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Plasmacytoid Dendritic cells 
respond Directly to apoptotic 
cells by secreting immune 
regulatory il-10 or iFn-α
Joanne Simpson, Katherine Miles, Marta Trüb, Roisin MacMahon and Mohini Gray*

MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK

Plasmacytoid dendritic cells (pDCs) play a pivotal role in driving the autoimmune dis-
ease systemic lupus erythematosus, via the secretion of IFN-α in response to nuclear 
self-antigens complexed with autoantibodies. Apoptotic cells, generated at sites of 
inflammation or secondary lymphoid organs, are exposed to activated pDCs and also 
express the same nuclear antigens on their cell surface. Here, we show that in the 
absence of autoantibodies, activated pDCs directly respond to apoptotic cell-expressed 
chromatin complexes by secreting IL-10 and IL-6, which also induces T cells to secrete 
IL-10. Conversely, when activated by the viral mimetic CpG-A, apoptotic cells enhance 
their secretion of IFN-α. This study demonstrates that activated pDCs respond directly to 
apoptotic cells and may maintain tolerance via IL-10, or promote inflammation through 
secretion of IFN-α, depending on the inflammatory context.
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inTrODUcTiOn

During an inflammatory immune response, large numbers of tissue resident cells and leukocytes 
undergo programed cell death. This change from viable to apoptotic cell is potentially danger-
ous because neo-epitopes, including chromatin and ribonucleoprotein derived autoantigens, are 
expressed on the dying cell’s surface as well as on released apoptotic bodies (1–3). In addition, 
following infection, complexes containing viral particles and host nucleic acids are simultaneously 
expressed on the surface of apoptotic cells (3, 4). The consequences of losing tolerance to apoptotic 
cells are illustrated by the classical autoimmune diseases, systemic lupus erythematosus (SLE), and 
Sjogren’s syndrome that are characterized by multi-organ chronic inflammation and increased 
mortality (5).

However, apoptotic cells are normally highly tolerogenic, actively inducing anti-inflammatory, 
and immunosuppressive responses in macrophages that have phagocytosed them (efferocytosis) 
(6, 7). In addition, following efferocytosis, conventional dendritic cells (cDCs) present MHCII-
apoptotic cell peptide complexes to cognate T cells, in the absence of costimulation, favoring 
T cell anergy, and the induction of immune regulation (8). Furthermore, we have previously 
shown that apoptotic cells interact directly with activated innate-like B cells, in a toll-like receptor 
(TLR) 9-dependent manner, inducing them to secrete immune regulatory IL-10 and promote 
self-tolerance (9, 10).

Plasmacytoid dendritic cells (pDCs) are a specialized type of dendritic cell found in steady 
state within the blood and secondary lymphoid organs. They also express intracellular TLR9 and 
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TLR7 and are best known for responding to viruses by secret-
ing copious amounts of type I IFN. To access virally infected 
cells, they migrate into peripheral tissues along chemokine 
gradients (11). Yet, pDCs have a dual role in immunity and 
can also promote immune tolerance (11). In particular, IFN-α 
secreted by pDCs induces TLR9-activated B cells to secrete 
IL-10 (12), which restricts autoimmune mediated inflamma-
tion (13). pDCs also promote immunological tolerance by 
inducing IL-10-secreting regulatory T cells (Tregs) (14–18) that 
may contribute to the enhanced tumor progression associated 
with tumor-infiltrating pDCs (19, 20). Central tolerance is 
also influenced by pDCs that transport peripheral antigens to 
the thymus and trigger thymocyte deletion (21). Additionally, 
immunosuppressive pDCs are found in abundance in the liver 
(22), where T cells undergoing activated apoptotic cell death 
accumulate for disposal (23).

Currently, the capacity of apoptotic cell-expressed self-
antigens to directly influence the responses of pDCs is unknown. 
Yet, pDCs are exposed to apoptotic cells at inflamed sites, such as 
the cutaneous lesions associated with SLE. Here, pDCs are found 
to gather in inflammatory dermal regions and cluster at sites of 
abundant apoptotic epithelial cells (24). Aberrant stimulation of 
IFN-α by pDCs in response to nuclear antigens released from late 
apoptotic/secondary necrotic cells complexed with autoantibodies 
(25–27), or antimicrobial peptides (28–30) is considered to drive 
inflammation in SLE and Sjogren’s syndrome (11). Furthermore, 
pDCs accumulate in psoriatic plaques during the initiation of 
disease (31, 32), where they secrete IFN-α in response to self-
DNA immune complexes (28). Yet, psoriasis can be successfully 
treated by inducing apoptosis with UVB irradiation (33), despite 
UVB irradiation recruiting pDCs to the skin (34).

Indeed, pDCs have been associated with the anti-inflammatory 
immune regulation generated during therapeutic use of apoptotic 
cells. Spleen-resident pDC activity is modified in vivo following 
apoptotic cell infusion, such that they acquire the ability to 
expand self-antigen specific Tregs (35, 36). This tolerogenic func-
tion of pDCs is required for apoptotic cell-induced facilitation 
of allogenic bone marrow engraftment in mice (35), and they 
may contribute to mediating apoptotic cell-induced protection 
from ongoing collagen-induced arthritis (36). However, although 
evidence exists that apoptotic cells can promote regulatory pDC 
functions in vivo, this was suggested to occur indirectly via TGF-
β secretion from macrophages that had efferocytosed apoptotic 
cells (35).

In the clinical setting, there is potential to treat graft versus 
host disease (GVHD) following allogenic hematopoietic cell 
transplantation using extracorporeal photopheresis (ECP); a 
technique where peripheral blood mononuclear cells (PBMCs) 
are separated from whole blood, treated with 8-methoxypsoralen 
and exposed to UVA irradiation to induce apoptosis, then given 
back to the patient (37). Notably, the pDC population increased 
following ECP to treat patients that developed GVHD in response 
to stem cell transplant, indicating that pDCs may promote a 
favorable tolerogenic outcome (38).

Hence, activated pDCs can induce inflammation or tolerance 
depending on the inflammatory context (39). pDCs encounter 
apoptotic cells in both inflammatory and regulatory conditions, 

but it is not clear if apoptotic cells can directly influence their 
functions. pDCs endocytose antigens from infected (40) and 
apoptotic cells (41); again suggesting they should be able to inter-
act with and endocytose intracellular antigens now expressed on 
the apoptotic cell surface. Yet, there are no studies to date that 
have examined if apoptotic cells can directly induce tolerogenic 
pDCs. In this study, we asked how pDCs might respond to 
apoptotic cell-expressed self-antigens, in the absence of autoan-
tibodies or antimicrobial peptides. We find, akin to innate-like 
regulatory B cells, that activated pDCs do respond to apoptotic 
cell-expressed chromatin complexes in a TLR9-dependent man-
ner, by secreting either IL-10 and IL-6, or IFN-α. These cytokine 
responses were only seen in the context of whole apoptotic cells 
and not debris derived from them. Activated pDCs that had been 
exposed to apoptotic cells also induced T cells to secrete IL-10. 
This indicates that activated pDCs are influenced by apoptotic 
cell-expressed chromatin complexes, which may contribute 
toward the maintenance of immune self-tolerance within an 
inflammatory milieu.

MaTerials anD MeThODs

ethical approval
Experiments involving mice were covered by a project licence 
granted by the UK Home Office and approved locally by the 
University of Edinburgh Animal Welfare and Ethical Review 
Committee. Healthy donor blood was collected from the Centre 
for Inflammation Research blood resource approved by AMREC 
(Ref. 15-HV-013).

Mice
C57BL/6 mice, C57BL/6 background TLR9−/− mice, and BALB/c 
mice were bred and maintained in a specific pathogen-free 
condition in the animal facilities at University of Edinburgh in 
accordance to UK Home Office guidelines. TLR9−/− mice were 
kindly provided by Prof. S. Akira (Hyogo College of Medicine, 
Nishinomiya, Japan). Mice were used at 6–12 weeks of age and 
were age- and sex-matched in experiments.

cell stimulation and Treatments
Cells were treated with the following: TLR7 ligand R848, 1 µg/
ml (InvivoGen); mouse TLR9 ligands, CpG-A, 20 µg/ml (ODN 
1585, InvivoGen) and CpG-B, 10  µg/ml (ODN 1826, Eurofins 
MWG Operon); human TLR9 ligands CpG-A, 3  µg/ml (ODN 
2216, InvivoGen) and CpG-B, 2 µM (ODN 2006, Eurofins MWG 
Operon); and DNase, 50 µg/ml (Roche, UK).

pDc isolation and culture
Mouse pDCs were enriched from single-cell splenic suspensions 
following initial depletion of B cells using CD19 microbeads 
(Miltenyi Biotec). pDCs (PDCA+ B220+ Ly6C+ CD3− CD11b− 
CD19−) were further sorted using a FACSAria cell sorter (BD 
Biosciences) to generate >99% pure (PDCA1+ Ly6C+) pDC 
population (Figure S1A in Supplementary Material). pDCs 
(1 × 104) were cocultured with apoptotic thymocytes (1 × 106), 
or apoptotic splenic B cells (2 × 105) and, where stated, splenic 
T cells (1  ×  105) isolated using CD4 microbeads (Miltenyi 
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Biotec), in 96-well round bottom plates (Corning). Cultures 
were maintained in IMDM supplemented with 10% FCS, 2mM 
l-glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin, and 
2 µM 2-mercaptoethanol (complete IMDM) at 37°C 5% CO2 for 
the duration of the assay. In transwell experiments, pDCs (4 × 104) 
were cultured in the well and apoptotic cells (4 × 106) located in 
the upper transwell insert (permeable membrane 0.4  µM pore 
size) in 24-well plates (Corning).

Peripheral blood mononuclear cell (PBMC) were separated 
from the blood of healthy donors using dextran sedimentation 
(Pharmacosmos) followed by a percoll gradient (GE Healthcare) 
as described previously (42), with modifications. PBMC was 
depleted of B cells using CD19 microbeads (Miltenyi Biotec). 
CD19− PBMC (1  ×  106) was cocultured with CD4+ apoptotic 
cells (1 × 106) in 96-well round bottom plates (Corning) in RPMI 
supplemented with 10% FCS, 2mM l-glutamine, 100 U/ml peni-
cillin, and 100 µg/ml streptomycin.

generation of apoptotic cells
Single-cell suspensions of murine thymocytes, splenic B cells 
purified using CD19 microbeads (Miltenyi Biotec), and human 
CD4+ cells purified from PBMCs [using CD4 microbeads 
(Miltenyi Biotec)] were exposed to 100 mJ/cm2 UV irradiation 
then incubated for 4 h in complete medium at 37°C 5% CO2. In 
certain experiments, DNase was added to complete medium. 
Apoptotic cell membranes were disrupted by performing 
five cycles of freezing on dry ice and thawing in 37°C water 
bath. The proportion of apoptotic thymocytes was measured 
by flow cytometry by staining cells for DNA using propidium 
iodide (PI) and surface expression of phosphatidylserine 
using Annexin V-FITC (Invitrogen). The minimum degree of 
apoptosis for cells used in coculture experiments was 20% early 
apoptotic and 15% late apoptotic. The proportion of apoptotic 
B cells was measured by flow cytometry using PI and 100 nM 
10-N-nonyl acridine orange as a marker of mitochondrial 
membrane integrity.

cytokine Quantification
The concentration of mouse IL-10, IL-6, IL-12, and TNF-α 
was measured using standard ELISA (R&D Systems). VeriKine 
mouse IFN-α ELISA kit was used to quantify the concentration 
of IFN-α in accordance with the manufacturer’s protocol (PBL 
Interferon Source). Human IFN-α was quantified by matched 
antibody pairs in accordance with the manufacturer’s instruc-
tions (eBioscience).

intracellular il-10 cytokine staining
Cells were taken on day 3 of culture and resuspended at 
1  ×  106  cells/ml in fresh medium with added PMA, 20  ng/ml 
(Sigma-Aldrich) and Ionomycin, 1  µg/ml (Sigma-Aldrich). 
After 1  h, brefeldin A, 1  µg/ml (Sigma-Aldrich) was added to 
block secretion of cytokines and the cells were incubated for an 
additional 3 h. The cells were then surface-stained (PDCA1-APC 
and B220-PerCP), followed by fixation and permeabilization 
(BD Biosciences) before intracellular cytokine staining with PE 
rat anti-mouse IL-10 (1:100; BD Pharmingen) or PE rat IgG2b 
isotype control (1:100; BD Pharmingen).

il-10 secretion assay
The mouse IL-10 secretion assay was performed in accordance 
to the manufacturer’s instructions (Miltenyi Biotec) with a few 
minor changes. Briefly, on day 7 of culture, cells were washed 
and resuspended in complete mouse medium containing IL-10 
catch reagent and incubated on ice for 5 min. The cells were then 
continuously rotated for 4 h at 37°C prior to washing and staining 
with PE-conjugated mouse IL-10 detection antibody (Miltenyi 
Biotec) and anti-mouse CD4-FITC (1:100; BioLegend).

Flow cytometry
Single stain controls of each fluorochrome were used to deter-
mine appropriate compensation. Samples were selected using 
singlet gating and were obtained by FACS Calibur or LSR 
Fortessa (BD Biosciences) and analyzed using FlowJo Software  
(version 10.0).

immunizations
The 5  ×  106 DO11.10 lymph node cells were injected i.v. into 
BALB/c mice followed by immunization with OVA323–339 peptide 
(2 µg/ml) emulsified in CFA s.c. into each hind leg. Then 20 × 106 
apoptotic thymocytes or vehicle alone (PBS) were injected i.v. on 
days 0, 1, and 2. On day 7, single-cell suspensions of spleen and 
draining (inguinal) lymph nodes were flow sorted to obtain puri-
fied pDCs and CD11b+ CD11c+ cDCs. pDCs and cDCs (104) were 
cultured for 72 h with CD4+ DO11.10 T cells (105) and OVA323–339 
peptide (2 µg/ml).

statistical analysis
Data are expressed as mean and SEM. Statistical significance 
between the groups was assessed by GraphPad Prism Version 
7.0 using the appropriate analysis as stated in the figure legends. 
p Values: *0.01–0.05, **0.001–0.01, and ***<0.001.

resUlTs

pDcs exposed to apoptotic cells In Vivo 
augment il-10-secreting Ovalbumin 
(OVa)-specific cD4+ T cells
We have previously shown that apoptotic cells, administered at 
the time of inducing an antigen specific immune response with 
OVA peptide specific T cells, were able to induce the secretion of 
IL-10 by innate-like B cells, present in the spleen and peritoneal 
cavity (9, 10). We hypothesized that apoptotic cells could equally 
drive activated pDCs to adopt a regulatory phenotype, capable of 
inducing IL-10-secreting T cells. To test this, we cocultured pDCs 
that had been activated through TLR7 (with R848) along with 
apoptotic B cells and CD4+ T cells for 7 days. This resulted in a 
significant increase in IL-10 in the culture medium (Figure 1A). 
Cytokine secretion staining confirmed that, while TLR7-
activated pDCs induced 14% of T cells to secrete IL-10, this was 
augmented fourfold in the presence of apoptotic cells (Figure 1B; 
Figure S1B in Supplementary Material). Similar results were seen 
when TLR7-activated pDCs, cultured with apoptotic B cells 
were used as APCs in a mixed lymphocyte reaction along with 
allogeneic T cells (Figure 1C).
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FigUre 1 | Plasmacytoid dendritic cells (pDcs) that have encountered apoptotic cells in vivo induce a population of il-10 secreting cD4+ T cells.
(Continued )
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The location of pDCs within the spleen and lymph nodes 
increases the likelihood that they will interact with apoptotic 
cells, filtered from the circulation or dying in  situ. We next 
compared the responses of pDCs and cDCs (CD11b+ CD11c+) 
purified from the spleen and draining lymph nodes of mice that 
had been immunized with OVA/CFA and injected intravenously 
with apoptotic thymocytes or with vehicle control (PBS). pDCs 
and cDCs, pulsed with OVA peptide, were then used as APCs to 
stimulate naïve OVA-specific T cells with OVA peptide in vitro. 
pDCs isolated from the same apoptotic cell-treated mice, induced 

a higher concentration of IL-10 than cDCs (Figure 1D). In addi-
tion, those cultures containing pDCs isolated from apoptotic 
cell-treated mice generated significantly more IL-10, than pDCs 
isolated from PBS-treated mice (Figure  1D). In contrast, the 
production of TNF-α and IL-17 was not significantly different 
(Figures  1E,F). The proliferation of OVA-specific T cells was 
equivalent, when both pDCs and conventional cDCs (Figure 1G) 
served as the APC and T cells did not express more FoxP3 (Figure 
S1C in Supplementary Material). These data suggest that in a 
similar way to regulatory B cells (9), apoptotic cells influence 
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FigUre 1 | continued  
(a) CD4+ T cells were cultured with R848, pDCs, and apoptotic B cells in various combinations. After 7 days, IL-10 production was measured by ELISA. Data are 
shown as the mean + SEM of three independent experiments. *p < 0.05; **p < 0.01; and ***p < 0.001, as determined by one-way ANOVA followed by Tukey’s 
multiple comparison test. (B) The proportion of CD4+ T cells producing IL-10 in response to R848 and pDCs with and without apoptotic B cells was quantified by 
IL-10 secretion assay. Data are shown as the mean + SEM of three independent experiments, with representative FACS plots from one of three experiments. 
**p < 0.01, as determined by Student’s t-test. (c) BALB/C CD4+ T cells were cultured with R848, C57BL/6 pDCs, and C57BL/6 apoptotic B cells in various 
combinations. IL-10 production was measured after 3 days. *p < 0.05; **p < 0.01; and ***p < 0.001, as determined by one-way ANOVA followed by Tukey’s 
multiple comparison test. (D) IL-10, (e) TNF-α, and (F) IL-17 production by naïve DO11.10 CD4+ T cells was measured following 72 h in culture with OVA323–339 
peptide and pDCs, or conventional dendritic cells (cDCs) that were isolated from the spleen and inguinal lymph nodes of mice that were immunized for 7 days with 
OVA/CFA and vehicle control (PBS), or apoptotic thymocytes (AC). Each symbol represents pooled data from three independent experiments consisting of four mice 
per group. *p < 0.05; ***p < 0.001; and ns not significant, as determined by paired Student’s t-test. (g) DO11.10 CD4+ T cell proliferation was measured following 
72 h in culture with OVA323–339 peptide and pDCs, or cDCs. FACS plots represent data pooled from four mice. See also Figure S1C in Supplementary Material.
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the ability of activated pDCs to induce the generation of IL-10 in 
cultures with naïve T cells.

The pDc response to apoptotic cells 
Depends on the coactivating stimulus
To begin to dissect the requirements for apoptotic cell-mediated 
augmentation of cytokine secretion by pDCs, we first asked if 
resting pDCs could respond directly to apoptotic cells. In the 
absence of other stimuli, 104 highly purified pDCs (Figure S1A in 
Supplementary Material) were cocultured for 72 h with 106 apop-
totic thymocytes. Despite one-third of the apoptotic cells becom-
ing late apoptotic within 24  h (Figure S1D in Supplementary 
Material), they failed to secrete any of the cytokines tested, 
including IL-10, IL-6, TNF-α, IL-12, or IFN-α (Figures 2A–E). 
This is likely due to the failure of apoptotic cells alone to activate 
pDCs, which is supported by the lack of CD86, CD40, or MHC 
class II upregulation (Figure S1D in Supplementary Material) 
and also by their reduced viability (Figure S1G in Supplementary 

Material). Hence in the absence of autoantibodies, resting pDCs 
do not respond to apoptotic primary cells, even when the apop-
totic cells have become late apoptotic.

To mimic the presence of single-stranded RNA viruses and 
to provide an activating stimulus to the pDCs, the TLR7 ligand 
R848 was included in the coculture with apoptotic thymocytes. 
pDCs were activated, as indicated by the increased expression of 
CD86 and MHC Class II (Figure S1F in Supplementary Material) 
and also showed enhanced survival over 72  h (Figure S1F in 
Supplementary Material). Within 48 h, in the presence of apop-
totic cells, TLR7-activated pDCs were seen to secrete significantly 
more IL-10 and IL-6 (Figures 2A,B), which was maximal after 
72 h (Figure S1H in Supplementary Material); but not TNF-α, 
IL-12, or IFN-α (Figures 2C–E). A similar pattern of cytokine 
secretion was seen when pDCs were activated through the TLR9 
receptor with CpG-B (Figures 2A–E), which was also able to bind 
to the surface of apoptotic cells (Figure S2A in Supplementary 
Material). In contrast, when pDCs were activated with the 
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FigUre 2 | apoptotic cells augment differential cytokine production by plasmacytoid dendritic cells (pDcs) depending on the toll-like receptor 
stimulus.
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TLR9 ligand CpG-A, and cultured with apoptotic cells [which 
also bound to apoptotic cells (Figure S2B in Supplementary 
Material)], the release of IFN-α (Figure 2E) [but not other meas-
ured cytokines (Figures 2A–D)] was significantly enhanced. The 
secretion of cytokines by apoptotic thymocytes cultured with the 
TLR agonists themselves (in the absence of pDCs) was minimal 
(Figure 2F). This indicates that in contrast to resting pDCs, TLR-
activated pDCs respond to apoptotic cells. The coactivating TLR 

stimulus (which may mimic viral particles bound to the surface 
of apoptotic cells), determined the subsequent cytokine profile 
of cytokines secreted by pDCs in response to apoptotic cells. 
As previously reported (43), we did not detect IL-10 (by intracel-
lular staining) in pDCs activated via TLRs alone (Figure  2G). 
However, IL-10 was clearly seen in 16% of TLR-activated pDCs 
following coculture with apoptotic B cells (Figure 2G; Figure S2C 
in Supplementary Material). Intracellular IL-10 was not detected 
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FigUre 2 | continued  
pDCs were unstimulated, or stimulated with R848, CpG-B, or CpG-A, and cultured alone (No AC), or with apoptotic thymocytes (+ AC). (a) IL-10, (B) IL-6, 
(c) TNF-α, (D) IL-12, and (e) IFN-α protein were measured in cell supernatants after 72 h. (F) Cytokine production by apoptotic thymocytes cultured alone with and 
without R848, CpG-B, or CpG-A was measured after 72 h. Data are presented as the mean of three to eight independent experiments. Error bars represent SEM. 
*p < 0.05; **p < 0.01; ***p < 0.001; and ns not significant, as determined by paired Student’s t-test. (g) Expression of intracellular IL-10 was detected in pDCs 
(PDCA+ B220+) that were cultured for 72 h with R848 alone and with apoptotic B cells (+ AC), and apoptotic B cells with R848 alone. FACS plots represent one of 
three independent experiments. Bars are the mean + SEM of three independent experiments. See also Figures S1A,D–H and S2 in Supplementary Material.
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FigUre 3 | Direct contact with whole apoptotic cells, but not necrotic cells, induces cytokine production by plasmacytoid dendritic cells (pDcs). 
(a) IFN-α and (B) IL-10 production was measured 72 h after R848-, CpG-B-, or CpG-A-stimulated pDCs were cocultured with apoptotic, or secondarily necrotic 
thymocytes. (c) IL-10 production by R848-stimulated pDCs was measured 3 days after culture alone and with apoptotic, or secondarily necrotic B cells. IL-10 
secretion by R848-stimulated apoptotic B cells alone was also measured. (D) pDCs activated by CpG-B and CpG-A were cultured for 72 h with the cell-free 
supernatant from apoptotic thymocytes and then IL-10 and IFN-α production was measured, respectively. (e) IFN-α and (F) IL-10 secretion was quantified 72 h 
following the coculture of CpG-A and CpG-B, respectively, activated pDCs with apoptotic cells together in the well (contact) or separated using a transwell insert 
(No contact). Data are shown as the mean of three independent experiments with error bars representing SEM. *p < 0.05; **p < 0.01; ***p < 0.001; and ns not 
significant, as determined by one-way ANOVA (a–D) and two-way ANOVA (e–F).
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in the apoptotic B cells, confirming that the pDC and not the 
apoptotic cell was the source of IL-10 (Figure 2G). Along with 
the in vivo observations, these data indicate that apoptotic cells 
modulate highly purified pDC function such that they secrete sig-
nificantly more cytokine, which is influenced by the simultaneous 
activating signal; provided either by T cells or TLR ligands.

Murine and human pDcs respond to 
Whole apoptotic, but not secondary 
necrotic cells
Plasmacytoid dendritic cells are known to secrete IFN-α in 
response to immune complexes formed between SLE Ig and 
nuclear material released from necrotic cell lines, but not apoptotic 

primary cells (25). Yet, SLE is caused by defective efferocytosis 
resulting in apoptotic cells becoming secondary necrotic (44). We 
therefore wished to understand how apoptotic cells were able to 
augment cytokine secretion by activated pDCs in the absence of 
autoantibodies. We asked if debris derived from primary apop-
totic cells could be responsible for augmenting IFN-α secretion 
by CpG-A-activated pDCs. In contrast to whole apoptotic cells 
(thymocytes), debris released from secondarily necrotic cells 
did not enhance IFN-α production by CpG-A-stimulated pDCs 
(Figure  3A). IL-10 production by R848- or CpG-B-activated 
pDCs was similarly abolished if the apoptotic cells were first 
broken apart by repeat freeze-thawing (Figure 3B). To determine, 
if this effect was specific to apoptotic thymocytes, R848-activated 
pDCs were also cocultured with apoptotic and secondary necrotic 
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splenic B cells, which yielded similar results (Figure  3C). This 
shows that, in the absence of autoantibodies, TLR-activated pDCs 
are responding to ligands expressed on the surface of the intact 
apoptotic cell membrane and not simply soluble nuclear antigens 
released from secondary necrotic cells.

Apoptotic cell-derived membrane microparticles have been 
reported to stimulate the production of IFN-α secretion by 
human pDCs (45). We went on to assess if TLR-activated mouse 
pDCs were responding to soluble factors released by apoptotic 
cells. Following an overnight culture of 106 apoptotic thymocytes, 
supernatant was transferred to TLR-activated pDCs, which were 
cocultured for an additional 72 h. Again, apoptotic cell superna-
tants did not augment IL-10, or IFN-α production by CpG-B- and 
CpG-A-activated pDCs, respectively (Figure 3D). Furthermore, 
inhibiting cell-to-cell contact by separating pDCs and apoptotic 
cells in culture using a transwell insert significantly reduced both 
apoptotic cell-induced IFN-α (Figure 3E) and IL-10 (Figure 3F) 
production by pDCs stimulated with CpG-A and CpG-B, respec-
tively. This indicates that activated mouse pDCs do not secrete 
cytokines in response to components, such as microvesicles or 
endosomes, released into the culture medium by the apoptotic 
cells. In addition, cytokine release by pDCs requires contact with 
the whole apoptotic cells.

il-10 secretion by pDcs is Dependent 
on apoptotic cell-expressed chromatin 
complexes
Apoptotic cells express nuclear DNA-containing chromatin 
complexes on the cell surface and released apoptotic bodies 
(1). We have previously shown that apoptotic cell-derived DNA 
complexes are essential for apoptotic cell-mediated induction of 
IL-10-secreting regulatory B cells (10). To establish if chromatin 
containing complexes, expressed on apoptotic cells, were also 
important for inducing cytokine secretion from TLR7/9-
stimulated pDCs, DNA was enzymatically removed from the 
apoptotic thymocyte surface using DNase (10). While this 
did not affect the ability of CpG-B and CpG-A to bind to the 
surface of the apoptotic cells (Figures S2A,B in Supplementary 
Material), the production of IL-10 and IFN-α (but not IL-6) from 
the combined apoptotic cell/TLR-stimulated pDCs was now 
markedly reduced (Figures 4A–C). This indicates that in order 
for activated pDCs to respond to apoptotic cells by upregulating 
the secretion of IL-10 or IFN-α, they must first be exposed to 
endogenous nucleic acid containing complexes, presented to the 
pDCs on an intact membrane. TLR9 expressed by innate-like 
B cells plays an essential tolerogenic role, inducing regulatory 
B cells in response to apoptotic cell-derived DNA (10), as well 
as influencing pDC-dependent T cell regulation (46). Therefore, 
we were interested to determine if IL-10 production by pDCs 
required TLR9. As expected, IL-10 and IFN-α secretion were 
not detected in TLR9-deficient pDCs cocultured with apoptotic 
thymocytes and TLR9 ligands CpG-B and CpG-A, respectively 
(Figures 4D–F).

Finally, we assessed if human pDCs would also respond to 
apoptotic cells in a similar way to mouse pDCs. Human pDCs and 
B cells are the only peripheral blood cells known to constitutively 

express both TLR7 and TLR9. Within the mixed populations 
of (neutrophil depleted) leukocytes present in PBMCs, CpG-A 
stimulates IFN-α production exclusively by human pDCs (47). To 
remove the only other source of TLR9, we depleted B cells from 
the PBMC population and stimulated the remaining leukocytes 
with CpG-A in the presence or absence of apoptotic CD4+ T cells. 
As previously noted, in the absence of additional TLR ligands, 
apoptotic cells cocultured with pDCs did not induce IFN-α secre-
tion (Figure  5A). However, they significantly enhanced pDC 
secretion of IFN-α protein in the presence of CpG-A (Figure 5A). 
As before with mouse pDCs, the increase in IFN-α secretion did 
not occur in the presence of necrotic debris (Figure 5B), suggest-
ing that both human and mouse pDCs are dependent on whole 
apoptotic cells to enhance the secretion of IFN-α.

DiscUssiOn

Apoptotic cells are likely to make contact with pDCs within 
inflamed tissues following anti-viral type I IFN induced cell 
death, lymphoid organs (including the marginal zone of the 
spleen) and normal tissues such as the thymus. Yet, the ability 
of resting and activated pDCs from healthy subjects to directly 
respond to apoptotic cells has not been clearly defined. We found 
that an intravenous infusion of apoptotic cells prompted splenic 
pDCs to adopt a regulatory phenotype. When isolated from the 
spleen, these pDCs induced naïve T cells to secrete IL-10 in vitro. 
This study confirms that resting pDCs do not regard apoptotic 
primary cells or necrotic debris derived from them as a danger 
signal, even following prolonged coculture. However, depend-
ing on the coactivation stimulus, intracellular self-antigens 
expressed on the surface of whole apoptotic cells, augmented 
either IL-10/IL-6 or IFN-α secretion by pDCs. pDC activation 
following T  cell stimulation or via TLR7 and TLR9 (by R848 
and CpG-B, respectively), induced pDCs to secrete significantly 
more IL-10 in response to coculture with apoptotic cells. To our 
knowledge, this is the first time that activated pDCs have been 
reported to secrete IL-10 in response to apoptotic cells; though 
these stimuli have been shown to induce IL-10 by regulatory B 
cells in a TLR9-dependent manner (10). It also indicates that 
pDCs can respond to apoptotic cell-expressed nuclear complexes 
when they receive a second activating signal; provided either by 
a TLR ligand or activated T cells.

Plasmacytoid dendritic cells also play an important role in 
influencing adaptive immune responses and are ideally placed 
to interact with T cells in secondary lymphoid organs. They 
have been shown to lessen the severity of autoimmune mediated 
arthritis and asthma in mice (48, 49). Human pDCs can also 
ingest microvesicles from apoptotic cells and present the antigen 
to T cells (50). In the presence of apoptotic cells, TLR7 activated 
pDCs greatly augmented T cell expression of IL-10, without 
affecting T cell proliferation. Thus, the ability of activated pDCs 
to secrete IL-10 in the presence of apoptotic cells may help to pre-
serve self-tolerance to dying cells within an inflammatory milieu.

Activated pDCs required direct contact with whole apoptotic 
cells to elicit optimal cytokine responses, but failed to respond to 
debris derived from necrotic cells. DNase treatment of the apop-
totic cells, which stripped mammalian DNA from complexes 
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expressed on the apoptotic cell membrane (10), also abolished 
the pDC cytokine responses, without affecting the binding of 
CpG-A or CpG-B to the apoptotic cell itself. Enzymatic digestion 
by DNase may break apart vital interactions between DNA and 
other nuclear components and prevent pDC induced cytokine 
responses. For example, the DNA-binding protein HMGB1, 
which becomes oxidized during apoptosis, has been shown to 
be important for inducing tolerance to apoptotic cells (50), and 
it is known to be expressed in membrane vesicles released by 
apoptotic cells (51).

Toll-like receptor 9 expression by pDCs was necessary for 
the augmented cytokine responses to dying cells, likely respond-
ing to the cell-expressed nuclear complexes. In humans, TLR9 
activation of pDCs by CpG-B induces Tregs (46) and they also 
promote tolerance in a model of cardiac allograft transplantation, 

where they present donor derived antigens to induce Tregs (52). 
A regulatory role for TLR signaling has also been reported in 
TLR9-deficient lupus-prone mice. Here, despite the reduction in 
anti-DNA antibody titers, mice suffer from more severe organ 
damage, akin to human SLE (53–57). Hence, TLR9 expressed by 
activated pDCs may help to prevent autoimmune responses to 
apoptotic cells, through the secretion of IL-10.

We also noted that, in the absence of autoantibodies, CpG-
A-activated pDCs also secreted significantly more IFN-α when 
cultured with whole apoptotic cells. Previous reports indicate 
that high affinity IgG in complex with self-antigens (released 
from necrotic cell lines), induce pDCs to secrete IFN-α (25, 58), 
so driving chronic inflammation in patients with SLE; through 
the activation of multiple innate and adaptive immune cells (59). 
However, IFN-α is also reported to have immunomodulatory 
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FigUre 5 | iFn-α production by human plasmacytoid dendritic cells (pDcs) stimulated with cpg-a is enhanced by apoptotic cells, but not 
secondary necrotic cells. (a) Peripheral blood mononuclear cells (PBMCs) isolated from healthy volunteers were cultured for 72 h with and without apoptotic cells 
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supernatants was measured 72 h after PBMCs were stimulated with CpG-A and cultured alone (No AC) and with apoptotic, or necrotic CD4+ T cells. Data are 
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