheimer’s disease. (C) Another possibility is that in the absence of TREM2 signaling, other signaling pathways 
may predominate in myeloid cells. For example, when a complex of CD36 with a TLR4-TLR6 heterodimer senses Aβ, instead of phagocytosis, it leads to release of 
pro-inflammatory cytokines and chemokines that can induce upregulation of secretases in other cells, which are known to lead to increased production of Aβ.
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CONCLUSiON
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been largely unsuccessful, and the number of individuals who 
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suggest that targeting the immune system could offer a much-
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ways that influence TBI pathogenesis will lead to an improved 
understanding of brain injury etiology and will aid in the identi-
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