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There is increasing evidence that natural killer (NK) cells exhibit regulatory features. 
Among them, CD56bright NK cells have been suggested to play a major role in con-
trolling T cell responses and maintaining homeostasis. Dysfunction in NK cell-mediated 
regulatory features has been recently described in untreated multiple sclerosis (MS), 
suggesting a contribution to MS pathogenesis. Moreover, biological disease-modifying 
treatments effective in MS apparently enhance the frequencies and/or regulatory func-
tion of NK cells, further pointing toward an immunoprotective role of NK cells in MS. 
Here, we summarize the current knowledge on the regulatory functions of NK cells, 
based on their interactions with other cells belonging to the innate compartment, as 
well as with adaptive effector cells. We review the more recent data reporting disruption 
of NK cell/T cell interactions in MS and discuss how disease-modifying treatments for 
MS affect NK cells.

Keywords: natural killer cells, CD56bright nK cells, CD56dim nK cells, regulatory immune cells, innate immune 
system, multiple sclerosis

nATURAL KiLLeR (nK) CeLLS AS COnTROLLeRS  
OF (AUTO)iMMUne ReSPOnSeS

Regulatory Features of nK Cells
Autoimmune reactivity occurs in every subject, but only 5–10% of humans develop an autoimmune 
disease (1). Keeping autoreactive cells under control and, thus, preventing them to cause disease is 
the task of specialized immune cell subsets, called “regulatory” cells. The best characterized regula-
tory immune cell populations belong to the adaptive immune system (IS) and include regulatory 
T cells (Tregs), type-1 regulatory T cells, and regulatory B cells. However, there is increasing evidence 
that the innate IS also plays an important role in controlling autoreactive cells.

An important population of regulatory immune cells belongs to the natural killer (NK) cells. 
These, so-called CD56bright NK cells, owe their name to high surface expression of CD56 (also known 
as neural cell adhesion molecule), are CD16−/dim, express the inhibitory receptor NKG2A, and do not 
express killer cell immunoglobulin-like receptors (KIR). CD56bright NK cells were first considered 
“immunoregulatory” by Cooper et al., due to increased production of cytokines and reduced cyto-
toxicity compared to CD56dim NK cells (2).

It is now established that CD56bright NK cells regulate other immune cells belonging to both the 
innate and adaptive IS. Although most studies on CD56bright NK cell function have been conducted 
ex vivo with cells purified from peripheral blood, lymph nodes (LNs) are likely a key place where 
CD56bright NK cells exert their regulatory function (3), since they preferentially home to parafollicular 
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T cell areas (4) where immune responses develop. In addition to 
CD56bright NK cells, the major NK cell subset in peripheral blood, 
CD56dim NK cells, which derive from CD56bright NK cells and are 
more differentiated, also exert regulatory functions as discussed 
below.

interactions between Regulatory nK Cells 
and innate immune Cells
CD56bright NK cells express receptors for cytokines such as inter-
leukin (IL)-12, IL-15, and IL-18 (5–7), which are produced by 
activated antigen-presenting cells (APCs). These cytokines can 
trigger proliferation of CD56bright NK cells and their production of 
molecules such as IFN-γ, IL-10 and IL-13, TNF-β, and GM-CSF 
(2). In this context, Ferlazzo et  al. demonstrated that dendritic 
cells (DCs) are a key source of IL-12 and IL-15 for activation 
of CD56bright NK cells (8), and we have shown that DC-derived 
IL-27 can modulate proliferation and function of these cells (9). 
Thus, APCs modulate NK cell functions and phenotype (10–13). 
Infections most likely modulate the function of CD56bright NK cells 
indirectly through APCs, because co-culturing CD56bright with 
APCs activated via TLR4 (macrophages, DC) or TLR9 (plasmacy-
toid DCs) stimulates their proliferation and cytokine production 
(2, 8, 14, 15). Conversely, activated NK cells modulate the func-
tion of APCs: they stimulate monocytes to produce TNF-α (16) 
and kill immature DCs in a process called DC editing (17, 18).

interactions between Regulatory nK Cells 
and Adaptive immune Cells
Natural killer cells also interact with adaptive effector cells. IFN-γ 
secreted by CD56bright NK cells in response to T cell-derived IL-2 
has been demonstrated to stimulate T cells in LNs (4). Along this 
line, increased local bioavailability of IL-2 by blocking the IL-2Rα 
chain (CD25) on recently activated T cells upon treatment with 
daclizumab is associated with expansion and activation of 
CD56bright NK cells in multiple sclerosis (MS) patients (19–21). 
Indeed, while T cells express the high-affinity form of the IL-2 
receptor, which comprises CD25, CD56bright NK cells express both 
high-affinity and intermediate-affinity (not comprising CD25) 
forms of the IL-2 receptor (20, 22). Thus, upon daclizumab 
treatment, NK cells are stimulated through binding of IL-2 to 
their intermediate-affinity receptor. This results in control of 
T cell activation through direct killing (19, 21), which, for the 
CD56bright subset, involves release of cytotoxic granzyme K (23). 
Furthermore, IL-27-stimulated CD56bright NK cells have been 
shown to suppress the proliferation of autologous CD4+ T cells in 
a contact-dependent manner associated with increased perforin 
content (9). CD56bright NK cells, stimulated with the pro-inflam-
matory cytokines IL-12 and IL-15, prevent autologous CD4+ T 
cell proliferation through a cytotoxic mechanism involving the 
engagement of the natural cytotoxicity receptors (NCRs), such as 
NKp30 and NKp46 (24), on NK cells and the release of granzyme 
B (25). CD56bright NK cells were also shown to inhibit proliferation 
of autologous CD4+ T cells by secreting the immunosuppressive 
molecule adenosine. Inhibition of CD38 (“ADP ribosyl-cyclase”), 
an enzyme involved in the production of adenosine, restored 
proliferation of T cells in the presence of CD56bright NK cells (26). 

While these studies described the effects of CD56bright NK cells on 
T cells undergoing activation, others reported direct cytotoxicity 
of CD56bright NK cells on previously activated T cells. Nielsen and 
coauthors found that killing of pre-activated T cells by CD56bright 
NK cells involves the activating receptors NKG2D, LFA-1, and 
TRAIL and is enhanced when blocking NKG2A (27). Another 
study demonstrated that both CD56bright and CD56dim NK cells 
kill autologous antigen-activated CD4+ T cells through engage-
ment of DNAM-1 and 2B4 and their cognate receptors CD155 
and CD48, respectively (21). These and other studies reveal that 
different stimuli activate NK cells toward cytotoxicity and/or 
suppression of T cell proliferation (Figure 1).

POSSiBLe ROLe OF nK CeLLS  
in MS AnD iTS AniMAL MODeL

Multiple sclerosis is an autoimmune disease of the central nerv-
ous system (CNS) characterized by an attack of the myelin sheath 
that surrounds and protects CNS axons by autoreactive T cells. 
Its murine model, experimental autoimmune encephalomyelitis 
(EAE), is triggered by active immunization with myelin antigens 
or transfer of activated autoreactive myelin-specific T cells to 
naïve recipients. Until recently, defects in regulatory mechanisms 
had only been described in MS in cells of the adaptive compart-
ment (28).

Conflicting data on a beneficial vs. detrimental role of NK cells 
in EAE have been published (29–31), but studies on regulatory 
NK cells in mice are difficult to translate into humans, because 
murine NK cells do not express CD56 and the murine counter-
parts of CD56bright and CD56dim subsets have not been identified 
with certainty.

Enhancing regulatory features of NK cells ameliorates the 
disease course of EAE. In particular, NK cells expressing NKG2A 
(which is expressed by all CD56bright NK cells in humans) were 
shown to decrease CNS inflammation by killing T cells and micro-
glial cells, when the interaction between NKG2A and its ligand 
Qa-1 (the murine equivalent to the human HLA-E) expressed 
on the target cells was blocked by antibodies specific for either 
antigen (32, 33). Decreased expression of Qa-1 on microglial 
cells upon CNS inflammation rendered them more sensitive to 
NKG2A+ NK cell-mediated lysis. Importantly, enrichment of NK 
cells through treatment with IL-2 coupled with IL-2 mAb (“IL-2 
complexes”) (34) ameliorated EAE (35). A  recent work from 
the same group has shed light on the differential effects of NK 
cells in early vs. late stages of EAE and possibly MS (36), which 
may depend on their interactions with neural stem cells (NSCs). 
Indeed, Liu et al. found that, in MS and EAE brains, NK cells are 
in contact with NSCs and that, in EAE NSCs released IL-15 upon 
contact with NK cells, thereby supporting NK cell proliferation 
and survival; in turn, NK cells killed NSCs, particularly during 
the late stages of EAE, as a result of reduced expression of Qa-1 
on NSCs. Accordingly, removal of NK cells during the late phase 
of EAE reduced disease severity (36). These observations suggest 
that cytotoxicity of NK cells may be a double-edged sword in 
EAE, with NK cells attenuating inflammation in the acute phase 
of disease by killing immune cells (T cells, microglial cells), but 
impairing potential repair during the late stage by killing NSCs.
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FiGURe 1 | natural killer (nK) cell-mediated control of T cell responses. (A) Stimulus of CD56bright with IL-2, IL-7, IL-12, IL-15, IL-18, and IL-21 induces 
cytotoxicity (G) toward previously activated autologous CD4+ T cells through the engagement of NKG2D and the natural cytotoxicity receptors (NCRs) (27). 
(B) Pre-activation of NK cells with IL-2 and of autologous CD4+ T cells with staphylococcal enterotoxin B (SEB) induces cytotoxicity of NK cells toward autologous T 
cells (G) through engagement of the activating receptor DNAM-1 on NK cells and its ligand CD155 on T cells (21). (C) In the presence of the anti-IL-2Rα monoclonal 
antibody daclizumab, IL-2 signal through the intermediate-affinity receptor induces cytotoxicity of CD56bright NK cells toward autologous activated CD4+ T cells (G) 
involving the transfer of granzyme K to target cells (23). (D) The pro-inflammatory cytokines IL-12 and IL-15 induce anti-proliferative (H) and cytotoxic function of 
CD56bright NK cells toward CD4+ T cells undergoing activation through engagement of the NCRs NKp30 and NKp46 and release of granzyme B (25). (e) CD56bright 
suppress proliferation of autologous CD4+ T cells (H) by releasing adenosine (26). (F) IL-27 induces suppressor function of CD56bright NK cells toward autologous 
CD4+ T cells (H), which is associated with increased perforin content (9).
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While Liu et al. did not ascertain whether NK cells in contact 
with NSCs belonged to the CD56bright or CD56dim NK subset (36), 
others analyzed the phenotype of NK cells in the cerebrospinal 
fluid (CSF). The majority of intrathecal NK cells in healthy 
individuals, MS patients and patients with other neurological 
diseases are CD56bright NK cells (21, 37, 38), suggesting that CSF 
enrichment in CD56bright NK cells is not MS specific, but rather 
CNS specific (37). This may reflect organ-specific, rather than 
blood-specific, tropism of CD56bright NK cells (39). The recently 
discovered lymphatic vessels in the brain (40, 41) may be the route 
of entry for CD56bright NK cells, which were shown to circulate in 
the lymph (42). Of note, a higher migratory capacity of CD56bright 
compared to CD56dim NK cells was observed in a model of the 
human blood–brain barrier (BBB) (21).

Given the evidence that CD56bright NK cells are a regulatory 
population of the IS in healthy individuals, we have explored their 
function in untreated MS patients or patients with clinically iso-
lated syndrome suggestive of MS (25). The number of CD56bright 
NK cells was similar in MS patients and healthy subjects (HS). 
However, upon stimulus with pro-inflammatory cytokines, 
CD56bright NK cells from MS patients suppressed much less effi-
ciently the proliferation of autologous CD4+ T cells compared to 
those from HS. This was associated with an increased expression 
of HLA-E on CD4+ T cells in MS and was reverted by blocking 
HLA class I on T cells, suggesting that the cytotoxic function of 
CD56bright NK cells on their targets is inhibited through binding of 
HLA-E on T cells to the NK cell inhibitory ligand NKG2A. HLA-E 
is a non-classic major HLA class I molecule expressed by immune 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


4

Gross et al. Impaired NK-Cell Function in MS

Frontiers in Immunology | www.frontiersin.org December 2016 | Volume 7 | Article 606

cells and, outside the immune compartment, by endothelial cells, 
which release its soluble form upon inflammation (43). HLA-E 
upregulation was found in MS CNS within white matter lesions, 
in endothelial cells and astrocytes (44, 45). Similarly, Morandi 
et al. detected increased levels of soluble HLA-E in the CSF and 
expression of HLA-E within immune cells and neural cells in MS 
plaques, which correlated with decreased NK cell cytotoxicity 
(46). The causes of such upregulation are, as yet, unknown. Thus, 
an impairment of CD56bright NK cell immunoregulatory function 
in MS may occur not only in the periphery but also within the 
CNS. Recently, we also described decreased cytolytic activity 
of NK cells in MS as a consequence of reduced upregulation of 
CD155 on T cells after activation, concomitantly with a reduced 
NK cell surface expression of DNAM-1 (21). These studies point 
toward a resistance of T cells to NK cell suppressive functions 
rather than an intrinsic defect in the NK cells in MS.

The relevance of the immunoregulatory function of NK 
cells in MS is emphasized by studies from the group of Takashi 
Yamamura, who described a particular peripheral NK phenotype 
to be characteristic of MS patients in remission, with increased 
production of the anti-inflammatory cytokine, IL-5 (“NK2” 
cells), and high expression of CD95 (47), which inhibited the 
production of IFN-γ by Th1 clones (48). Among these patients, 
a further division of NK2 cells as CD11c-high (not producing 
IL-5) and CD11c-low (producing IL-5) subsets identified CD11c-
high patients at risk of relapse (49), suggesting that CD11c + NK 
cells are pro-inflammatory. In another study, a subpopulation of 
NK cells characterized by low expression of CD8, a phenotype 
associated with CD56bright NK cells, was observed to be reduced in 
untreated patients with relapsing-remitting MS (50).

Previous infections may influence the development of MS 
(51). Interestingly, infections not only activate NK cells but also 
shape NK cell functions (52–54). Thus, cytomegalovirus (CMV) 
induces expansion of NK cells that produce IL-10 in mice, to pre-
vent excess of activation of CD8 T cells (55, 56). In humans, CMV 
infection is associated with expansion of terminally differentiated 
NK cells bearing the NKG2C receptor and has been implicated 
both in MS etiology and/or “protection” (57). In this context, 
Martinez-Rodriguez et  al. explored the expression of NKG2C 
on NK cells from MS patients and controls, in relation to their 
CMV+ serostatus and to the NKG2C genotype, finding that the 
expansion of NKG2C+ NK cells in CMV+ patients was associated 
to lower risk of disease progression, suggesting that CMV may 
exert a beneficial influence on MS, either through expansion of 
NKG2C+ NK cells or through other mechanisms (58). Differently 
to CMV, infection with Epstein–Barr virus, which has also been 
associated with an increased risk of MS, expands early differenti-
ated NKG2A + CD56dimNK cells (59, 60), but whether such cells 
have any role in the pathogenesis of MS is unknown.

THe iMPACT OF MS THeRAPieS  
On nK CeLLS

In addition to first-line MS therapies, interferon beta (IFN-β) and 
glatiramer acetate, novel immune-modulating therapies such as 
the anti-inflammatory dimethyl fumarate, the T cell proliferation 

inhibitor teriflunomide, the migration inhibitors natalizumab and 
fingolimod (FTY720), the IL-2 receptor-modulating daclizumab, 
and the immune cell-depleting alemtuzumab are now available 
for treatment of MS (61, 62). Many of these immune-modulating 
biologicals alter the NK cell compartment (Figures  2A,B) by 
increasing NK cell frequencies (Figure 2A) and/or NK-mediated 
immune regulatory functions (Figure 2B) (61, 63), which points 
to an immune-protective role of NK cells in MS. Furthermore, 
antibody-dependent cell-mediated cytotoxicity (ADCC) by 
CD56dim NK cells has been proposed as an essential therapeutic 
mechanism in alemtuzumab-mediated T and B cell depletion as 
well as rituximab-mediated B cell depletion (Figure 2C) (64, 65).

One therapeutic approach in MS is the reduction of inflam-
matory lesions by inhibiting infiltration of autoreactive lympho-
cytes into the CNS. While the humanized monoclonal antibody 
(hMA) anti-CD49d (alpha 4 integrin) natalizumab prevents 
transmigration of circulating lymphocytes across the BBB (67), 
the sphingosine 1-phosphate receptor (S1P) modulator FTY720 
reduces CNS inflammation in MS (68) indirectly by prevent-
ing lymphocyte egress from LNs (69). A natalizumab-induced 
increase of total NK cells and CD56bright NK cells in blood con-
comitantly with reduced NK cell numbers in CSF (Figure 2A) 
(21, 70, 71) suggests CD49d-dependent transmigration of NK 
cells into the CNS. Trafficking of NK cells in steady state and 
inflammatory conditions requires S1P (72) and decreased num-
bers of circulating CD56bright NK cells have been observed 6  h 
after FTY720 treatment (73) (Figure 2A). Long-term treatment 
also resulted in reduced numbers of both NK cell subsets in the 
CSF (own observations). Despite reduced NK cell numbers, a 
relative increase in peripheral and intrathecal NK cell subsets 
within the lymphocyte compartment (74) indicates that FTY720 
inhibits NK cell emigration less than that of other lymphocytes 
(Figure  2A). This might be due to the fact that egress of NK 
cells from LNs is regulated through both S1P1 and S1P5 (72, 75), 
whereas other lymphocytes use only S1P1 (76). Since S1P1 and 
S1P5 seem to trigger the activation of distinct intracellular signal 
transduction pathways, it has been suggested that S1P5 might 
be less susceptible to FTY720 than S1P1 (72). Along this line, a 
higher expression of S1P5 on CD56dim NK cells than on CD56bright 
ones (72) might explain the relative increase of the CD56dim NK 
cell subset (77). While treatment of MS patients with FTY720 
alters NK cell trafficking, it has no impact on cytokine secretion 
or cytolytic function of NK cells (77).

In contrast, treatment with daclizumab affects both peripheral 
(20, 78) and intrathecal CD56bright NK cell numbers (79), as well 
as their immunoregulatory function (19, 21) (Figures  1 and 
2B). Daclizumab is a recently approved hMA directed against 
IL-2Rα, which showed enhanced efficacy in MS compared to 
IFN-β [DECIDE trial (80)]. Daclizumab enhances endogenous 
mechanisms of immune tolerance by reducing early T cell activa-
tion (81), expanding CD56bright NK cells (20, 78), while reducing 
lymphoid tissue-inducer cells (82), and restoring defective NK 
cell-mediated control of T cell activity in MS (19, 21). The mecha-
nism of the effect of daclizumab on CD56bright NK cells has been 
discussed in chapter 1.3 (Figure 2C). Daclizumab both boosts NK 
cell cytolytic function in a DC-dependent manner and renders 
antigen-activated T cells more sensitive toward NK-mediated 
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FiGURe 2 | impact of multiple sclerosis (MS) therapies on the natural killer (nK) cell compartment. (A) Fingolimod (FTY720) inhibits egress of CD56bright, 
and to a lower degree, CD56dim NK cells from the lymph node (LN), resulting in a relative increase of the latter subset in the periphery (middle). Natalizumab inhibits 
transmigration of lymphocytes including NK cells across the blood–brain barrier (BBB). (B) Elevated levels of IL-2 in daclizumab-treated patients promote 
differentiation and expansion of CD56bright NK cells. Daclizumab both boosts NK cell cytolytic function in a DC-dependent manner and renders antigen-activated 
T cells more sensitive toward NK-mediated lysis, thus restoring defective NK-mediated control of T cell activity in MS. (C) In addition to complement-dependent 
cytotoxicity (CDC), alemtuzumab (top) and rituximab (bottom) use CD56dim NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) to deplete T and/or 
B cells in peripheral blood. However, in the CSF, sparseness of CD56dim NK cells, reduced levels of complement proteins, and lack of antibodies crossing the 
BBB limit local immune-modulating efficacy [(C) adapted from Ref. (66)].
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lysis, thus restoring defective NK cell-mediated control of T cell 
activity in MS (19, 21) (Figure 2B).

Alemtuzumab is a hMA directed against the cell surface mol-
ecule CD52, which demonstrated a high clinical efficacy in MS 
(83, 84). CD52 is highly expressed on T and B cells and to a lower 
degree on NK cell subsets (85, 86). Accordingly, a relative increase 
of circulating NK cells with increased numbers of CD56bright NK 
cells was observed 6 months after alemtuzumab therapy, whereas 
the CD56dim subset remained unaltered. However, there was no 
change in NK cell cytolytic function (87). ADCC is mediated 

via the FcγRIII (CD16)-expressing CD56dim NK cell subset (88). 
Since intrathecal CD56dim NK cells are sparse (21, 89), the thera-
peutic efficacy of alemtuzumab within the CNS might be limited 
(Figure  2C). Along this line, insufficient disease inhibition in 
progressive MS by intrathecal application of rituximab was pro-
posed to be due to low numbers of CD56dim NK cells and reduced 
levels of complement proteins within the CNS (66). Further stud-
ies are required to shed more light on NK cell-mediated ADCC as 
a mechanism of action of human monoclonal antibody-mediated 
depleting therapies in MS.
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SUMMARY/OUTLOOK

NK cells are important players in controlling T cell activation in 
CNS autoimmunity, and impaired immune regulatory function of 
NK cells might be one of the driving forces in the pathogenesis of 
MS. Thus, a better understanding of the underlying mechanisms 
of NK cell-mediated regulation of T cell activation might help to 
improve treatment strategies in MS.
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