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Avian leukosis virus (ALV) is an avian oncogenic retrovirus causing enormous economic 
losses in the global poultry industry. Although ALV-related research has lasted for more 
than a century, there are no vaccines to protect chickens from ALV infection. The inter-
action between chickens and ALV remains not fully understood especially with regard 
to the host immunity. The current review provides an overview of our current knowledge 
of innate and adaptive immunity induced by ALV infection. More importantly, we have 
pointed out the unknown area involved in ALV-related studies, which is worthy of our 
serious exploring in future.
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iNTRODUCTiON

Avian leukosis virus (ALV) is a notorious retrovirus causing neoplastic disease, immunosuppression, 
and other production problems. In chickens, the ALV are divided into six subgroups, including 
A, B, C, D, E, and J, based on their viral envelope glycoproteins responsible for viral interference 
patterns, virus neutralization, and host range (1). It is glorious that ALV-related studies provided 
Nobel laureates in 1966, 1975, and 1989 (1). Nowadays, ALV was almost eradicated in the western 
world (2, 3), but in China ALVs still persist in many bird species (4–8). Moreover, because Chinese 
poultry industry is less organized, especially among the local breeds of chickens, the ALV will exist 
for a long time and related studies would keep on in China.

Historically, the primary aims of ALV studies were concerned with the virus itself. This included 
elucidating mechanisms of tumorigenesis, viral transmission, virus isolation, viral replication, 
pathogenesis, and molecular biology. However, studies concerning the innate and adaptive immune 
responses to ALV have been neglected. Some reported studies are just limited on immunologic 
tolerance and immunosuppression induced by ALV (9, 10).

The purpose of this review is to provide an overview of progress in immunity against ALV, broaden 
the scope in new areas that are under active investigation.

iMMUNiTY AGAiNST ALv

innate immunity
The innate immune response provides the first line of defense against invading viruses and 
plays a key role in the subsequent activation of antiviral responses. During viral infection, virus 
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pathogen-associated molecular patterns (PAMPs) are recognized 
by pathogen recognition receptors (PRRs) that include toll-like 
receptors (TLRs) (11), retinoic acid-inducible gene I (RIG-I)-
like receptors (RLRs), NOD-like receptors (12), interferon-γ-
inducible protein 16 (IFI16), and cyclic GMP-AMP synthase 
(cGAS) (13).

Virus recognition activates signaling pathways that lead 
to interferon (IFN) production as well as the activation of 
inflammatory cytokines and chemokines (12). These immune 
factors recruit and activate innate immune cells including 
macrophages, dendritic cells (DCs), and natural killer (NK) 
cells that can control virus spread and activate and modulate 
the adaptive immune response (14). Moreover, hundreds of 
interferon-stimulated genes (ISGs) are induced through the 
JAK-STAT pathway and interact directly with viruses (15). Here, 
we will comprehensively discuss the interactions between ALV 
and host innate immunity regarding to the PRRs recognition, 
cytokine production, ISGs expression, and innate immune cells 
activation.

ALv Sensing
As single-stranded RNA retrovirus, ALV, like HIV, should 
theoretically be recognized by PRRs such as TLRs, RLRs, IFI16, 
and cGAS (13, 16–18). However, which specific innate sensors 
response to ALV is still elusive.

In DCs, TLR (1–4) expression changed significantly after 
ALV-J infection (19). However, the inclusion of lipopolysaccha-
ride and interleukin-4 (IL-4) as pretreatments in these studies 
hampered the determination of which TLR was responsible (19). 
On the other hand, melanoma differentiation-associated gene 
5 (MDA5) was found to have differential expression in ALV-J 
infected chickens identified through the use of transcriptome 
analysis with hybridization arrays and RNA-Seq (20, 21). In our 
laboratory, we demonstrated that ALV-J infection significantly 
increased TLR7 expression in chicks followed by MDA5 when the 
infection progressed to tumorigenesis (22). As a model, HIV-1 
recognition by TLR7 requires only attachment and endocytosis, 
independent of retroviral replication (23). TLR-7 expression 
increased in ALV-J infected chicks at 1-day post-hatch and sug-
gested that ALV-J was recognized by chicken TLR7 during the 
initial infection. RIG-I is a cytoplasmic sensor for HIV genomic 
RNA (23). Chickens lack RIG-I but MDA5 can compensate in 
immune activation (24). Our results showed that MDA5 expres-
sion was induced in the tumorigenesis phase, and we speculated 
that MDA5 was the primary sensing PRR during later infection 
stages (22).

In future, it is necessary to further verify that TLR7 and MDA5 
are specific sensors of ALV via more experiments. Besides, other 
PRRs involved in ALV infection need be explored and identified.

Cytokine Production
The chicken spleen plays a dominant role in the generation of 
immune responses due to the absence of well-developed lymph 
nodes (25). This organ also functions in innate immune responses 
to ALV-J infection (26). In 1-day-old ALV-J-infected chicks, we 
could not detect any significant expression of IL-6, IL-10, IL-1β, 
or IFN-β in spleens from 1-day postinfection (dpi) to 7 dpi (22). 

In a similar study with ALV-J and 1-day-old chicks, IL-6, IL-18, 
IFN-α, and IFN-γ did not significantly change from 1 to 7 dpi, 
but they were significantly increased in spleens 9–12  dpi. The 
cytokine levels then sharply declined at 15 dpi when the ALV-J 
load reached its peak (26). Apparently, ALV-J does not induce an 
obvious antiviral innate immune response in 1-week-old chicks, 
and this helps to explain why ALV transmission primarily occurs 
at hatching or in the first week of life (27).

In the late stages of ALV-J infection, IL-6, IL-1β, IL-10, and 
IFN-β protein levels were significantly increased in the clinical 
infected chickens (22). In infected specific-pathogen-free chick-
ens, IL-2 and IL-10 mRNA levels were significantly increased 
(28). IL-10 is a most important anti-inflammatory cytokine with 
immunosuppressive effects (29). High level of IL-10 (29) or large 
amounts of ALV-J might cause immunosuppression in chickens 
(26). In addition, these results suggest that IFN and interleukin 
play a role in the interaction of host innate immune system 
with ALV-J infection. We had previously determined that DF-1 
(chicken embryo fibroblast) cells pretreated with recombinant 
chicken IFN-α were able to inhibit ALV-A/B/J replication (28). 
This study confirmed the importance of IFN in innate immunity 
against ALVs in vitro.

There have been few studies identifying specific inflammatory 
pathways in ALV-chicken interactions. However, a caspase-
1-mediated inflammatory response could be triggered by ALV-J 
infection in chick livers (30). Caspase-1 expression combined 
with adaptor NLRP3 enabled IL-1β and IL-18 increases at 5 or 
7 dpi (30). NLRP3 is an important initiator protein of the inflam-
masome, a multicomponent complex that activates caspase-1 
and results in IL-1β and IL-18 secretion (31). However, this is 
the extent of this type of data but indicates that further research 
would yield fruitful results.

iFN-Stimulated Gene induction
Many viruses trigger the IFN system that leads to the transcrip-
tion of hundreds of ISGs. These genes exert antiviral effector 
functions, many of which are still not fully understood (15). In 
chickens, ISGs are not generally well described with the exception 
of the chicken ZAP and viperin genes (32, 33).

Avian leukosis virus-A/B/J infections increase the promoter 
activity of chicken interferon regulatory factors 3 (IRF3) [more 
similar to IRF7 (34)] (28). However, there are still no published 
reports on the activation of transcription factors such as IRF3, 
NF-κB, and those in the JAK-STAT pathway. Similarly, the iden-
tity of ISGs that directly act against ALV has only recently been 
reported.

In vivo studies demonstrated that ISG12-1, ISG12-2, OASL, 
and Mx increased in the chicken bursa of Fabricius at the 18th 
day of embryonation, and in 10- and 30-day-old with ALV-J 
infection (20). However, during the late stages of ALV-J infection 
or in the presence of a tumor, ISG12-1, ISG12-2, Mx, ZAP, IRF1, 
and STAT1 were significantly decreased or remained unchanged 
in chicken spleens (21, 22). This suggests that ALV may escape 
innate immunity result by decreasing some ISGs expression of 
during late infection stages (21, 22).

During ALV-J infection, miR-23b targeted IRF1 and down-
regulated IFN-β expression, further promoting ALV-J replication 
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(21). Interestingly, chicken biliary exosomes were found to contain 
ZAP and these inhibited ALV-J replication in vitro (35). Chicken 
ZAP is expressed in response to H5N1 and IBDV infections (32), 
but whether chicken ZAP is the key factor that inhibited ALV-J 
replication requires further study. It is important to identify and 
verify additional chicken ISGs to broaden our understanding of 
innate immune responses to develop protective strategies against 
ALV infections in chickens.

innate immune Cells
Virus sensing by PRRs leads to the immune activation of infected 
and accessory cells, accompanied by cytokine and chemokine 
production. The activation of innate immune cells may be a 
consecutive process, starting with macrophages and DCs and 
progressing to NK cells (13).

Macrophages
The macrophage is the component of the first line of immune 
defense against pathogens. It possesses a wide range of functions 
including cytokine and chemokine secretion, phagocytosis, 
production of nitric oxide, and antigen presentation (36, 37). 
Several years ago, it was found that chicken macrophages were 
susceptible to ALV-B/C, whereas ALV-A/D was excluded. These 
viruses could persist in macrophages for long periods (38, 39). 
However, the immunologic function of the macrophage-ALV 
interaction has not been followed up.

Recently, we determined that chicken primary monocyte-
derived macrophages (MDM) were susceptible to ALV-J (40). 
ALV-J strain SCAU-HN06 (41) rapidly increased the expression 
of Mx, ISG12-1, IL-1β, IL-6, and IFN-β in MDM at early infection 
stages, but Mx, ISG12-1, and IL-10 expression decreased sharply 
at 36 h postinfection (40). This result indicated that ALV-J most 
likely escaped the innate immune response in chicken mac-
rophages. Retroviruses have the ability to evade immune defense 
system and establish long-term persistence in the infected hosts. 
Macrophages play critical roles in HIV infection and can be a 
viral reservoir (42). We speculate that ALV-J also evades the 
innate immune response and establishes latent infections in 
chicken macrophages.

Dendritic Cells
As the most important professional antigen-presenting cells, DCs 
have a key role in the initiation and control of immunity (43). An 
ex vivo study demonstrated that ALV-J could infect bone marrow-
derived DCs (BM-DCs) during the early stages of differentiation 
and trigger apoptosis (44). Further studies showed that ALV-J 
inhibits the differentiation and maturation of BM-DCs and alters 
cytokine expression, causing aberrant antigen presentation and 
an altered immune response (19).

As a central regulator of innate and adaptive immunity, DCs 
can stimulate T cells, antigen presentation, and secrete cytokines 
and chemokines (45, 46). In chickens, DCs-related research 
was initiated late because reproducible methods for culturing 
and characterizing this cell were only established in 2010 (47).  
The study on chicken DCs with ALV-J infection was still in the 
start stage, future studies are expected to unravel functions of 
chicken DCs.

Natural Killer Cells
Unfortunately, we only found one paper related to the interaction 
between NK cells and ALV infection (48). From an immunosup-
pression standpoint, this study indicated that ALV-J-infected 
chicken NK cells had a lower killing activity than the NK cells 
of the uninfected controls (48). This is a promising start and we 
await further work.

Natural killer cells play an important role in host defense and 
tumor surveillance, ending in target cell death and chemokine 
and cytokine secretion (49). In addition, NK cells have a key 
role in immune regulation. NK cells can regulate T cell and DC 
functions in mouse models of viral infection (50, 51). Given that 
ALV is tumorigenic and NK cells are central innate immune 
effectors, we believe that further exploration into NK cells and 
ALV interactions is worthwhile. This is especially important in 
terms of immune regulatory functions and tumor immunity.

Chicken macrophages and DCs can be directly infected by 
ALV and induce innate immunity (40, 44). However, we still 
have no clear knowledge of the regulation of the global innate 
immune response to ALV infection and ALV evasion of the host 
innate immune response. It is necessary to define the mechanisms 
of innate immune control in ALV infection to understand the 
virus-host relationship more deeply. This could result in a major 
contribution to ALV vaccine development by providing effective 
adjuvants that target innate immunity.

Adaptive immune Responses
Humoral Immunity
Antibody responses to ALV are complex. Infection with ALV 
results in three classical infection profiles including (1) V+A− 
(viremia, no neutralizing antibody); (2) V+A+ (viremia, with 
neutralizing antibody); and (3) V−A+ (no viremia, with neutral-
izing antibody) (52, 53).

Congenital infection of chickens has been regarded as a 
classical model of immunologic tolerance that is demonstrated 
at the humoral level (10). Maternal antibodies against ALV-A 
influence the development of neutralizing antibody, viremia, and 
virus shedding (54). In general, an in ovo ALV infection results in 
persistent viremia lacking neutralizing antibody, and post-hatch 
ALV infection could potentially lead to clear the viruses by 
neutralizing antibody (55). Chickens infected with ALV-A after 
hatch often develop a transient viremia followed by an efficient 
neutralizing antibody response that is able to prevent viremia 
reappearance (52). However, high levels of ALV-J viremia can 
persist in the presence or absence of neutralizing antibody 
during the first 2  weeks post-hatch ALV-J infection (27, 56). 
This phenomenon suggests that an anti-ALV vaccine should be 
feasible.

However, ALV is a retrovirus, like HIV-1, has an unstable 
genome especially concerning mutations in envelope glycopro-
teins (57, 58). Developing a vaccine to induce effective neutraliza-
tion antibody for ALV prevention represents a great challenge. In 
addition, neutralization antibody may not be sufficient to counter 
variants (55). Despite this, numerous anti-ALV vaccines were still 
developed. The specific details on developed ALV vaccine could 
be found in Table 1.
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TABLe 1 | Avian leukosis virus (ALv) vaccine trials.

ALv 
strain

vaccine components Adjuvant Results summary immunological target Reference

J Recombinant ALV-J 
gp85 protein

Liposomes High antibody levels; 58.3% (inoculation once) and 
83.3% (inoculation twice) protection ratios

Neutralizing antibody (59)

J Recombinant ALV-J 
gp85 protein

Cytosine-phosphate-guanine 
oligodeoxynucleotide 
(CpG-ODN)

Inducing breeder hens to produce effective maternal 
antibody that protected the hatched chickens against 
early ALV-J infection (70% protection ratios)

Neutralizing antibody (60)

J Recombinant chimeric 
multi-epitope protein X

Freund’s adjuvant 80% protection ratios Neutralizing antibody and 
cellular responses

(61)

J DNA vaccine with 
chimeric multi-epitope 
DNA

Freund’s adjuvant 70% protection ratios Neutralizing antibody and 
cellular responses

(62)

A Recombinant ALV-A 
gp85 protein

CpG-ODN Inducing the breeder hens to produce better neutralizing 
antibody responses and protect 80% of their offspring 
chickens against early infection

Neutralizing antibody (69)

B Inactivated ALV-B 
vaccine

Oil Inducing antibody reaction to ALV-B and providing 
maternal antibodies to 1-day-old chickens against early 
infection of ALV-B

Neutralizing antibody (68)
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The recombinant ALV-J gp85 protein vaccine provided 
with either a liposomal or a cytosine-phosphate-guanine 
oligodeoxynucleotide (CpG-ODN) adjuvant did provide 
partial protection and elicited high antibody titers (59, 60). 
More interestingly, there has been a multi-epitope subunit 
vaccine developed that induced significant humoral and cel-
lular immune responses in chickens against ALV-J infection 
(61). In a similar manner, a chimeric multi-epitope-based 
DNA vaccine can elicit higher antibody titers and cellular 
responses against an ALV-J challenge in chickens (62). The chi-
meric multi-epitope gene of ALV-J including 4 multi-epitope 
concentrated fragments (gag, pol, gp85, and gp37) encodes 
recombinant chimeric multi-epitope protein X containing 
both immunodominant B and T epitope (63). The vaccine with 
single antigen may lead to less immunogenicity and limited 
protection (64). However, multi-epitope based vaccines could 
increase immunogenicity and enhance immune responses due 
to containing epitopes of different target genes (65, 66). Thanks 
to cellular immune responses can complement antibody-
mediated protection (67), we think the vaccine which provides 
antibody protection and induces cellular immune should be 
developed preferentially.

An inactivated ALV-B vaccine has been developed that could 
induce high antibody titers that protect from experimental ALV-B 
infections in chickens (68). An ALV-A gp85 protein subunit 
vaccine could induce neutralizing antibody when given with a 
CpG-ODN adjuvant to breeder hens. This protected 80% of their 
offspring chickens against early infections (69).

According to the published data, we found that the protection 
ratio of each developed vaccine is higher. However, we still doubt 
the vaccines’ effect because of fewer experimental animals and 
shorter monitoring time. In fact, none of the vaccines has a clini-
cal application in chicken farms.

But nevertheless, the vaccine is still a kind of technical reserve 
to control ALV. What’s more, the development of an ALV vac-
cine may also serve as a model for HIV vaccine development. 

Therefore, exploring this avenue is worthy of our serious consid-
eration. Recently, new B-cell epitopes in the P27 or gp85 proteins 
have been discovered, which holds promise as novel vaccine 
agents (70–72).

Cellular Immunity
There are limited studies concerning cellular immunity in ALV 
infections. A role for cellular immunity was correlated with 
immunosuppression of T-cell function in ALV-A infected chick-
ens (73). Cytotoxic T lymphocytes were shown to play a role in 
the susceptibility or resistance of the various MHC-I haplotype 
chicken lines to ALV-A infection (74). However, the pathogenesis 
of immunosuppression caused by ALV-J may be associated with 
both B and T cells (9).

A key period for developing immunosuppression to ALV-J 
infection was identified as 3–4 weeks postinfection (9). At this 
stage, CD4+ T-cell numbers were significantly reduced and the 
CD8+ T-cell lymphocyte population increased in the spleen (9). 
Coincidentally, an untreated HIV infection is characterized by 
progressive CD4+ T cell depletion and CD8+ T cell expansion 
(75). Therefore, CD4+ T cells may be a primary target for ALV-J 
with CD8+ T cells playing an important role in host immunity.

Avian leukosis virus-J infection inhibits blood and splenic T 
lymphocyte proliferation and cytotoxicity in broilers. This effect 
can be enhanced by co-infection with reticuloendotheliosis 
virus (REV) (76). Interestingly, the joint application of Taishan 
Pinus massoniana pollen polysaccharides and propolis improved 
immune system effectiveness that included raising CD4+ and 
CD8+ T-cell counts as well as IL-2 and IFN-γ secretion in 
immunosuppressed chickens caused by ALV-J co-infection with 
REV (77). A separate study found chicken biliary exosomes 
significantly inhibited ALV-J replication and promoted prolifera-
tion of CD4+ (especially CD4+CD8–cells) as well as CD8+ T cells 
(35). However, whether the cellular immunity changed by biliary 
exosomes plays a dominant role by inhibiting ALV-J replication 
remains unknown.
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A potential vaccine for ALV-J has been reported to induce 
significant increases in CD4+ and CD8+ T cells as well as IL-4 and 
IFN-γ levels in immunized chickens (61). Unfortunately, there 
have been few studies involved in the specific functions of T cells 
against ALV in the all cases described above.

We are sure that cellular immunity plays a critical role in ALV 
infection, but know little about the ALV-specific response. A full 
understanding of the ALV-specific cellular immune response is 
necessary to develop effective vaccines. Perhaps more importantly, 
this type of work can serve as a reference for HIV prevention 
and treatment with prophylactic vaccines or immunotherapies. 
Indeed, escape mutations and retrovirus latent infections are the 
main barriers in this effort.

FUTURe ReSeARCH

Many interesting scientific questions about ALV remain unre-
solved. Besides, cancer and AIDS are still great threats to human 
health. ALV studies might make a major contribution to conquer 
cancer and HIV as a research model. There are no vaccines to 

prevent HIV infection and many high-budget vaccine programs 
for HIV have continuously failed (78, 79). Developing ALV vac-
cine studies have a realistic significance and greater knowledge of 
immune system-ALV interactions may provide great insights into 
human retroviral diseases.

Figure 1 summarizes the comprehensive information in ALV 
immunology area and indicates that our future research should 
focus on chicken immunity system reacted with ALV. The specific 
PRRs, ISGs, and the activation of appropriate immune signaling 
pathways involved with ALV infection should be identified and 
characterized. The focus should lie on mechanisms of immune 
evasion and interactions with immune cell including mac-
rophages, DCs, NK, CD4+, and CD8+ T cells. In addition, the 
function of endogenous avian leukemia virus in host immunity 
may be very important as well as interesting (80–82).

In the era of big data, we have access to lots of important 
information about the host or virus using new technologies such 
as RNA-Seq. Non-coding RNAs including miRNA, long non-
coding RNA, and circular RNA are known to play roles in innate 
and adaptive immunity (21, 83, 84). Therefore, we also should 

FiGURe 1 | innate and adaptive immune responses induced by Avian leukosis virus (ALv). (A) ALV infection in chickens may be recognized by TLR7 and 
melanoma differentiation-associated gene 5, followed by induction of innate immunity including differential expression of cytokine and interferon-stimulated genes 
(ISGs). (B) The expression of caspase-1 combined with adaptor NLRP3, IL-1β, and IL-18 increased in ALV-J-infected chick livers. (C) CD4+ T cell numbers 
decreased and CD8+ T cell numbers increased in the ALV-J-infected chicken spleen. (D) Infection with ALV results in three classical in vivo infection profiles including 
(1) V+A− (viremia, no neutralizing antibody); (2) V+A+ (viremia, with neutralizing antibody); and (3) V−A+ (no viremia, with neutralizing antibody). (e) The specific 
pathogen recognition receptors (PRRs) to recognize ALV pathogen-associated molecular patterns should be further studied. (F) ALV-A/B/J infection can increase 
chicken interferon regulatory factors 3 (IRF3) promoter activity in DF-1 cells. Transcription factor such as IRF3 and NF-κB responses to ALV should be further 
clarified. (G) DF-1 cells pretreated with recombinant chicken IFN-α can inhibit the replication of ALV-A/B/J. (H) Immune signaling pathway such as PRRs signaling 
pathway (toll-like receptor, RIG-I-like receptors, interferon-γ-inducible protein 16, and cyclic GMP-AMP synthase) and JAK-STAT signaling pathway responses to 
ALV should be clarified; the specific mechanism of the inflammatory response, particularly the role of inflammasomes in sensing ALV should be further studied. What 
immune evasion strategies were used by ALV? Which antiviral factors inhibit the production of ALV? (i) miR-23b promotes ALV-J replication by targeting IRF1.  
(J) What is the role of non-coding RNAs including miRNA, long non-coding RNA, and circular RNA in the regulation of innate and adaptive immunity induced by 
ALV? (K) ALV-J can infect chicken dendritic cells (DCs) during the early stages of differentiation and can trigger apoptosis. ALV-J inhibits the differentiation and 
maturation of DCs and alters cytokine expression that includes IL-1β, IL-8, and IFN-γ. Chicken macrophages are susceptible to ALV-J, and IL-1β, IL-6, ISG12-1, and 
Mx were altered. The interaction between ALV and macrophages, DCs, natural killer, B cells, CD4+, and CD8+ T cells needs to be further explored. The dotted line 
represents remaining processes not fully understood.
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CONCLUSiON
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