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Regulatory T (Treg) cells are a group of cells that are heterogeneous in origin and in 
functional activity. Treg cells comprise a necessary balance to adaptive immune 
responses. As key regulators of self-tolerance, Treg cells have been involved in a series 
of pathologic processes and considered as therapeutic targets. Here, we summarize 
recent research regarding Treg cell origins and their functional classification, highlight the 
role of exosomes and non-coding RNA in modulating Treg cell homeostasis, and discuss 
the current understanding of resident Treg cells.
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iNTRODUCTiON

Immune tolerance regulation is a critical aspect of immunology. Distinct populations of T cells with 
suppressor functions make a major contribution to such regulation. Regulatory T (Treg) cells are 
important for preventing inappropriate responses by the immune system (1). Treg cells exert their 
suppressive role from triggering of innate immune cells to adaptive cell-mediated responses. Treg 
cells have been implicated in a number of pathologic processes involving severe systemic autoim-
munity and many malignancies (2, 3). As critical regulator of immune tolerance and homeostasis, 
Treg cells have been regarded as immunotherapeutic targets. Manipulation of the number and/or 
suppressive activity of Treg cells has been shown to be impactful in the treatment of autoimmune 
disorders, allograft rejection, and cancer (4–6). Thus, understanding the local immune regulation 
and regulatory mechanisms of Treg cells is essential. In this review, the characteristics of Treg cells 
and tissue-resident Treg cells are summarized. The regulatory mechanisms of Treg cells are also 
discussed, focusing on exosomes and non-coding RNA.

CHARACTeRiZATiON OF TReG CeLLS

Regulatory T cells are distinguished from other lymphocytes by several characteristics, including sur-
face marker, transcription factor, origin, and function (Table 1). Treg cells express CD25 (IL-2 receptor 
α chain) and are dependent on stimulation by IL-2 for their function (7). Foxp3 was discovered to be 
a “master regulator” of Treg cell development and function (8–11). Mutations of the Foxp3 gene in 
humans result in Treg deficiencies and are responsible for immunodysregulation polyendocrinopathy 
enteropathy X-linked syndrome (12). Foxp3 and CD25 are reliable and constitutive markers that have 
been used to isolate and characterize Treg cells. In addition to CD25 and Foxp3, Treg cells express 
co-stimulatory and co-inhibitory molecules that are involved in their suppressive function, such as 
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TABLe 1 | Markers for Treg cell subsets.

Treg cell subsets

Origin subsets Functional subsets

Thymus-derived Treg Peripherally derived Treg Resting Treg effector Treg Tissue-resident Treg

Cytotoxic T lymphocyte antigen (CTLA4) CTLA4 CTLA4low CTLA4hi Adipose tissue-resident Treg
GITR GITR CD62Lhi CD62Llow PPARGγhi, Foxp3hi

CD103 CD103 CD45RAhi CD45RAlow

Helios CD25hi CD25hi CD44hi

Neuropilin-1 CD127low CD127low KLRG1+ CD103+ Skeletal muscle-resident Treg
TIGIT Foxp3hi CCR7hi CD25hi Tbethi, Foxp3hi, CXCR3hi

FCRL3 CD127low

CD25hi Foxp3hi

CD127low CCR7low

Foxp3hi CTLA4hi

2

Li et al. Characterization and Homeostasis of Regulatory T Cells

Frontiers in Immunology | www.frontiersin.org December 2016 | Volume 7 | Article 574

CD28 and cytotoxic T   lymphocyte antigen 4 (CTLA4), tumor 
necrosis factor (TNF), and TNF receptor family members, includ-
ing RANKL and GITR, and Toll-like receptors (4). It has been 
shown that CD127 expression inversely correlates with Foxp3 
expression and CD4+ Treg cells suppressive function (13) and that 
the combined use of Foxp3+, CD25+, and CD127−, might better 
define the Treg cell population with suppressive functions (14).

Treg cells can be separated according to their two possible 
origins: tTreg (thymus-derived Treg) cells and pTreg (peripher-
ally derived Treg) cells, also called natural Treg cells and induced 
Treg cells, respectively (15). Most Treg cells arise in the thymus, 
where the expression of Foxp3 is initiated via a combination 
of self-antigen recognition with moderate- to high-avidity and 
microenvironmental influences, and these tTreg cells migrate to 
the periphery to maintain self-tolerance (16). Moreover, tTreg 
cells can also be induced in the periphery from Foxp3– recent 
thymic emigrants (17). Another way of Treg generation is in 
the periphery, where CD4+ T cells develop into pTreg cells 
upon encountering antigens under certain conditions (18, 19). 
Two populations of peripherally induced CD4+ Treg cells have 
been described: Tr1 cells and Th3 cells, they are induced in 
peripheral, secrete interleukin 10 (IL-10) and/or transforming 
growth factor beta (TGF-beta), and exert suppress function via 
a cytokine-dependent mechanism (20–22). Both thymic-derived 
and peripherally induced Treg cells are antigen specific, possess 
T-cell receptors, and are selected with a suppressive function. 
A variety of molecular markers can be used to distinguish dif-
ferent Treg populations. Transcription factor Helios and cell 
surface glycoprotein neuropilin-1 are usually highly expressed 
by tTreg cells but poorly expressed by pTreg cells, as thus, both 
these molecular markers can be applied to distinguish tTreg from 
pTreg cells; nevertheless, pTreg cells may upregulate these fac-
tors expression depending on local inflammatory conditions or 
the type of antigen-presenting cells and activation signals that 
are present (15, 23, 24). Furthermore, a study of human Treg 
subsets described an important role for T cell immunoreceptor 
with Ig and ITIM domains (TIGIT) and FcR-like 3 (FCRL3) in 
distinguishing tTreg cells from pTreg cells (25).

Regulatory T cells can also be divided into functional sub-
populations as well as into origin subsets (26–28). (1) Resting 
Treg cells (CD62LhiCCR7+ or CD45RAhiCD25low Treg cells), also 

known as central or naive Treg cells, conprise the great number 
of Treg cells in secondary lymphoid organs and in circulation. 
Resting Treg cells have a history of antigen exposure and base-
line suppressive function, and they share circulation patterns 
and activation markers with naive and memory conventional 
T  cells. (2) Effector Treg cells (CD45RAlowCD25hi or CD62Llow 
CCR7lowCD44hiKLRG1+CD103+ Treg cells), also known as acti-
vated Treg cells, constitute a small part of Treg cells in circulation 
and in secondary lymphoid organs (29). This subset has enhanced 
function and signs of recent antigen encounter and shares phe-
notypic features with activated conventional T cells. It remains 
unclear whether effector Treg cells are capable of reverting to 
resting Treg cells or are terminally differentiated. (3) Recently, a 
greater emphasis has been placed on a specific subset of tissue-
resident Treg cells that take part in immune processes as well as 
in the maintenance of tissue homeostasis (27, 28, 30, 31). The 
phenotype and function of tissue-resident Treg cells are different 
from those of the classical lymphoid Treg cells. Each tissue might 
have its own unique tissue-resident Treg cells, which have good 
sensitivity and a high turnover rate in response to a number of 
environment signals (30). These characteristics of tissue-resident 
Treg cells enable rapid adjustments in Treg cell location and 
number that are required to effectively react to immune dynam-
ics (27, 30). Moreover, to be able to optimally control the immune 
response in dynamic tissue microenvironments, Treg cells can 
afford a certain degree of functional plasticity. Treg cells preserve 
their core immunosuppressive characteristics and alter their 
transcriptional program to achieve functional plasticity. Recent 
work has demonstrated that tissue-resident Treg cells often have 
distinct transcription programs from lymphoid organ Treg cells. 
For instance, visceral adipose tissue Treg cells show high expres-
sion of the transcription factor peroxisome proliferator-activated 
receptor γ, which acts as a crucial regulator of adipocyte differ-
entiation. Similarly, skeletal muscle-resident Treg cells display 
a transcriptional program that sustains their repair function 
following acute injury (32). Furthermore, to control the Teff cell 
response, Treg cells can express distinct transcription factors and 
immunosuppressive molecules associated with that type of Teff 
cell. For example, Tbet+ Treg cells, induced by type 1 inflamma-
tory conditions, express chemokine (C–X–C motif) receptor 3 
and accumulate at T helper 1 (Th1) cell-mediated inflammation 
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FiGURe 1 | Role of exosomes in intercellular communication between Treg cells and recipient or donor cells. Exosomes transfer their contents, including 
proteins, lipids, and RNAs, between cells. Immune and non-immune cell-derived exosomes have important roles in the regulation of immunity. Exosomes contribute 
significantly to the function of Treg cells, and Treg cell-derived exosomes can be delivered to immune cells and diseased or healthy tissue cells; regulate the 
proliferation and cytokine secretion of effector T cells; and modulate the immune response. Diseased cells, including tumor cells, can modulate Treg cell recruitment, 
expansion, and function via an exosome-based pathway.
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sites. CXCR3 is a key molecule on Th1 cells that mediates the 
accumulation of Th1 cells at sites of local inflammation. Thus, the 
function of Treg cells partially depends on the degree of plasticity 
that they exhibit in response to the microenvironment (32–34).

TReG CeLLS AND eXOSOMeS

Exosomes are small membrane vesicles derived from multive-
sicular bodies or from the plasma membrane (35). Exosomes 
play critical roles in intercellular communication, as they transfer 
RNAs, proteins, and other type of molecules between donor and 
receptor cells (36). Exosome protein contents mostly reflect that 
of the parent cells, and exosomes are enriched in cytoskeleton 
molecules, cytoplasmic enzymes, signal transduction proteins, 
and so on (37). Furthermore, exosomes contain a variety of non-
coding RNAs (ncRNAs), involving microRNAs (miRNAs), long 
non-coding RNAs (lncRNAs), and circRNAs (36–39).

Exosomes participate in important biological functions and 
are involved in numerous physiological processes. Immune and 
non-immune cell-derived exosomes play critical roles in immu-
nity regulation; these exosomes can mediate immune homeostasis 
and can drive inflammation, autoimmunity, and infectious dis-
ease pathology (40–44). Exosomes derived from Treg cells appear 
to be greater in quantity than those from other type of T cells 
and are regulated by changes in intracellular calcium, synthesis 
of the sphingolipid ceramide, hypoxia, and the presence of IL-2 
(45–48). Exosomes make great contribution to Treg cells function 
(Figure 1), as inhibiting the release of exosomes can reverse the 
suppressive capabilities of Treg cells, such as effector T cells (Teffs) 
suppression and disease prevention. Rab27-DKO Treg cells that 
failed to release exosomes also failed to prevent disease, resulting 
in colon shortening, weight loss, and increased IFNγ expression. 
The failure of these cells to control Teffs also led to significant 
colonic and systemic inflammation and IFNγ expression (49). 
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Recently, the transfer of miRNAs, including Let-7d, Let-7b, 
and miR-155, via Treg cell exosomes to conventional T cells 
has been shown. Let-7d-containing Treg cell-derived exosomes 
contributed to the suppression of Th1 cell proliferation and IFNγ 
secretion via Cox-2 (40). However, upregulation of Let-7b in Th1 
cells had little impact on proliferation or IFNγ production. Treg 
cells transfer miR-155 to conventional T cells with a concomitant 
upregulation of several Treg-cell-associated genes in recipient 
cells (40). Furthermore, several immunomodulatory molecules, 
including CD73, CD25, and CTLA4, were also found in Treg 
exosomes (43, 49). Treg cell-derived CD73-expressing exosomes 
contribute to their suppressive activity through the production of 
the anti-inflammatory mediator adenosine (43). Adenosine can 
bind to adenosine receptors, triggering intracellular cAMP, lead-
ing to the inhibition of cytokine production by activated Teffs. 
CD25 and CTLA4 are expressed in Treg cell-derived exosomes, 
but these molecules may not contribute to the suppressive func-
tion of Treg cells. Several molecules, including FasL, CD39, PDL1, 
and Galectin1, are present on exosomes derived from other 
type of cells. FasL- and CD39-containing exosomes have been 
shown to have immunomodulatory properties. Lymphoblastoid 
cell-derived MHCII+FasL+exosomes induced apoptosis in CD4+ 
T cells. Tumor exosomes express CD39 and CD73, which are 
capable to suppress T cells (50–53). Whether they are also present 
on Treg cell-derived exosomes and play a role in Treg cells sup-
pressive function is yet to be validated.

In addition, recent studies have investigated that exosomes 
derived from tumor cells exert widespread detrimental effects 
on the immune system (54). Secreted exosomes can serve as 
signaling tools in mediating tumor cell–Treg cell communica-
tion (55). In nasopharyngeal carcinoma, tumor cell-derived 
exosomes facilitated the expansion of Treg cells and upregulated 
their suppressive functions. The tumor cell-derived exosomes 
also promoted the conversion of conventional CD4+CD25− 
T cells into Treg cells and enhanced the chemoattraction of Treg 
cells through CCL20 (54). Extracellular vesicles derived from 
colorectal cancer cell induced a phenotypic change of T cells to 
Treg-like cells, which had remarkable tumor-growth promoting 
activity by activating TGF-β/Smad signaling and inactivating 
SAPK signaling (56). In lung carcinoma, tumor-derived miR-214 
reduced PTEN expression (phosphatase and tensin homolog) 
and promoted the expansion of Treg cells, and miR-214-induced 
higher secretion of IL-10 in Treg cells and promoted tumor 
growth (55). It is possible that cancer cells can actively control 
the immune cells antitumor activities by transfer tumor-specific 
molecules to recipient immune cells, including Treg cells, via an 
exosome-based pathway (55). Clearly, exosomes are vital media-
tors of immunity, for which there will be extensive therapeutic 
applications (36, 49).

TReG CeLLS AND NON-CODiNG RNAs

Non-coding RNAs comprise multiple classes of RNA transcripts 
that are not transcribed into proteins but have been shown to 
regulate the transcription, stability, or translation of protein-
coding genes. To date, there have been many studies of miRNAs 
and lncRNAs, and other classes of experimentally identified 

ncRNAs with various lengths and characteristics have also been 
reported (57). ncRNAs are key regulators of the immune system 
and regulate important aspects of Treg cells, including Treg cells 
development, homeostasis, and function. Dynamic homeostatic 
processes maintain the diverse pool of Treg cells and preserve 
their number in a normal range. Treg cells can tailor their func-
tions and homeostatic properties to a wide range of conditions 
(27). Treg homeostasis and function is governed by a number of 
factors; here, we discuss miRNA- and lncRNA-mediated regula-
tion of Treg cell homeostasis and function (Figure 2).

miRNA-MeDiATeD ReGULATiON 
OF TReG CeLL HOMeOSTASiS 
AND FUNCTiON

MicroRNAs are a group of evolutionarily conserved small 
non-coding RNAs. They carry out their function by guiding the 
miRNA-induced silencing complex to target mRNAs (58, 59). 
miRNAs can directly regulate the expression of target genes by 
sequence-specific binding to the 3′ untranslated region (3′ UTR) 
or other regions, and they can also indirectly regulate gene expres-
sion by repressing the expression of several key enzymes involved 
in epigenetic processes, such as DNA methylation and histone 
modification (60, 61). Research has confirmed the requirements 
for miRNA expression in Treg cells and shown that miRNAs are 
important for the maintenance of Treg cell homeostasis and their 
immunosuppressive function (62).

Studies have shown that depletion of thymus-miRNAs down-
regulated the number of Treg cells in the thymus, lymph nodes, 
and spleen, with normal development of conventional T cells in 
the thymus (63). miRNA-deficient CD4+ T cells fail to develop into 
tTreg cells and have reduced potential to differentiate into iTreg 
cells (62). Dicer-deficient Treg cells showed inferior proliferative 
potential, impaired suppressor function, and impaired peripheral 
homeostasis. Foxp3 downregulation interrupts Treg cell lineage 
stability in Dicer-deletion mice (64, 65). Similar to Dicer, deletion 
of Drosha in Treg cells leads to defective suppressive activity (66). 
In addition, Treg cell-specific miRNA-deficient mice show fatal 
early-onset lymphoproliferative syndrome, and the conditional 
deficiency of Dicer or Drosha in Foxo3+ Treg cells gives rise to 
the early onset of severe spontaneous autoimmunity (64–66). 
These findings confirmed the critical role of miRNA in Treg cell 
development and function and in preventing immune disease.

Several miRNAs have been found that affect Treg cell 
homeostasis and function. miR-155 is highly expressed in Treg 
cells. Foxp3 binds to the B cell integration cluster (encodes the 
primary miR-155 transcript), and controls this high expression 
of miR-155 in Treg cells (67–70). Recent studies have shown that 
miR-155 contribute to the development and homeostasis of Treg 
cell, but not the function of Treg cell. miR-155 deletion mice show 
a decreased number of tTreg cells and pTreg cells, due to defec-
tive development (63). miR-155 facilitates Treg cell homeostasis 
by targeting suppressor of cytokine signaling 1 (69), a negative 
regulator of signal transduction and activation of transcription 
(STAT) 5 that has a crucial role in the IL-2 signaling pathway and 
in Treg cell development. miR-155 deletion also downregulates 
the IL-2 production of CD4+ T cells (71), which demonstrates 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 2 | Non-coding RNA-mediated regulation of Treg cell homeostasis and function. (A) Model for non-coding RNAs (ncRNA)-mediated regulation of 
Treg cell homeostasis and function. ncRNAs include highly abundant and functionally important RNAs, such as microRNAs (miRNA), long non-coding RNAs 
(lncRNA), and tRNA. miRNAs are sequentially processed from longer transcripts by the RNase III enzymes Drosha and Dicer. Pri-miRNAs are processed by Drosha 
into hairpin structures (pre-miRNAs). Exportin 5 shuttles pre-miRNAs from the nucleus into the cytoplasm, where the RNase III Dicer cleaves off the hairpin loop of 
the pre-miRNA. The duplex segregates, and the mature single-stranded miRNA associates with argonaute proteins and other accessory proteins to form the 
miRNA-induced silencing complex, which directly mediates the translational repression and the increased degradation of its mRNA targets. miRNA can also 
indirectly regulate gene expression by repressing the expression of several key enzymes involved in epigenetic modification processes, such as DNA methylation 
and histone modification. Based on the position of lncRNA relative to the neighboring protein-coding genes in the genome, lncRNAs can be divided into five 
categories, namely, sense, antisense, bidirectional, intronic, and intergenic. lncRNAs can modulate chromatin modification, mRNA stability, miRNA activity, and the 
function of proteins by interacting with chromatin, RNA, and protein. lncRNA functions as a miRNA sponge, sequestering miRNAs to regulate the expression level of 
other transcripts sharing common miRNA response elements. This process leads to fewer miRNA molecules available to bind to target mRNA and, thus, an 
increase in its protein expression level. miRNA, lncRNA, and mRNA form a well-regulated interacting network and play critical regulatory roles in Treg cell 
homeostasis and function. (B) Regulation of Treg cells by several representative miRNAs and lncRNAs, including miR-155, miR-146a, miR-126, miR-10a, 
miR-142-3p, HULC, Linc-POU3F3, and Lnc-DQ786243.
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that miR-155 might control IL-2-directed Treg cell homeostasis 
via both cell-intrinsic and cell-extrinsic pathway (62). miR-10a 
contributes to Treg cell stability by maintaining high levels of 
Foxp3 expression. TGF-beta and retinoic acid, which boost 
the Treg cell phenotype, are need for maximal induction of 
miR-10a in pTreg cells (72, 73). In addition, miR-10a inhibits 
pTreg cells conversion into T follicular helper cells by directly 
targeting BCL-6 and its co-repressor NCOR2. The expression of 
miR-10a in Treg cells is inversely correlated with susceptibility to 
autoimmune disease (74, 75). miR-146a has a marked effect on 
Treg cell function and plays a critical role in Treg cell-mediated 
immunological tolerance. miR-146a-deficient mice developed 
severe lympho- and myeloproliferative syndrome (76) and had 
an elevated number of Treg cells in the periphery that had a mod-
est increase in activation markers and heightened proliferative 
activity. The restriction of miR-146a deficiency mainly to Treg 
cells resulted in IFNγ-dependent immune-mediated lesions and 
a Th1 cell-mediated pathology (77, 78), which was similar to the 
disease observed in Treg cell-specific Dicer- or Drosha-deficient 
mice. In addition, miR-146a controls Treg-mediated suppres-
sion of IFNγ-dependent Th1 responses and inflammation by 
targeting STAT1 (78). miR-126 is highly expressed in Treg cells. 
Silencing of miR-126 could attenuate the suppressive activity of 
Treg cells. miR-126 regulates the induction and function of Treg 
cells through the p85β/PI3K/Akt pathway. miR-142-3p may be 
a unique molecule in Treg cell function. It has been found that 
Treg cells exert their suppressor function by transferring cAMP 
to responder T cells (79). miR-142-3p restricts cAMP produc-
tion in Treg cells by targeting adenylate cyclase 9 (AC9), whereas 
Foxp3 could maintain the activity of the AC9/cAMP pathway by 
downregulating miR-142-3p in Treg cells (80). In addition to the 
miRNAs mentioned above, many other miRNAs play important 
roles in the regulation of Treg cells, including miR-21 (81), 
miR210 (82), miR15a/16 (83), among others.

ReGULATiON OF TReG CeLLS 
BY lncRNAs

Long non-coding RNAs are transcripts of more than 200 bp that 
are often expressed with higher cell specificity than protein-coding 
genes despite having lower expression levels. Recent studies have 
found that several lncRNAs can affect Treg cells. The lncRNA 
HULC, which is upregulated in hepatocellular carcinoma, affects 
the differentiation of Treg cells by downregulating the level of p18 
directly in HBV-related liver cirrhosis (84). Linc-POU3F3 was 
able to facilitate the distribution of Treg cells among peripheral 
T cells, which caused increased cell proliferation of gastric can-
cer cells through recruiting TGF-beta and activating TGF-beta 
pathway (85). The lncRNA DQ786243 affects the expression of 
cAMP response element binding protein and Foxp3 by Treg cells 
in Crohn’s disease (86). Further studies are needed to identify the 
mechanisms of lncRNAs in the regulation of Treg cells.

TiSSUe-ReSiDeNT TReG CeLLS

Regulatory T cells are present in various non-lymphoid tissues 
in health and disease. Each tissue might have its own unique 

tissue-resident Treg cells, and the phenotype and function of 
tissue Treg cells are different from those of classical lymphoid 
Treg cells (30). These cells not only display some activated and/
or effector cell features but also show some unique properties, 
such as specific chemokine receptors, transcription factors 
and adhesion molecules or distinct T cell antigen receptor 
repertoires, mechanisms of action, targets, and migration pat-
terns (23). Treg cells have been found in several non-lymphoid 
tissues, including adipose tissue, skeletal muscle, intestinal 
mucosa, skin, and tumor tissue (30, 87–89). Understanding the 
development and the maintenance of tissue-resident Treg cells 
provides important insights into local immune regulation and 
tissue-specific biological therapies. Here, we review the current 
state of knowledge of intestine-resident Treg cells and tumor 
tissue-resident Treg cells.

iNTeSTiNe-ReSiDeNT TReG CeLLS

There are a large number of Treg cells in the intestines because of 
the exposure to food-derived antigens and commensal microflora. 
Intestine-resident Treg cells are different from other organ Treg 
cells and have intestine-specific phenotypes, TCR repertoires, 
and functions (90, 91). High levels of microbe-derived TLRs 
and metabolites of the commensal flora can dramatically influ-
ence the development, function, and maintenance of intestine-
resident Treg cells (19). In addition, specialized CD103+ DCs, 
together with TGF-beta and retinoic acid, can enhance pTreg 
cell development in the intestine and also induce Treg cells to 
express intestinal homing receptors (92, 93). Intestine-resident 
Treg cells are a self-renewing and stable population, with a few 
proportions derived from the periphery after their initial devel-
opment and seeding early in life. Further understanding of the 
molecular mechanisms responsible for the tissue-specific and 
condition-adapted development of stable Treg cell populations 
in the intestines could supply new treatment approaches for many 
diseases (91).

TUMOR-ReSiDeNT TReG CeLLS

Depressed cellular immunity has been demonstrated in patients 
with a variety of lymphoreticular and non-lymphoreticular neo-
plasms. Given the recent successes of immunomodulatory antitu-
mor strategies, there is growing interest in the more heterogeneous 
group of tumor-infiltrating Treg cells (30, 94). Elevated percent-
ages of Treg cells are found in the total T cell population isolated 
from tumor tissue, and these cells can account for 30–50% of 
CD4+ T cells, depending on the tumor type (95). Tumor-resident 
Treg cells have been identified and characterized, and, similar to 
tissue-resident Treg cells, the phenotypes of tumor-resident Treg 
cells are different from those found in lymphoid organs or in the 
circulation. Foxp3+CD4+ T cells from the tumor environment 
show upregulation of cell-surface markers, including CTLA4, 
TIM3, and PD1, as well as a variety of chemokine receptors and 
suppressive cytokines. Tumor-resident Treg cells represent an 
important cellular mechanism by which tumors evade immuno-
surveillance, as these cells are capable of restricting the prolifera-
tion and cytokine production of a wide range of immune cells and 
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suppressing the antitumor activity of CD4+ T cells, CD8+ T cells, 
and NK cells (5, 95–99). In addition to these functions, tumor-
resident Treg cells can promote tumor growth, angiogenesis, and 
metastasis. Treg cells also exert antitumor effects by inhibiting 
the immune response in the tumor microenvironment. In many 
cases, rich Treg cell infiltration into tumor microenvironment 
is correlated with poor prognosis (95). However, Treg cells play 
controversial roles in some cancers, in which abundance Foxp3+ 
Treg cells promised relatively good prognosis. A recent study 
found that in colorectal cancer, functionally distinct subsets of 
tumor-infiltrating Foxp3+ T cells contribute in opposing ways to 
measuring outcomes (100). Dissection of the pathways regulated 
by tumor-resident Treg cells is critical for immunotherapies that 
aim to modulate Treg cells in cancer.

CONCLUSiON

Recent studies have provided new insights into Treg cell regula-
tion and homeostasis. Dynamic homeostatic processes maintain 
the diverse pool of Treg cells and preserve the number of Treg 
cells within steady-state conditions. Treg cells have two origins 
and can be divided into functional subsets. Tissue-resident Treg 
cells are a relatively new subtype; thus, it is not surprising that 
there are some questions that remain unanswered. Here, we 
highlight three questions that need to be explored. First, which 
type of Treg cells play a predominant role in the regulation of 
the immune response compared with non-resident Treg cells? 
Second, are tumor-specific Treg cells mainly derived from 
tissue-resident Treg cells or from tTreg cells and pTreg cells? 
Third, can Treg cells be classified into new subsets, and can 

the degree of infiltration of these subpopulations contribute to 
disease prognosis?

Regulatory T cell homeostasis is governed by a number 
of factors. In this review, we focused on the exosome- and 
ncRNA-mediated regulation of Treg cell homeostasis. The study 
of Treg cell-derived exosomes is a relatively new area of Treg 
cell biology. The exosome output by Treg cells changes with 
cell status and reflect intracellular events. Exosomes, therefore, 
provide an enriched pool of information and could be considered 
to be potential biomarkers. In addition to the effects of Treg 
cell-derived exosomes on immune responses, exosomes could 
be used as therapeutic agents in various conditions. ncRNAs are 
crucial to the homeostasis of Treg cells. There are many studies 
of miRNA and lncRNA, but the roles and mechanisms of other 
classes of ncRNAs, including circRNA, in the regulation of Treg 
cells remain unclear and will require further study.
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