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Infectious diseases are a leading cause of morbidity and mortality worldwide, and 
vaccines are one of the most successful and cost-effective tools for disease prevention. 
One of the key considerations for rational vaccine development is the selection of 
appropriate antigens. Antigens must induce a protective immune response, and this 
response should be directed to stably expressed antigens so the target microbe can 
always be recognized by the immune system. Antigens with variable expression, due 
to environmental signals or phase variation (i.e., high frequency, random switching 
of expression), are not ideal vaccine candidates because variable expression could 
lead to immune evasion. Phase variation is often mediated by the presence of highly 
mutagenic simple tandem DNA repeats, and genes containing such sequences can be 
easily identified, and their use as vaccine antigens reconsidered. Recent research has 
identified phase variably expressed DNA methyltransferases that act as global epigenetic 
regulators. These phase-variable regulons, known as phasevarions, are associated with 
altered virulence phenotypes and/or expression of vaccine candidates. As such, genes 
encoding candidate vaccine antigens that have no obvious mechanism of phase variation 
may be subject to indirect, epigenetic control as part of a phasevarion. Bioinformatic and 
experimental studies are required to elucidate the distribution and mechanism of action 
of these DNA methyltransferases, and most importantly, whether they mediate epigenetic 
regulation of potential and current vaccine candidates. This process is essential to define 
the stably expressed antigen target profile of bacterial pathogens and thereby facilitate 
efficient, rational selection of vaccine antigens.

Keywords: phase variation, vaccine, DNA methyltransferase, DNA modification enzyme, gene expression, 
epigenetics

iNTRODUCTiON

Infectious diseases are a leading cause of morbidity and mortality worldwide. An estimated 23% of 
all deaths and 52% of deaths in children under the age of 5 years are caused by pathogenic microor-
ganisms (1, 2). Over the past two centuries, many vaccines have been developed that aim to prime 
the host immune system and protect against disease. Consequently, the morbidity and mortality of 
many diseases have been significantly reduced, such as polio (3), or even eradicated, such as small 
pox (4). Vaccination is often considered one of the greatest triumphs of medical science (5).

To date, vaccines are available against 26 pathogens; with at least a further 24 vaccines 
in the development pipeline (6). The manufacture and composition of these vaccines varies 
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significantly  (7): from killed-whole cell or virus vaccines [e.g., 
Salk’s original polio vaccine (8)] and live attenuated vac-
cines [e.g., the measles, mumps, and rubella vaccine (9)], to 
“rationally designed” vaccines, which are subunit formulations 
specifically developed against selected cellular targets [e.g., 
the polysaccharide capsule-based pneumococcal conjugate 
vaccines (10) and the multivalent recombinant protein-based 
serogroup B meningococcal vaccine (11)]. The majority of avail-
able vaccines induce antibody-mediated protective immunity 
and target microorganisms and antigens that have little or no 
antigenic diversity or variability. Unfortunately, development 
of vaccines has been more difficult for pathogens that are 
antigenically diverse, as well as those that cannot be cultured 
in the laboratory, lack suitable animal models of infection, and/
or those that are controlled by mucosal or T cell-dependent 
immune responses. There is an increasing need for the devel-
opment of rationally designed vaccines for these pathogens, 
which has been facilitated by improvements in molecular 
biology techniques (e.g., DNA sequencing and manipulation; 
protein and carbohydrate purification; and chemical conjuga-
tion methods for production of multivalent vaccines) and 
increased understanding of pathogen biology, host–pathogen 
interactions, and the requirements for immunogenicity (e.g., 
immune correlates of protection, and the adjuvants required 
to elicit this protection) (12–15).

The era of “omics” and “big data” projects has unleashed 
a wealth of information for bacterial vaccine development, 
facilitating the ability to rapidly select potential vaccine antigens 
from genome and proteome analyses (14–17). However, antigens 
with variable expression, due to environmental signals or phase 
variation (i.e., high frequency, random switching of expression), 
possess inbuilt immune evasion capacity and do not make ideal 
vaccine candidates. Phase variation is often mediated by the 
presence of highly mutagenic simple tandem DNA repeats [also 
known as simple sequence repeats (SSRs)], and genes with these 
sequence features need to be identified so that can be discounted 
as vaccine antigens. However, recent research has identified phase 
variably expressed DNA methyltransferases that act as epigenetic 
regulators in many bacterial pathogens (18). These global epige-
netic regulators, called phasevarions, can switch expression of 
candidate vaccine antigens that heretofore have been assumed to 
be stably expressed.

In this review, we provide an overview of key aspects that are 
important during antigen selection for pathogenic bacteria and 
focus on the impact of phasevarions on vaccine development.

KeY CONSiDeRATiONS FOR vACCiNe 
ANTiGeN SeLeCTiON

For rationally designed, subunit vaccines to succeed, the selection 
of appropriate vaccine antigens is critical. Key features of vaccine 
antigens include (1) immunogenicity (i.e., the ability to elicit an 
immune response), (2) the ability to induce protection (i.e., the 
ability of the elicited immune response to prevent proliferation 
and/or the induction of pathology by the pathogen), and (3) 
conservation (i.e., the presence and sequence similarity between 
many/all strains of the pathogen). However, the stable expression 

of antigens during infection is also a critical factor in antigen 
selection that is often overlooked.

Several “omics” approaches are now routinely used to per-
form systems-based screening of potential antigens, such as 
genome-based reverse vaccinology, proteomics, transcriptomics, 
glycomics, and metabolomics (14–16, 19–21). These approaches 
allow high throughput identification of the potential antigens 
of a pathogen. The subsequent analysis of antigen conservation 
is a relatively straightforward process and has been assisted by 
the increasing availability of genomes, driven by decreases in 
sequencing costs (22, 23). Sequence availability has also made 
it possible to assess antigenic drift (change by accumulation of 
mutations) and shift (complete replacement of antigens), both of 
which must be taken into account to select stable and effective 
vaccine antigens (24, 25).

Investigation of whether the target antigen is actually 
expressed by the pathogen during infection in  vivo is a more 
complex task, due to regulation by environmental signals and the 
potential for expression to be influenced by stochastic mecha-
nisms. The transcription and translation of cellular factors are 
often contingent on environmental signals (e.g., tissue tropism, 
pH, and temperature) and cellular conditions (e.g., cell cycle) 
(26–28). For example, for pathogens such as Escherichia coli and 
other enteric pathogens, entry to the site of infection induces 
the expression of a different antigen repertoire (29, 30) that is 
triggered by diverse environmental or host signals such as pH 
(31) and temperature (32). While methods exist that allow the 
identification of expressed RNA (transcriptome) or protein (pro-
teome) content under selected conditions, data collected often 
only represent a single physiological state that does not always 
reflect conditions found in the host. Accordingly, it is important 
to understand when and how cellular factors are expressed, to 
ensure that the target antigen is expressed during infection and 
in the same location (i.e., during mucosal or systemic infection) 
as the immune response elicited by the vaccine.

ANTiGeN eXPReSSiON AND THe 
COMPLiCATiON OF PHASe vARiATiON

Phase variation is defined as the high frequency, reversible ON/
OFF, or graded switching of gene expression, which is mediated 
through either genetic [e.g., due to variations in the number of 
simple tandem DNA repeats, or genome rearrangements (33, 34)] 
or epigenetic [e.g., via deoxyadenosine methylase (Dam) (35)] 
mechanisms at individual promoters. Many antigens in bacterial 
pathogens are phase variably expressed. For most phase-variable 
genes, switching occurs randomly during genome replication, and 
thus antigen expression is impossible to predict. Consequently, 
phase-variable components are not ideal vaccine targets since 
cells that have low, or no, expression of the target antigen may be 
able to evade the immune system (Figure 1A).

Many phase-variable genes can be identified bioinformatically, 
as the two main phase variation mechanisms, slipped strand mis-
pairing and genome inversions, are well understood (36). Genes 
that are variable by slipped strand mispairing can be identified by 
the presence of multiple, tandem DNA repeats in the upstream 
or coding region of a gene. Slipped strand mispairing in DNA 
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FiGURe 1 | Phase variation and immune evasion. (A) For a phase-
variable outer-membrane protein, slipped strand mispairing and changes in 
DNA sequence repeats in the gene during genome replication lead to ON/
OFF expression of the encoded protein (blue). Antibodies to this antigen will 
not be effective if the protein has phased varied OFF. It is typically easy to 
predict phase-variable expression of these proteins due to the presence of 
DNA repeats (simple sequence repeat) in the coding region of the gene. 
(B) In phasevarions, phase-variable expression of a DNA methyltransferase 
causes genome-wide changes in DNA methylation, and expression 
differences in multiple genes due to epigenetic regulation. If these genes 
encode antigenic proteins/vaccine candidates, then methylation-dependent 
loss of expression (red protein) or reduced expression (purple protein) can 
lead to immune evasion as antibodies lose efficacy. However, due to the 
epigenetic nature of the phase-variable regulation, it is difficult to predict 
which proteins will have altered expression.
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repeats causes loss or gain of repeats units, leading to frameshift 
mutations (ON/OFF switching) if located in the coding region, 
or altered expression levels if located within a promoter or opera-
tor region. In the case of genome inversions and recombination 
mediated mechanisms, phase-variable genes can be identified by 
the presence of various genetic markers such as recombinases, 
inverted sequence repeats, cryptic domains, and/or via genome 
comparisons for local reorganization (36, 37). Bioinformatic 
searches have been used successfully to identify numerous phase-
variable genes in a variety of bacterial pathogens, such as Neisseria 
meningitidis (38–41), Neisseria gonorrhoeae (42), Campylobacter 
jejuni (43), Helicobacter pylori (44), and Haemophilus influenzae 
(45); and these genes are typically excluded from further screen-
ing of vaccine candidates. It is interesting to note that NadA, 
present in the meningococcal serogroup B vaccine (4CMenB, 

Bexsero), is phase variable. However, the variable expression of 
NadA is complex and was not easily identifiable in silico; the tan-
dem repeats are distally located upstream of the nadA promoter 
and regulation involves both stochastic and classical mechanisms 
of gene regulation (46–48).

The DNA methyltransferase Dam is one of the best studied 
examples of epigenetic regulation in bacteria. While Dam itself 
is not phase variable or regulated, it is involved in phase varia-
tion of specific virulence genes in E. coli and Salmonella, such as 
pap (49, 50) and agn43 (51, 52). Dam is not believed to serve as 
a common transcriptional regulatory mechanism (35). Rather, 
competition between Dam and a particular DNA-binding 
regulatory protein provides opportunities for competitive sto-
chastic switches that alter gene expression at specific target sites 
[reviewed in Ref. (35)].

ePiGeNeTiC ReGULATiON OF 
ANTiGeNS VIA PHASe-vARiABLe 
DNA MeTHYLTRANSFeRASeS

Phase-variable DNA methyltransferases, that act as global epige-
netic regulators, have been identified in a number of pathogenic 
bacteria and add another layer of complexity to the process of 
antigen selection. Phase variation of these DNA methyltrans-
ferases results in coordinated, differential methylation of the 
entire genome in the DNA methyltransferases ON versus OFF 
variants. This leads to altered expression of a set of genes that 
is called a phasevarion, for phase-variable regulon (18, 53, 54) 
(Figure  1B). Phasevarions exert a pleiotropic effect and are 
associated with variable expression of proteins from diverse 
functional categories, such as metabolic processes, nutrient 
acquisition, stress responses, and virulence, as well controlling 
the variable expression of vaccine candidates. Phasevarions 
have been characterized in numerous pathogenic bacterial spe-
cies, including H. influenzae (54–56); the pathogenic Neisseria 
(57–59); H. pylori (60), C. jejuni (43, 61), Moraxella catarrhalis 
(62, 63), and Streptococcus pneumoniae (64) (see Tables 1 and 2).

Phasevarions present a critical challenge for vaccine devel-
opment, in that the genes controlled by phase-variable DNA 
methyltransferases do not have easily identifiable markers to 
indicate their phase-variable expression – these markers are only 
associated with the DNA methyltransferase and not the genes it 
regulates. Consequently, these components may be considered 
as potential vaccine candidates because their expression is 
erroneously assumed to be stable. This could potentially result 
in less effective, or completely ineffective, vaccines (Figure 1B).

TYPeS OF PHASe-vARiABLe 
DNA MeTHYLTRANSFeRASeS

Phase-variable DNA methyltransferases have been described that 
are associated with all three major types of restriction–modifica-
tion (R–M) systems (Figure 2A; Table 1). In type I R–M systems, 
the specificity of the DNA methyltransferase is dictated by a 
specificity subunit (HsdS). Phase variation is typically mediated 
by this locus, either by slipped strand mispairing [as with the 
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TABLe 1 | Phase-variable DNA methyltransferases.

Restriction–
modification 
type

DNA methyltransferase 
gene

Species Mechanism of phase variation Reference

I NgoAV (hsdSngoAV) Neisseria gonorrhoeae SSMa of hsdSNgoAV1 (poly-G repeats) (65)
I SpnD39III  

(SpnD39IIIA-FP)
Streptococcus pneumoniae Recombinationb generates six potential hsdS genes 

(inverted repeat sequences)
(64)

I hsd1 and hsd2 loci Mycoplasma pulmonis Recombination between two hsd loci generates 
eight (observed) allele combinations (vip and hrs 
sequences)

(66)

IIS cj0031 Campylobacter jejuni SSM of cj0031 (poly-G repeats) (43, 61)
Putative II HpyAIV Helicobacter pylori SSM of M.Hpy.AIV (poly-A repeats) (67)
III mod (HP1407) H. pylori SSM of res (and downstream mod) (poly-C repeats) (68)
III mod Pasteurella haemolytica SSM of mod (CACAG repeats) (69)
III modA Haemophilus influenzae, Neisseria meningitidis, 

N. gonorrhoeae
SSM of modA (AGCC or AGTC repeats) (54–56, 58, 

70)
III modB (ngoAXmod) N. gonorrhoeae, N. meningitidis SSM of modB (CCCAA or GCCAA repeats) (58, 59)
III modD N. meningitidis, Neisseria lactamica, Neisseria 

mucosa, Neisseria cinerea, Neisseria polysaccharea
SSM of modD (CCGAA repeats) (57)

III modH (formerly modC) H. pylori SSM of modH expression (poly-G repeats) (60)
III modM Moraxella catarrhalis SSM of modM expression (CAAC repeats) (62, 63)

aSlipped strand mispairing (SSM) causes frameshift mutation, altering either the DNA target specificity (type I); or the expression (ON/OFF switching) of the gene indicated. The phase-
variable DNA repeat sequence is indicated in brackets.
bGenome recombination or rearrangement of domains, generating the number of alleles indicated. The sequence motifs mediating recombination are indicated in brackets.
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NgoAV system of N. gonorrhoeae (65)] or by genome rearrange-
ments of the hsdS subunit domains [as with the SpnD39III system 
of S. pneumoniae (64)]. In the SpnD39III system, genomic rear-
rangements result in recombination of one of two possible hsdS 
domain 1 sequences (TRD1.1 and TRD1.2) with one of three 
possible hsdS domain 2 sequences (TRD2.1, 2.2, and 2.3), which 
can result in the generation of six different hsdS alleles (SpnIIIA 
to SpnIIIF), producing six different HsdS specificity proteins (64) 
(Figure  2B). Accordingly, the SpnIII methyltransferase has six 
possible DNA specificities, each of which regulates expression of 
a distinct set of genes. While an individual cell expresses only 
one allele of each DNA methyltransferase at any particular time, 
populations of bacteria could express different mixtures of alleles.

In type II and III R–M systems, the DNA methyltransferases 
are independent proteins that dictate the specificity of the 
methylation site, and phase variation is typically mediated by 
slipped strand mispairing of SSRs in the coding sequence of 
the DNA methyltransferase (mod) gene (Table 1). Changes in 
repeat number cause frameshift mutations and switching of 
Mod protein expression between “ON” (expressed) or “OFF” 
(not expressed) states (Figure  2C). The type III Mod proteins 
are the most extensively studied (Table 1), and multiple allelic 
variants exist for each system, as determined by sequence 
differences in the DNA recognition domain responsible for 
methyltransferase specificity (18, 54, 56, 58, 60, 62, 71). For 
example, 21 modA alleles (56, 58, 70), 6 modB alleles (18, 58, 
74), and 7 modD alleles (57, 74) have been identified to date. 
Unlike the type I systems described above, switching between 
alleles by genome rearrangement within a strain has not been 
reported and only one allele is present in a given strain. However, 
horizontal transfer of allele DNA recognition domains occurs 
and is postulated to generate novel DNA methyltransferase 
alleles over time (70, 75, 76).

PHASevARiONS AND vACCiNe 
DeveLOPMeNT

The challenge for vaccine development is to determine whether 
specific antigens are members of phasevarions prior to investing 
time in developing them as vaccine candidates. Previous studies 
have identified proposed vaccine candidates in phasevarions, 
including hopG (encoding a major outer-membrane protein) in 
the H. pylori ModH5 phasevarion (60), lbp (encoding lactoferrin 
binding protein) in the N. meningitidis ModA11 phasevarion 
(58), HMW adhesins in the H. influenzae ModA2, ModA4, and 
ModA5 phasevarions (56), and capsule in the S. pneumoniae 
SpnIIID39B phasevarion (64) (Table 2). Furthermore, many pha-
sevarions are associated with virulence, which may be of concern 
as virulence determinants are often targets of vaccine develop-
ment. For example, the ModA11 and ModA12 phasevarions in 
N. meningitidis (72), ModA13 and M.NgoAX in N. gonorrhoeae 
(58, 73), and ModA2, ModA5, and ModA10 in H. influenzae (56) 
all affect antimicrobial susceptibility. ModA2 (H. influenzae), 
ModA13 (N. gonorrhoeae) (58), and cj0031 (C. jejuni) (61) alter 
biofilm formation. N. meningitidis ModD1 can increase oxidative 
stress resistance and regulate factors important for growth and 
survival in blood (57). Different pneumococcal SpnIII alleles are 
associated with causing different phenotypes in S. pneumoniae, 
such as nasopharyngeal colonization (SpnIIIB) or bacteremia 
(SpnIIIA) (64) (Table 2).

Consequently, when considering the impact of phasevarions 
on vaccine development, it is important to know which allele(s) 
are present in the bacterial species, as well as the distribution of 
these alleles – that is, whether certain alleles predominate among 
the pathogenic strains that require targeting by the vaccine. 
Previous studies have used PCR and Sanger sequencing methods 
to identify and determine alleles (55–58, 60, 62); however, the 
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TABLe 2 | Phenotypes and phasevarions associated with phase-variable DNA methyltransferases.

Allele and 
methylation sitea

Species (strain) Phenotypesb Phasevarion analysisb Reference

modA1 Haemophilus 
influenzae
RdKW20

Increased resistance  
to heat shock

Microarray: increased expression of cysteine and glutamate/
aspartate transport; heme binding; and outer-membrane 
protein (opa). Decreased expression of heat shock and 
chaperone proteins (dnaJK, groEL, groES, htpG)

(53–55)

modA2
5′-CCGAMeA-3′

H. influenzae
723

Increased sensitivity to ampicillin; 
increased biofilm formation; 
selection for ON in vivo (chinchilla 
infection model)

iTRAQ: decreased expression of heme utilization (HxuB, 
HxuC1, HemR), OMP6, and transferring binding protein 1
Microarray: increased expression of iron permeases (hitAB, 
yfeACD) and heme utilization proteins (hxuAB), and anaerobic 
respiration genes

(56)

modA4
5′-CGMeAG-3′

H. influenzae
C486

Increased survival in 
opsonophagocytic killing assays

iTRAQ: OMP P2 (56)

modA5
5′-ACMeAGC-3′

H. influenzae
477

Increased resistance 
to erythromycin

iTRAQ: OMP P5 (56)

modA10
5′-CCTMeAC-3′

H. influenzae
R2866

Increased resistance  
to gentamicin

iTRAQ: OMP P5, P6 (56)

modA11
5′-CGYMeAG-3′

Neisseria meningitidis
MC58

Phenotype: increased  
antibiotic sensitivity

Microarray: increased expression of lactoferrin binding 
proteins lbpA and lbpB (potential meningococcal vaccine 
candidate) and other outer-membrane proteins. Reduced 
expression of ribosomal proteins. Altered expression of DNA 
repair, energy metabolism, LPS biosynthesis, and other 
virulence associated genes

(58, 71, 72)

modA12
5′-ACMeACC-3′

N. meningitidis
B6116/77

Increased antibiotic sensitivity Microarray: increased expression of succinate dehydrogenase 
operon, frpA-C related and bacterioferritin B genes

(58, 71, 72)

modA12 Neisseria  
gonorrhoeae
96D551

Microarray: reduced expression of fetA, ferric enterobactin 
binding protein and putative enterobactin permease (ABC 
transporter)

(58)

modA13
5′-AGAMeAA-3′

N. gonorrhoeae
FA1090

Increased association with  
primary cervical epithelial cells, 
but reduced invasion and survival. 
Decreased biofilm formation and 
antimicrobial resistance

Microarray: response to oxidative stress (metF, metE; 
NGO0554; recN), antimicrobial resistance (mtrF), DNA repair 
(recN, NGO0318), and amino acid biosynthesis (metFE, 
NGO0340)

(58)

modB1 (ngoAXmod) N. gonorrhoeae
FA1090

Decreased planktonic growth, 
biofilm formation, and  
adherence and invasion  
of human epithelial cells

Microarray: down-regulation of biofilm-associated genes 
including pili (ngo0095-98), adhesins mafA, mafB, and opaD

(73)

modD1
5′-CCMeAGC-3′

N. meningitidis
M0579

Increased oxidative stress 
resistance

Microarray: increased expression of catalase (katA) and factors 
regulated for growth in blood (glnA, purF, proB); decrease in 
cold-shock domain protein, mip-related protein homolog

(57, 71)

modH5 Helicobacter pylori
P12

Not reported Microarray: increase in hopG (potential vaccine candidate). 
Decrease in motility associated genes flaA and HPP12_904 
(fliK homolog)

(60)

modM2
5′-GARMeAC-3′

Moraxella catarrhalis
ATCC 25239

Not reported iTRAQ: increase in proteins important in low iron conditions 
(FbpA, FixC), cell adherence (RpmG, AhcY), and broth growth 
(LepB, NqrC); decrease in oxidative stress response (GreA, 
BfrA)

(62)

SpnD39IIIA
5′-CRAMeAN8CTG-3′

Streptococcus 
pneumoniae
D39

Decreased carriage rate;  
selection for allele in  
mouse blood

RNASeq: decrease in blp, sucrose regulator, and fucose 
operon; increase in psaABC, dnaK

(64)

SpnD39IIIB
5′-CRAMeAN9TTC-3′

S. pneumoniae
D39

Non-opaque colonies, higher 
phagocytosis by RAW  
264.7 cells; lower blood 
bacteremia rates in vivo

RNAseq: decrease in capsule, luxS, dexB (64)

SpnD39IIIE
5′-CRAMeAN8CTT-3′

S. pneumoniae
D39

Lower bacteremia rates in vivo Not reported (64)

(Continued )
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FiGURe 2 | Phase-variable DNA methyltransferases. (A) The three main types of restriction–methylation (R–M) systems: type I consists of separate restriction 
(R), methyltransferase (M), and specificity (S) components, encoded by hsdR, hsdM, and hsdS genes, respectively. For restriction to occur, a pentameric R2M2S 
complex must form, but methylation can occur independently through a trimeric M2S complex. The HsdS subunits dictate the DNA sequences that are restricted 
and methylated. Type II systems are encoded by individual genes, often located separately on the chromosome. The resulting restriction (R) and methyltransferase 
(M) enzymes recognize and act independently upon the same DNA motif. Type III systems consist of colocalized mod [modification; encoding a methyltransferase, 
Mod (M)] and res [restriction; encoding a restriction enzyme, Res (R)] genes. Res proteins require Mod to restrict DNA (R2M2), but Mod enzymes are active as 
stand-alone methyltransferases (M2). (B) Phase variation of type I R–M systems via recombination between expressed (hsdS) and silent (hsdSʹ ) specificity genes. 
Each hsdS gene contains two target recognition domains (TRDs), each contributing half to the sequence recognized by the HsdS protein. Shuffling of each TRD via 
recombination between homologous inverted repeats (gray at 5′ end, yellow in center) leads to four possible combinations, and therefore, four different 
methyltransferase specificities in this example. (C) Phase variation of type III R–M systems via slipped strand mispairing (SSM) of simple sequence repeats in the 
open reading frame of the mod genes. Loss or gain of a repeat unit leads to variation in the open reading frame and either expression of a functional Mod protein 
(Mod ON), or transcriptional termination through the presence of a premature stop codon (Mod OFF).

Allele and 
methylation sitea

Species (strain) Phenotypesb Phasevarion analysisb Reference

SpnD39IIIF
5′-CMeACN7CTT-3′

S. pneumoniae
D39

Lower bacteremia rates in vivo Not reported (64)

cj0031
5′-CCYGMeA-3′

Campylobacter jejuni
NCTC11168

Enhanced adhesion and invasion 
of epithelial cells; increased biofilm 
formation; and increased phage 
restriction ability. ON strains are 
selected for in vivo (chicken model)

Not reported (61)

aWhere available, the methylation site has been indicated by Me preceding the methylated residue (underlined).
bUnless otherwise specified, the phenotype and phasevarion changes described are increased when the DNA methyltransferase is in phase ON versus OFF. The method used for 
phasevarion analysis and examples of genes regulated are given.
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increasing ease and lowered costs of full genome sequencing will 
enable the simple identification of phase-variable methyltrans-
ferases in broader, larger sample panels, as well as the identifica-
tion of new or novel systems. For example, the availability of a 
large database of meningococcal genome sequences has recently 
been used to help survey the mod allele repertoire in over 1,600 
isolates (74).

A bigger challenge lies in defining the proteins regulated 
within each phasevarion, as this must be determined experimen-
tally. This has previously been accomplished by custom transcrip-
tomic microarray analysis (57, 58, 60), but is being supplanted 
by next generation sequencing techniques [namely RNAseq, as 
in Ref. (64)] and proteomic analyses [e.g., iTRAQ, as in Ref. (56, 
62)]. RNAseq allows the visualization of the full transcriptomic 
response to DNA methyltransferase phase variation, including 
differences in transcription of RNA genes (such as tRNAs) and 
non-coding RNAs (such as siRNAs and other regulatory RNAs). 
RNAseq will also provide valuable information about transcrip-
tional start sites and upstream regulatory sequences for genes 
in the phasevarion, and possible transcription kinetics around 
methylation sites, enabling detailed mechanistic studies to be 
performed. In contrast, proteomic analyses will definitively iden-
tify the protein antigens differentially expressed by phasevarions 
under the conditions tested. This may differ from the transcrip-
tomic data as RNA expression does not always correlate to protein 
translation, and so future studies should analyze expression data 
using multiple techniques in order to identify all members of 
each phasevarion. This will be invaluable for examining the actual 
changes in antigen levels and how this may affect vaccines.

The identification and analysis of genes controlled by phase-
varions need to be carried out under conditions relevant to infec-
tion. This is because epigenetic regulation via DNA methylation 
is typically a multistep process, with DNA methylation affecting 
the action of regulatory proteins involved in transcription, rather 
than acting on transcriptional machinery itself [reviewed recently 
in Ref. (77)]. As such, conditions tested must be biologically 
relevant and allow these regulatory proteins to be active, in order 
to observe epigenetic regulation. This has been demonstrated by 
microarray analysis of the ModA11 phasevarion, where iron-lim-
iting conditions were necessary to identify phasevarion members 
(mimicking iron limitation in the host, compared with standard 
laboratory culture conditions) (58). Unfortunately, the specific 
conditions that permit the full expression of the phasevarion can 
be difficult to determine, and bacteria should be grown under 

biologically relevant conditions, or if possible, collected directly 
from infection sites – such as from blood or mucosal surfaces. It 
is also critical that the whole, or representative, bacterial popula-
tion is isolated and analyzed during phasevarion studies. This 
will allow the natural ON/OFF status and ratio of phase-variable 
DNA methyltransferases in the in vivo bacterial population to be 
understood.

CONCLUDiNG ReMARKS

The development of bacterial vaccines depends on the selection 
of appropriate antigens. Ideal vaccine antigens are conserved, 
immunogenic, and protective. They should also be consistently 
expressed at high enough levels during infection to be targeted 
by the immune system. Transient and arbitrary expression makes 
antigen targeting by the immune system difficult and could lead 
to immune evasion via escape of a subpopulation that do not 
express the antigen. For this reason, phase-variable antigens do 
not make ideal vaccine candidates.

Phase-variable regulators complicate the prediction of stably 
expressed antigens, as the regulated genes within a phasevarion 
lack overt markers that indicate potential random switching of 
expression. While phasevarions have been studied in a range 
of pathogenic bacteria, important questions remain regarding 
allele variability, distribution, and regulatory mechanisms. More 
detailed understanding of these factors will help to elucidate the 
full complement of phase-variable genes in human pathogens 
for which vaccine development has been problematic, and help 
facilitate robust antigen selection for rational vaccine design in 
the future.
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