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Autologous T cells were genetically modified to express a chimeric antigen receptor 
(CAR) directed toward carboxy-anhydrase-IX (CAIX) and used to treat patients with 
CAIX-positive metastatic renal cell carcinoma. In this study, we questioned whether the 
T cell maturation stage in the pre-infusion product affected CAIX CAR expression and 
function in vitro as well as in vivo CAR T cell numbers and expansion. During the 14 days 
expansion of CAR T cells prior to administration, we observed shifts from a predominant 
CD4 to a CD8 T cell phenotype and from a significant fraction of naïve to central effector 
T cells. Surface expression of the CAR was equally distributed among different T cell 
subsets and T cell maturation stages. During T cell culture days 14–18 (which covered 
patient treatment days 1–5), T cells demonstrated a decline in CAR expression level 
per cell irrespective of T cell maturation stage, although the proportion of CAR-positive 
T cells and CAR-mediated T cell effector functions remained similar for both CD4 and 
CD8 T cell populations. Notably, patients with a higher fraction of naïve CD8 T cells at 
baseline (prior to genetic modification) or central effector CD8 T cells at 2 weeks of CAR 
T cell culture demonstrated a higher fold expansion and absolute numbers of circulating 
CAR T cells at 1 month after start of therapy. We conclude that the T cell maturation 
stage prior to and during CAR T cell expansion culture is related to in vivo CAR T cell 
expansion.

Keywords: renal cell cancer, chimeric antigen receptor, carboxy-anhydrase-iX, T cell, immune monitoring, T cell 
maturation, T cell expansion, T cell persistence

inTrODUcTiOn

Despite clinical successes in B-cell malignancies, adoptive transfer of T cells genetically modified 
with chimeric antigen receptors (CARs) or T cell receptors (TCRs) to treat solid tumors is challenged 
by limited patient responses (1). The efficacy of adoptive T cell therapy (in hematological malignan-
cies) correlates with numbers and persistence of circulating modified T cells (2–5). Building on 

Abbreviations: CAIX, carboxy-anhydrase-IX; CAR, chimeric antigen receptor; CD, cluster of differentiation; mRCC, meta-
static renal cell carcinoma; PBMC, peripheral blood mononuclear cells; IL-2, interleukin-2; FCM, flow cytometry; TN, naïve 
T cells; TINT, intermediate T cells; TCM, central memory T cells; TEM, effector memory T cells; TCE, central effector T cells; TES, 
end stage T cells.
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this notion, several approaches have been explored to improve 
persistence of genetically modified T cells in vivo. For example, 
the introduction in receptors of intracellular domains from the 
CD28 and/or CD137 co-stimulatory molecules has led to an 
increased CAR T cell persistence as well as expansion in vivo, and 
consequently in clinical responses (6, 7).

Furthermore, preclinical studies in mice and monkeys sug-
gest that improved in vivo persistence and antitumor responses 
are obtained when T cells in early stages of differentiation (such 
as naïve or central memory cells) are used for genetic modifi-
cation and treatment (8, 9). In fact, the differentiation state of 
CD8+ T  cells appeared to be inversely related to their capacity 
to proliferate and persist (10, 11). We have previously generated 
CAR T cells directed against carboxy-anhydrase-IX (CAIX) and 
treated patients with CAIX-positive metastatic renal cell carci-
noma (mRCC) (12). Here, we assessed T cell maturation stage 
prior to and during CAR T cell expansion cultures, analyzed 
whether the T cell maturation stage affects CAR expression and 
function in vitro as well as the in vivo properties of CAR T cells, in 
particular expansion potential and absolute numbers of circulat-
ing CAR T cells.

MaTerials anD MeThODs

Patients and Treatment
Patients, diagnosed with CAIX-positive mRCC and for whom 
no standard treatment was available, were included in this 
phase-I trial. Patients were treated in three cohorts, and aimed 
to assess toxicity and to establish the maximum tolerated dose of 
the number of CAR T cells. Treatment schedule was previously 
presented (13) and was, in brief: in cohort 1, treatment consisted 
of intravenous administration of 2 × 107 T-cells at day 1, 2 × 108 
T-cells at day 2, and 2 × 109 T-cells at days 3–5 (treatment cycle 
1) and days 17–19 (treatment cycle 2). Simultaneously, patients 
received twice daily subcutaneous injections of interleukin-2 
(IL-2) at 5 × 105 IU/m2 on days 1–10 and days 17–26. Because 
of liver toxicity (13), this schedule was changed in cohort 2, to a 
classic 3 × 3 dose-escalating phase I schedule starting at 1 × 108 
CAR T-cells per infusion and extending to 2, 4, 8, 16, 20, 25, and 
30 × 108 cells at subsequent dose levels, and applying a maximum 
of 10 T-cell infusions at days 1–5 and days 29–33 combined with 
sc IL-2 at 5 × 105 IU/m2 twice daily at days 1–10 and days 29–38. 
In cohort 3, patients were treated as in cohort 2, but received an 
extra i.v. infusion of 5 mg of the anti-CAIX mAb G250, 3 days 
before start of each series of CAR T-cell infusions, in order to 
block CAIX antigen in the liver and leaving accessible CAIX 
antigen at RCC tumor sites (14–16).

For the analyses of CAR T cell persistence, only patients 
treated in cohorts 2 and 3 were assessed until day 29, as from day 
29 eight out of nine patients received a second treatment cycle of 
CAR T cells. Since patients in cohort 1 received varying numbers 
of CAR T cells, and one patient already received a second cycle 
of CAR T cells on days 17–19, cohort 1 was not assessed in the 
persistence analyses.

Patients did not receive lympho-depleting pretreatment. 
The clinical protocol and amendments were approved by 

governmental regulatory authorities (Central committee on 
research involving Human Subjects) as well as the Erasmus MC 
institutional medical ethical review board. The clinical protocol 
(DDHK97-29/P00.0040C) adheres to the Declaration of Helsinki 
protocols. Patient characteristics are detailed elsewhere (13).

T cell infusion Product and  
Post-Treatment Blood sampling
Patient peripheral blood mononuclear cells (PBMC) from leu-
kapheresis (n = 9) were activated at day 0 with soluble anti-CD3 
mAb OKT3 (10 ng/mL) without IL-2. At days 2 and 3, T cells 
were retrovirally transduced with the CAIX CAR in the presence 
of 100 IU/ml IL-2. From days 4 to 18, T cells were expanded in 
medium supplemented with 360 IU/ml IL-2. Patients were treated 
with five daily infusions of “fresh” CAIX CAR T cells harvested 
from culture at days 14–18 (13, 17). We obtained blood samples 
at regular intervals before, during, and after treatment for direct 
flow cytometric (FCM) analysis and isolation and cryopreserva-
tion of PBMC in liquid nitrogen (18, 19).

Flow cytometry
Carboxy-anhydrase-IX CAR-positive T cells in cultures and 
blood samples were assessed by FCM using the anti-CAIX CAR 
idiotype mAb NuH82, as described in Ref. (18) and Figure S1 
in Supplementary Material. The starting T cell product (PBMC 
from leukapheresis) and T cell cultures were analyzed for vari-
ous lymphocyte subsets, a.o. CD4+ and CD8+ T cells and T cell 
maturation subsets using following markers: CD27, CD28, 
CD45RA, CD45RO, CD62L, and CCR7. The starting T cell 
product (PBMC from leukapheresis) is referred to the “baseline” 
sample or measurement in the rest of this study. In addition, T cell 
maturation subsets were analyzed for CAR-expression (Figure S1 
in Supplementary Material) and CAR-mediated effector function 
in response to CAIX+ RCC cell line (SKRC-17 MW1-clone4) 
by means of upregulated expression of CD107. Information on 
antibodies and staining combinations used in multi-color FCM 
is specified in Table S1 in Supplementary Material. Samples were 
measured on the FACS Canto, and analyzed with FCS express v. 
4.07 software (De Novo software). Gating strategy to determine 
the T cell maturation stage is demonstrated in Figures S1A,B in 
Supplementary Material.

statistical analysis
Statistical analyses were performed using SPSS software (version 
21) for Windows (IBM Corporation, IL, USA). Graphpad Prism 
v5.0 was used to prepare graphs.

resUlTs

T cell Phenotype
Patient PBMC at baseline (from leukapheresis) were activated, 
transduced with the CAIX CAR, and expanded. During the 14 days 
of expansion, the phenotype of the T cells shifted significantly. 
Although the extent varied per patient, T cell cultures reproduc-
ibly demonstrated a shift from a CD4+ to a CD8+ predominance 
compared to baseline (Figure  1A; Figure S2 in Supplementary 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 1 | T cell phenotype and maturation during clinical T cell expansion cultures. (a) Proportions of CD4 and CD8 T cells at baseline (leukapheresis, 
day 0) and culture day 14. Data of individual patients are presented in Figure S1 in Supplementary Material. Maturation stages of CD8+ (B) and CD4+ (c) T cells at 
baseline and culture day 14 and at day 18 defined according to the expression of CD45RA, CD45RO, and CD27/CD28 as indicated in insert: Naïve, TN: CD45RA+, 
CD45RO−, CD27/CD28+; Central Memory, TCM: CD45RA−, CD45RO+, CD27/28+; Effector Memory, TEM: CD45RA−, CD45RO+, or CD27/CD28−; Central Effector, TCE: 
CD45RA+, CD45RO+, CD27/CD28−; and End Stage TES: CD45RA+, CD45RO−, CD27/CD28− T cells. A small fraction was CD45RA+, CD45RO+, and CD27/CD28+ 
and this population was defined as interphase (Int1) T cells. Data are presented as stacked bars of means of nine patients.
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Material). During the 18 days culture period, individual markers 
expressed on CD3+ T cells demonstrated a clear shift, especially 
during the first 14 days (Figure S3 in Supplementary Material). 
When assessing CD8 T cell maturation according to the markers 
CD45RA, CD45RO, CD27, and CD28, we observed that during 
culture the most prevalent subset drastically shifted from TES at 
baseline to TEM at day 14 [Figure 1B; see legend of Figure 1 for 
the definition of maturation stages: TN (naïve), TINT (intermedi-
ate between TN and TCM), TCM (central memory), TEM (effector 
memory), TCE (central effector), and TES (end stage) T cells]. 
Following T cell culture, there was also a decrease in the fraction 
of TN and an increase in the fraction of TCE, yet the overall change 
was in favor of younger T cells (TCM  +  TEM) at the expense of 
further maturated T cells (TCE + TES). CD4+ T cells also showed a 
culture-dependent decrease in the fraction of TN and an increase 
in the fraction of TEM, yet the most prevalent subset at baseline, 
i.e., TCM, remained unchanged (Figure  1C). Interestingly, in 
contrast to CD8+ T cells cultured CD4+ T cells harbored almost 
no TCE cells. Additional analysis with different T cell maturation 
markers [CD45RA, CCR7 (CD197), and CD62L] showed high 
concordance with the maturation stages and kinetics as described 
above (Figure S4 in Supplementary Material).

caiX car expression in T cell  
Maturation subsets
At culture day 14, the proportion of CAIX CAR-expressing 
cells was about equal for various T cell subpopulations, such 
as CD3 positive T cells in combination with CD4, CD8, CD56, 
CD57, TCRγδ, CD45RA, CD45RO, CD62L, or CCR7 (Figure S5 
in Supplementary Material). The proportion of CAIX CAR-
expressing cells within CD8+ and CD4+ T cells was stable 
during patient treatment (culture days 14–18), and appeared 
highest in the TINT + TCM and lowest in the TES maturation 
stages (Figures 2A,B). When considering the CAR expression 

level per cell (mean fluorescence intensity, MFI), we observed 
a significant decrease of CAR expression between days 14 and 
18 for almost all maturation stages with exception of CD8+ 
TN, CD8+ TES cells, and CD4+ TES cells (Figures  2C,D). This 
observation is in extension to a previous report on a general loss 
of CAR expression during the last 5 days of the T cell culture 
(20). Data at MFI level also reinforced the above observation 
that CAR expression was highest in the TINT + TCM and lowest in 
the TES maturation stages (Figures 2C,D). Further, we analyzed 
the CAIX CAR-mediated function (degranulation) and found 
no significant differences in CD107-upregulation between the 
different maturation stages or T cell culture times following 
co-culture of CAR T cells with a CAIX-positive RCC cell line 
or CAIX-negative K562 cells. Thus, the relatively small decrease 
in CAR expression did not result in a measurable decrease in 
CAR-mediated function (Figures 3A,B).

T cell Maturation correlates with In Vivo 
car T cell expansion
We analyzed whether phenotype of T cells at baseline and after 
culture correlated with numbers of CAR T cells in patient blood 
and expansion (fold increase) of these CAR T cells during 5 days 
after the last infusion. Kinetics of circulating CAR T cell numbers 
irrespective of maturation stage in patients have been reported 
elsewhere (20). Here, we reveal a significant correlation between 
the fold increase in CAR T cell numbers in patients and the 
proportions of CD8+ TN cells at baseline (Figure 4A) and CD8+ 
TCE in the infusion product at culture day 14 (Figure  4B) and 
on day 18 [r = 0.683, p = 0.042 (data not shown)]. Patients with 
higher proportions of CD8+ TN cells in the baseline PBMC and 
CD8+ TCE in the infusion product, in general, had higher absolute 
numbers of circulating CAR T cells up to 29 days after the first 
infusion (Figures 4C,D). Our in vitro analyses considered both 
CD8+ and CD4+ T cells (Figures 1–3). Correlations between the 
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FigUre 3 | carboxy-anhydrase-iX (caiX) chimeric antigen receptor (car)-mediated function by T cell maturation subsets. CAIX CAR T cell cultures at 
days 14 and 18 were assayed for CAIX CAR-mediated cytolytic (degranulation) potential. CAIX CAR T cells were co-cultured (2 h) with the CAIX-positive RCC cell 
line (SKRC-17 MW1-clone4) or the CAIX-negative cell line K562 and subsequently analyzed by flow cytometry. Results are presented as proportions of CD107 
positivity within differently matured CD8+ (a) and CD4+ (B) T cells. Dotted line represents the average proportion of CD107 positivity of CD8+ T cells after co-culture 
with the CAIX-positive RCC cell line. T cell maturations subsets were defined by the markers CD45RA and CCR7 as follows: TN: CD45RA+, CCR7+; TCM: CD45RA−, 
CCR7+; TEM: CD45RA−, CCR7−; TEF: CD45RA+, CCR7−. Bars represent mean ± SEM (n = 3).

FigUre 2 | carboxy-anhydrase-iX (caiX) chimeric antigen receptor (car) expression of T cells in infusion products according to T cell maturation. 
Proportions of CAIX CAR-positive CD8+ (a) and CD4+ (B) T cells and CAIX CAR expression levels (expressed as mean fluorescence intensity) on CD8+ (c) and 
CD4+ (D) T cells at culture days 14 and 18 according to T cell maturation. Differences between culture days 14 and 18 with respect to paired continuous 
parameters were determined using an exact Wilcoxon rank-sum test. *p < 0.05; **p < 0.01; ns, not significant. Bars represent mean ± SEM from 16 independent 
clinical CAIX CAR T cell cultures for the treatment of nine patients, of which seven received infusions in two treatment cycles. See also legend to Figure 1.
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relative occurrence of T cell maturation stages (prior to and dur-
ing T cell processing) and numbers of T cells in post-treatment 
patient blood samples were assessed for both CD8+ and CD4+ 
T cells. Significant correlations, however, were found only for 

CD8+ T cells but not CD4+ T cells (data not shown). We found 
no correlations between proportion of CAR-positive T cells or 
CAR expression (MFI) in the infusion product and CAR T cell 
numbers or expansion in patients (data not shown).
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DiscUssiOn

Here, we document T cell phenotypic changes during IL-2-
supported CAIX CAR T cell cultures in preparation of a clinical 
trial to treat RCC patients. During the 2-week expansion period, 
T cells skewed from a CD4 to CD8 phenotype and the proportion 
of naïve CAR T cells (TN: CD45RA+, CD45RO−, CD27/CD28+) 
strongly declined, while the proportions of TEM (CD45RA−, 
CD45RO+, CD27/CD28−) and TCE (CD45RA+, CD45RO+, CD27/
CD28−) cells significantly increased. We noted a shift from TN 
cells to more maturated stages as was described before for other 
transduced T cell products cultured with IL-2 (21). Interestingly, 
also the frequency of TES declined during the CAR T cell culture. 
We anticipate that the less maturated cells like TCM and TEM have 
proliferated faster, and thereby have overgrown the TES cells. 

We demonstrated a small decline in CAR expression level per 
cell during the 5-day CAR T cell culture covering the days of  
T  cell administration (days 14–18) that was independent of  
T cell maturation stage and did not affect CAR-mediated func-
tion. We conclude that the five sequential and “freshly” prepared 
clinical preparations of CAIX CAR T cells had about equal 
phenotypic and functional properties.

In adoptive CAR T cell treatment, circulating numbers, 
persistence and in  vivo expansion potential of infused CAR 
T cells are currently the only parameters revealed to be associ-
ated with improved clinical outcome (22). Most CAR T cell trials 
targeting CD19 in hematological malignancies show strong T cell 
expansion, mainly due to a high load and accessibility of target 
antigen, the nature of tumor cells (B cells being able to provide 
co-stimulation), and highly active (second generation) CAR 

FigUre 4 | correlations between T cell maturation (pre-infusion) and increase of chimeric antigen receptor (car) T cell numbers in patients. 
Correlation plots of proportions of TN, TCM, TEM, TCE, and TES cells at baseline (a) and culture day 14 (B) vs. increase of CAR T cell numbers in vivo during the first 
5 days after the last T cell infusion of treatment cycle 1 (13, 20). Dotted lines represent the 95% confidence bands of the best fitted line. The Spearman correlation 
coefficient method was used to assess linear association. p-Values less than 0.05 were considered significant. Patients were divided into above or below median 
values (high and low, respectively) of TN at baseline (day 0) (c) or TCE cells at culture day 14 (D) and plotted for absolute numbers of circulating CAR T cells during 
treatment cycle 1 (days 1–29). See also legend to Figure 1 for further details.
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