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Type I interferons (IFN-I) have long been heralded as key contributors to effective antiviral 
responses. More widely understood in the context of acute viral infection, the role of 
this pleiotropic cytokine has been characterized as triggering antiviral states in cells 
and potentiating adaptive immune responses. Upon induction in the innate immune 
response, IFN-I triggers the expression of interferon-stimulated genes (ISGs), which 
upregulate the effector function of immune cells (e.g., dendritic cells, B cells, and T cells) 
toward successful resolution of infections. However, emerging lines of evidence reveal 
that viral persistence in the course of chronic infections could be driven by deleterious 
immunomodulatory effects upon sustained IFN-I expression. In this setting, elevation 
of IFN-I and ISGs is directly correlated to viral persistence and elevated viral loads. It 
is important to note that the correlation among IFN-I expression, ISGs, and viral per-
sistence may be a cause or effect of chronic infection and this is an important distinction 
to make toward establishing the dichotomous nature of IFN-I responses. The aim of this 
mini review is to (i) summarize the interaction between IFN-I and downstream effector 
responses and therefore (ii) delineate the function of this cytokine on positive and neg-
ative immunoregulation in chronic infection. This is a significant consideration given the 
current therapeutic administration of IFN-I in chronic viral infections whose therapeutic 
significance is projected to continue despite emergence of increasingly efficacious anti-
viral regimens. Furthermore, elucidation of the interplay between virus and the antiviral 
response in the context of IFN-I will elucidate avenues toward more effective therapeutic 
and prophylactic measures against chronic viral infections.
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inTRODUCTiOn

Upon viral infection, the immune response comprises a multi-layered coordination of effector 
functions broadly characterized as a progression from innate to adaptive immunity. Within the 
immunological milieu, Type I interferons (IFN-I) play a central role in driving an antiviral state in 
non-immune cells as well as orchestrating antiviral immune responses through: (i) inhibiting viral 
replication in infected cells in the innate stage of the immune response; (ii) activating and enhanc-
ing antigen presentation in the “early induced” immune response, and (iii) triggering the adaptive 
immune response through direct and indirect action on T and B cells that make up the memory 
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response [reviewed in Ref. (1)]. Therefore, this cytokine acts as a 
master regulator whose induction in the early stages of viral infec-
tion modulates downstream signaling cascades that promote both 
pro-inflammatory and anti-inflammatory responses depending 
on the context of activation as discussed below. Whereas the pro-
tective role of IFNs has been widely characterized, emerging lines 
of evidence illustrate a deleterious effect borne by IFN-associated 
immunopathology (2, 3). These characterizations bear particular 
importance given the historic use and ongoing studies on IFN 
therapy in the treatment of chronic viral infections [e.g., HCV 
(4) and HIV (5–8)], autoimmune diseases [e.g., systemic lupus 
erythematosus (9)], and cancer (10–13). Whereas the advent of 
new therapies has spurred a trend toward IFN-free treatments 
in HCV, HIV, and oncology, IFN therapy is still considered to be 
a significant therapeutic agent due to its efficacy against HCV-
associated complications [e.g., hepatocellular carcinoma (4)] 
and combinatorial effect in cancer therapy (14). In addition, cost 
restriction due to the price of emergent therapies also sustains the 
use of IFN-based therapies (15).

Described here in the context of viral infections, this review 
focuses on the course of IFN-I upon (i) elicitation; (ii) down-
stream signaling in various cell types, and (iii) the consequent 
binary effect on immunity. Collectively, we discuss the develop-
ment of IFN-driven antiviral responses and key features that 
highlight potential targets toward effective treatment measures 
against chronic viral infections.

DiveRSiTY in iFn-ASSOCiATeD  
iMMUne ReSPOnSeS

Type I interferons can be broadly characterized into three 
groups: IFN-I, Type II (IFN-II), and Type III (IFN-III) with 
subcategories therein based on gene loci of the IFN transcribing 
genes as well as difference in their cognate receptors. IFN-I is 
the largest and most well-characterized group with seven classes: 
IFNα, IFNβ, IFNδ, IFNϵ, IFNκ, IFNω, and IFNτ whereas IFN-II 
comprises IFNγ. IFN-I and IFN-II signal through IFNαR1/R2 
(IFNAR) and IFNγR1/R2 (IFNGR), respectively. The last class 
IFN-III, otherwise classified as “IFN-like cytokines,” consists of 
interleukin (IL)-28A (IFNλ2), IL28B (IFNλ3), and IL29 (IFNλ1) 
and signals through IL-28RI/IL10R2 receptor chains [reviewed 
in Ref. (16)].

Upon pathogen-encounter, a plethora of cells are induced into 
IFN-I expression through recognition of pathogen-associated 
molecular patterns by putative pattern recognition receptors 
(PRRs), such as (i) toll-like receptors (TLRs) (17–24), (ii) 
retinoic-acid inducible gene I (RIG-I) (20, 25), (iii) melanoma 
differentiation-associated gene 5 (26), and (iv) nucleotide-binding 
oligomerization domain-containing protein (27). Consequent to 
PRR activation, signal transduction occurs through downstream 
transcription regulators called IFN regulatory factors (IRFs). This 
family of nine members, IRF1–IRF9 [see Table 1 in Ref. (28) for 
summary] offers yet another layer of diversity in the IFN response; 
convergence to and transcription by different sets of IRFs is 
determined by the nature of the sensing PRR, which resultantly 
determines the nature of the subsequent IFN responses.

The third layer of diversity entails the initiation of tran-
scription by IRFs, which is facilitated by the variety of signal 
transduction pathways triggered upon elicitation of IFNs. Upon 
ligation of IFNAR, signal transducer and activator of transcrip-
tion 1 (STAT1) and STAT2 are induced through phosphoryla-
tion by the tyrosine kinase 2 (TYK2) and Janus kinase (JAK1). 
Thereafter, STAT1 and STAT2 form a trimeric transcription 
factor, IFN-stimulated gene factor 3, by assembling with IRF9 
that subsequently migrates into the nucleus to initiate transcrip-
tion of IFN-stimulated genes (ISGs) by binding to the promoter 
regions known as IFN-stimulated response elements (ISRE) (29). 
Within this signal cascade lies combinatorial differences through 
which IFNs foster both proinflammatory and anti-inflammatory 
responses. For example, while signaling by IFN α/β through 
IFNAR typically leads to heterodimerization of STAT1 and 
STAT2, homodimerization between STAT1 and STAT3 may 
occur concurrently or alternatively upon IFNAR signaling. This 
different pairing of downstream STAT dimers therefore results 
in (i) the aforementioned engagement of ISRE toward antiviral 
responses (STAT1/3 heterodimers), (ii) the induction of pro-
inflammatory responses by binding to IFNγ response elements 
(GAS) (STAT1 homodimers), or (iii) binding of STAT3-binding 
elements (SBE) to trigger an anti-inflammatory response (STAT3 
homodimers) [reviewed in Ref. (30)].

Importantly, whereas STAT1 drives a pro-inflammatory, pro-
apoptotic response, STAT3 dimerization favors an anti-inflamma-
tory response that negatively regulates the action of STAT1 (31); 
we surmise that this is likely a homeostatic mechanism to counter 
the immunopathological effects of sustained IFN-associated pro-
inflammatory responses. However, in the context of IL-6 cytokine 
signaling, the anti-inflammatory effect of STAT3 upon IFNAR 
signaling can also be counteracted through a negative feedback 
loop as well; this further underscores the multiplicity of interac-
tions that govern IFN-I-associated signaling and its downstream 
effects (31). Lastly, in addition to the plethora of molecular 
interactions, the presence of IFN-I receptors on various cell types 
[e.g., hematopoietic stem cells (32, 33), macrophages (34–36), 
dendritic cells (DCs) (37–43), and natural killer (NK) cells (35, 
44–47)] further enhances the impact of IFN-I upon induction.

iFn-i ReSPOnSeS in CHROniC 
inFeCTiOn

It is important to consider that the antiviral effects of IFN-I have 
been primarily made in the framework of an acute infection in 
which the intricate interplay of well-timed and tightly regulated 
IFN responses functions optimally toward resolution of an infec-
tion. What are the effects of prolonged IFN-I production such as 
in the case of chronic infections? This is an open question that 
is gaining increasing traction based on emerging data on the 
deleterious effects of IFN-I in the chronic setting. Importantly, 
various combinations of IFN-I are used as therapeutic measures 
particularly in chronic infections. Given the historical and 
continued use in clinical applications, this is a crucial factor to 
consider given the multifaceted ways in which IFN elicitation and 
response are regulated in a fine balance whose perturbation bears 
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impact ranging from hematopoiesis to mature differentiated 
adaptive immune responses.

iFn-i ReSPOnSeS in LYMPHOCYTiC 
CHORiOMeninGiTiS viRUS (LCMv) 
inFeCTiOn

The deleterious effect of IFN-I responses has been brought into 
sharper focus more recently by two independent studies using 
a chronic (LCMV-Clone 13) versus acute (LCMV-Armstrong) 
infection model, which revealed that viral persistence was 
diminished by in vivo IFNAR blockade (2, 3). In their analyses, 
Teijaro et al. illustrated that IFNAR blockade led to the rescue of 
IFNγ+ CD4 T cells, which as discussed comprise the T helper  1 
(TH1) cellular subsets that potentiate cytotoxic T lymphocyte 
(CTL) responses. Strikingly, this study revealed that the size of 
the CTL subpopulation was not changed despite the enhanced 
viral clearance observed; thus, functional quiescence (similar 
to exhaustion) in the face of sustained IFN-I signaling partially 
facilitates impairment of viral clearance by CTLs. A significant 
finding in these studies was that in addition to the net detrimen-
tal effects of sustained IFN-I, elicitation of high concentration 
of the cytokine early in the course of infection correlated with 
viral persistence.

As outlined, IFN-related mechanisms are governed by feed-
back loops to ascertain homeostasis and prevent immunopathol-
ogy. An example of these coordinate measures is observed in 
the switch from TH1 responses toward T follicular helper (TFH) 
cells. Fahey et al. originally depicted this transition using LCMV. 
By comparing LCMV-Armstrong versus LCMV-Clone 13, they 
observed that while mice infected with an acute strain of the virus 
did not bear any aberrant elevation of TFH markers, the chronic 
phase of LCMV-Clone 13 infection exhibited increased propor-
tions of TFH cells depicted by putative markers such as (i) CXCR5; 
a B cell homing chemokine receptor; (ii) ICOS; an inducible T cell 
costimulatory molecule; and (iii) inducible T cell costimulatory 
OX40, also known as TNFRSF4. A significant distinction to make 
here is that TFH cells were also present in the acute infection but 
these abated upon resolution of the infection (48). In follow-
up analyses, Osokine and colleagues revealed that this switch 
occurred in an IFN-I-dependent manner wherein the absence 
of IFN signaling, TH1 responses were maintained; in the pres-
ence of IFN-I, the cytokine actively suppressed the emergence of  
de novo TH1 cells in a pre-programed function that occurred 
early in the priming stages of the infection (49). The underlying 
principle behind this transition is to curb the TH1 response, which 
triggers IFNγ expression that in turn activates CTLs and NK cells. 
From a homeostatic point of view, prolonged effector function of 
these cells may lead to excessive cytotoxicity and other detrimen-
tal effects resulting in host tissue damage.

However, in the event of viral persistence, this skew toward TFH 
responses results in a number of aberrant responses that hinder 
viral clearance. Decades-long characterization of CTL exhaustion 
has been at the forefront of chronic-infection immune response 
perturbations [(50), reviewed in Ref. (51)]. Initially characterized 
in LCMV infection as well, exhausted CTLs were observed to be 

refractory to activation signals, prone to apoptosis, and feature 
an upregulation of inhibitory markers (52–56). Notably, the 
aforementioned switch to TFH from TH1 results in diminished 
activation of CTLs based on the resultant reduction of the second 
activation signal required to fully activate naïve CTLs. As shown 
by Fuller et al., the absence of TH1 licensing (57) along with the 
reduction of IFNγ due to contraction of TH1 cell populations as 
infection progresses toward chronicity leaves CTLs in a pseudo-
activated state characterized as exhaustion.

That the TFH subpopulation is atypically expanded in chronic 
infections (48, 49) also imposes dysregulation on their close 
immunological counterparts, the B cells. In the context of a 
chronic infection, perturbations such as atypical B-cell subpopu-
lations, hypergammaglobulinemia (HGG), and polyspecificity 
are well characterized (58–66). Along with others, we observed 
the extensive impact of IFN-mediated responses on humoral 
immunity both directly and indirectly in the context of viral 
persistence. In our study, we found that in addition to the indi-
rect TFH-associated humoral response perturbation, there was a 
direct IFN-I-mediated effect on B cells (67). Comparing LCMV-
Clone 13 versus LCMV-WE (acute), we observed sustained 
ablation of antigen specificity against a secondary immunogen, 
nitrophenylacetyl-chicken gamma globulin (NP-CGG), in the 
former whereas the latter only showed transient impact on anti-
gen specificity. Furthermore, we also evaluated antigen specificity 
of NP-CGG in the context of vesicular stomatitis virus (an acute 
infection), which remained unchanged. Remarkably, we observed 
the rescue of antigen specificity upon IFNAR blockade in addition 
to a recovery of lymphoid architecture similar to previous studies 
(2, 3, 67, 68). Most importantly, we also assessed the humoral 
response using a chimeric mouse model comprising reconstitu-
tion of irradiated B6 mice with a mix of bone marrow cells from 
JHT (B-cell deficient) (69) and IFNAR−/− mice. Here, we observed 
that in the absence of IFNAR signaling in B cells, neutralizing 
antibodies (nAbs) against LCMV were elicited more robustly 
and earlier than in wildtype mice and control JHT/B6 chimeras. 
These results are in agreement with previous findings by Price 
et al. who also showed that in the absence of IFN-I signaling, nAb 
responses against influenza virus developed more efficiently (70). 
Recently, the direct effect of IFN signaling on B cells has also been 
illustrated using Leishmania donovani, which is the etiological 
agent of the chronic disease, visceral leishmaniasis. In this study, 
Silva-Barrios et al. illustrated that B-cell activation occurred in 
an IFN-associated, TLR-dependent manner that culminated in 
disruption of the humoral immune response that typifies other 
chronic infections. Similar to our findings, they also observed the 
reduction of HGG upon B-cell-specific IFNAR knockout in mice 
(71), which further supports the role played by IFN signaling 
toward this phenomenon.

iFn-i ReSPOnSeS in HCv inFeCTiOn

In the perspective of human infection, the role of IFN responses 
is particularly important based on the widespread use of IFN 
therapy against chronic viral diseases such as HCV (4), HIV (5–8, 
72), and more broadly in clinical setting such as systemic lupus 
erythematosus (9), melanoma, and other neoplastic indications 
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[(11–13), reviewed in Ref. (10)]. It is important to state that the 
standard of care in HCV is slowly moving away from IFN-based 
therapy, whereas HIV anti-retroviral therapy is almost entirely 
IFN-free except in impoverished regions. Of note, although 
some of these conditions are non-viral infections, they all feature 
antigenic persistence and therefore resemble chronic viral infec-
tions despite different etiologies. Given the pervasive influence 
of IFN-I responses and data revealing both positive as well as 
negative effects of the cytokine, it is also imperative to critically 
delineate the effect of IFN-I in chronic disease settings.

Generally, the immunopathology associated with IFN-I, e.g., 
aberrant cellular populations, inadequate immune responses, and 
disrupted cytokine environments are also observed in HCV. On a 
molecular level, most characterizations of IFN cellular responses 
have been made using in vitro models, e.g., HCV pseudoparticles 
(73) and HCV cell culture (74, 75) systems whereby the impact of 
IFN is observed in the context of both endogenous expression in 
cell culture and exogenous supplementation akin to administra-
tion of therapy. Detection of viral RNA occurs through typical 
PRR-recognition pathways [(76, 77), reviewed in Ref. (78)], upon 
which upregulation of ISGs occurs (79). Interestingly, researchers 
observed a coincidence between low response rates to IFN treat-
ment in patients with high baseline levels of IFN in their plasma 
(80). In this study, Sarasin-Filipowicz and colleagues revealed that 
hepatocytes obtained from chronically infected, non-responder 
patients bore non-responsive signaling to IFN treatment  
ex vivo. Similarly, evidence of attenuation in IFN responses in 
the chronic phase of HCV is also suggested by the prevalence 
of ineffective CTL responses upon delayed induction of IFNα-
therapy, whereas functional effector activity was maintained or 
restored in spontaneous resolvers or responders, respectively 
(81). At the transcriptional level, clues toward IFN-resistance are 
posited by the discovery of proviral ISGs whereby recent work 
has shown that some ISGs work to promote the HCV resistance 
in cell culture. For example, overexpression of ubiquitin-specific 
protease 18 (USP-18), which functions as a negative regula-
tor of IFN signaling drives, a proviral response highlighted by 
evidence of up regulation in HCV patients who do not respond 
to IFN treatment (82). Conversely, USP18−/− mice are resistant 
to viral infection (83). Here, USP18 works in concert with ISG-
15, therefore inhibiting effective JAK/STAT signaling; based on 
the significance of this signaling pathway toward effective IFN 
signaling, the expression of these ISGs results in diminished 
IFN responses and counterintuitively facilitate HCV replication 
(84, 85). Important to note here is that transcription of both 
antiviral and proviral ISGs are driven by ligation of IFN recep-
tors. Similarly, the presence of “negative regulators” such as these 
is therefore likely a negative feedback mechanism, which when 
functioning optimally reverts the host immunological milieu to 
“steady-state”. However, against chronic infection, the presence of 
such processes also contributes to desensitization to therapeutic 
IFN-administration in HCV patients with high levels of IFN 
expression (86). In this setting, the consequent evocation of ISGs 
such as USP-18 and ISG-15 renders the patients non-responsive 
to therapy (87, 88). This feature also underscores the possibility 
that efficacious virologic responses against persistent infection 
are blunted over time due to the presence of proviral ISGs. Along 

with the IFN-led dysregulation described in the LCMV model, 
the presence of dysregulation at the ISG level further renders the 
immune response in a state of flux and incapable of clearing the 
infection.

iFn ReSPOnSeS in Hiv inFeCTiOn

The progression of the HIV-associated IFN-I response closely 
mirrors that observed upon HCV infection. This evolution has 
been elegantly laid out using a simian immunodeficiency virus 
(SIV) model in rhesus macaques. In this study, Sandler et  al. 
observed that IFN blockade in  vivo accelerated advancement 
to AIDS with unchecked SIV replication whereas IFNα admin-
istration conferred resistance to the host upon challenge (89). 
However, in line with the observation of desensitization discussed 
in HCV, they also observed that sustained IFN administration led 
to a reversal of host resistance to infection and conversely, resem-
bled the IFN blockade scenario in which the SIV reservoir was 
enlarged along with CD4+ T-cell depletion and AIDS. Notably, 
CD4+ T-cell depletion in this setting could be a function of the 
cellular tropism of the virus rather than solely the direct effect of 
IFN-mediated effects.

Furthermore, a wealth of research has also underscored the 
elevated IFN signature observed in the chronic stage of HIV 
infection, which correlates with high levels of viral load and 
thus, failed viremia control. Following transcriptome analyses on 
CD4+ T cells, Rotger et al. found that ISGs were upregulated in 
untreated patients relative to patients on therapy and healthy con-
trols. In addition, upon induction of antiretroviral therapy and 
reduction of viremia, the ISG profiles in patient T cells reverted 
to those observed in the cohorts of HIV-infected individuals who 
maintain a CD4 T cell count of ≥500 (elite controllers) whose 
IFN level, and resultantly ISG expression is at a lower baseline 
(90). These findings were supported by previous findings of ISG 
upregulation in vitro and in vivo in CD4+ T cells from chroni-
cally infected HIV+ patients relative to healthy controls (91). 
Furthermore, despite similarity in expression levels in the acute 
phase of infection, the absence of hyperactivated IFN expression 
is a distinctive factor between pathogenic and non-pathogenic 
forms of SIV; while pathogenic SIVmac in rhesus macaques fea-
tures an elevated IFN signature and resultant disease and the 
non-pathogenic SIVagm and SIVsmm in African green monkeys 
and Sootey mangabeys, respectively, neither exhibit aberrant IFN 
upregulation nor immune activation (92–94).

Lastly, the differences between pathogenic and non-pathogenic 
forms of SIV are partially driven by distinct signaling potentials 
through PRRs in pDCs (94); strong signaling through TLRs is 
observed in pathogenic SIV, which results in a surge of IFN that 
further propagates an immunopathogenic response as outlined in 
the various scenarios described above.

CLOSinG ReMARKS AnD OUTLOOK

It is important to note that causality between prolonged IFN 
expression and viral persistence is yet to be fully determined: 
does prolonged IFN diminish the immune response leading to 
viral persistence or does persistent infection lead to prolonged 
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IFN expression whose dysregulation of immune responses is 
misconstrued as cause rather than effect? Nevertheless, the diz-
zying network of IFN-activating and IFN-inhibiting responses 
highlights the complexity in elucidating the exact nature of the 
IFN-related immunopathology in chronic infection (summa-
rized in Figure 1). Intuitively, disruption of the delicate balance 
using exogenous IFN may result in less efficacious responses and 
adverse event profiles in therapeutic administration of IFN (95, 
96). On the contrary, the multiplicity of pathways and molecules 
offers avenues that can be useful toward more effective thera-
peutic approaches by specific targeting of the deleterious moie-
ties. For example, targeting proviral ISGs may offer an incisive 

approach toward triggering effective IFN responses and through 
their rescue, obviate exogenous IFN administration. From a 
prophylactic perspective, induction of nAbs in the absence of 
IFN signaling in B cells offers insight into the mechanisms that 
drive the delayed effective humoral response in diseases such 
as HIV and HCV. Given that the emergence of broadly nAbs 
against these chronic infections is delayed and in a highly altered 
immunological milieu, delineating the role of IFN-I facilitates a 
more comprehensive understanding of the conditions present 
during elicitation of broadly nAbs. In this regard, it is tempting 
to speculate that perhaps modulation of the IFN response along 
with the appropriate immunogen may advance vaccine work in 
these chronic infections along with other prophylactic measures 
as well. Altogether, these emergent insights bear significant 
impact on our understanding of the role of IFN-I in the immune 
response and importantly, its use in therapeutic settings. Guided 
by these findings, future work will more clearly determine the 
delicate balance that tips IFN responses from friend to foe.
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