
January 2017 | Volume 7 | Article 6621

Review
published: 03 January 2017

doi: 10.3389/fimmu.2016.00662

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Uday Kishore,  

Brunel University London,  
United Kingdom

Reviewed by: 
Winfried Barchet,  

University of Bonn, Germany  
Nicola Tamassia,  

University of Verona, Italy

*Correspondence:
Rongtuan Lin 

rongtuan.lin@mcgill.ca

†Present address: 
David Olagnier,  

Department of Biomedicine, Aarhus 
Research Center for Innate 

Immunology, Aarhus University, 
Aarhus, Denmark

Specialty section: 
This article was submitted to 

Molecular Innate Immunity,  
a section of the journal  

Frontiers in Immunology

Received: 07 October 2016
Accepted: 16 December 2016

Published: 03 January 2017

Citation: 
Liu Y, Olagnier D and Lin R (2017) 

Host and Viral Modulation of  
RIG-I-Mediated Antiviral Immunity. 

Front. Immunol. 7:662. 
doi: 10.3389/fimmu.2016.00662

Host and viral Modulation of  
RiG-i-Mediated Antiviral immunity
Yiliu Liu1,2, David Olagnier1,2† and Rongtuan Lin1,2,3*

1 Jewish General Hospital, Lady Davis Institute, McGill University, Montreal, QC, Canada, 2 Division of Experimental Medicine, 
McGill University, Montreal, QC, Canada, 3 Department of Microbiology and Immunology, McGill University, Montreal, QC, 
Canada

Innate immunity is the first line of defense against invading pathogens. Rapid and efficient 
detection of pathogen-associated molecular patterns via pattern-recognition receptors 
is essential for the host to mount defensive and protective responses. Retinoic acid-in-
ducible gene-I (RIG-I) is critical in triggering antiviral and inflammatory responses for the 
control of viral replication in response to cytoplasmic virus-specific RNA structures. Upon 
viral RNA recognition, RIG-I recruits the mitochondrial adaptor protein mitochondrial 
antiviral signaling protein, which leads to a signaling cascade that coordinates the induc-
tion of type I interferons (IFNs), as well as a large variety of antiviral interferon-stimulated 
genes. The RIG-I activation is tightly regulated via various posttranslational modifications 
for the prevention of aberrant innate immune signaling. By contrast, viruses have evolved 
mechanisms of evasion, such as sequestrating viral structures from RIG-I detections and 
targeting receptor or signaling molecules for degradation. These virus–host interactions 
have broadened our understanding of viral pathogenesis and provided insights into 
the function of the RIG-I pathway. In this review, we summarize the recent advances 
regarding RIG-I pathogen recognition and signaling transduction, cell-intrinsic control of 
RIG-I activation, and the viral antagonism of RIG-I signaling.
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iNTRODUCTiON

Eukaryotic organisms rely on the host innate immune system to defend against viruses or other 
pathogenic microbes in early phases of infection. The innate antiviral immune response starts with 
the detection of evolutionarily conserved structures, termed pathogen-associated molecular pat-
terns (PAMPs), by a set of germline-encoded pattern-recognition receptors (PRRs). With respect 
to their cellular localization, ligand specificity, and functions, PRRs are categorized into distinct 
families including the toll-like receptors, nucleotide-binding oligomerization domain-like receptors, 
C-type lectin receptors, retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) (1–5), as well 
as cytosolic viral DNA sensors such as cyclic GMP-AMP synthase (6, 7). Following the detection of 
specific viral PAMPs, PRRs trigger the activation of intracellular signaling cascades, ultimately lead-
ing to the production of type I interferons (IFNs), as well as pro-inflammatory cytokines. Secreted 
IFNs are crucial for the induction of numerous interferon-stimulated genes (ISGs); the products of 
which are major forces in controlling and restricting viral infections, thereby establishing a cellular 
antiviral state as well as helping to shape the adaptive immune response (8). Recent studies showed 
that viruses have evolved complex strategies to affect multiple stages of the host antiviral defense, 
from inhibiting the viral detection to manipulating components of the signaling pathways (9, 10). 
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To ensure successful antiviral defenses and to avoid aberrant or 
dysregulation of host immune signaling, antiviral pathways need 
to be tightly regulated at each level. In this review, we will summa-
rize the cell-intrinsic regulation of RIG-I receptor activity, as well 
as the viral strategies to subvert the RIG-I signaling machinery.

RiG-i STRUCTURe AND LiGAND 
iNTeRACTiONS

The three members of the RLR family: RIG-I, MDA5 (melanoma 
differentiation factor 5), and LGP2 (laboratory of genetics and 
physiology 2) are expressed in most cell and tissue types. They 
function as cytoplasmic sensors for the recognition of a variety of 
RNA viruses and subsequent activation of downstream signaling 
to drive type I IFN production and antiviral gene expressions. 
These three RLR proteins are RNA-dependent ATPases belonging 
to the DExD/H-box family of helicases (11). Structurally, RLRs 
have a similar central helicase core that is comprised of two 
helicase domains, Hel1 and Hel2 with an insertion termed Hel2i. 
In addition, they all have a C-terminal domain (CTD). However, 
only RIG-I and MDA5 contain two N-terminal caspase activa-
tion and recruitment domains (CARDs) (3) (Figure 1A). Among 
these three, RIG-I is the founding member and hence the most 
intensively studied member of this family. Each domain of RIG-I 
plays unique roles during RIG-I autorepression and activation. In 
brief, the CTD and helicase domain are involved in RNA ligand 
binding and ATP hydrolysis-involved conformational changes 
(12–14), whereas the RIG-I CARDs facilitate interaction with 
other downstream CARD containing molecules (15).

Retinoic acid-inducible gene-I has been shown to be involved 
in the recognition of a variety of RNA viruses in the cytoplasm, 
such as the Sendai virus, influenza A and B viruses (IAV, IBV), 
vesicular stomatitis virus, measles virus (MV), Newcastle disease 
virus, Ebola virus (EBOV), dengue virus (DENV), and hepatitis C 
virus (HCV) (16–19). The short double-stranded (ds) RNA with 
a triphosphate (ppp) motif at the 5′-end, as found in these viral 
genomes, were shown to be a key signature recognized by RIG-I 
(20, 21). The 5′ppp dsRNA of viral nucleocapsids has also been 
characterized as stimulating RIG-I (22). 5′-Diphosphate-bearing 
RNA (5′ppRNA), either naturally contained in viruses, produced 
by in vitro transcription, or via chemical synthesis, were all shown 
to bind to RIG-I and were sufficient to activate RIG-I (20, 23). 
Physiologically, the control of in vitro and in vivo infections of 
reoviruses, which bear the 5′ppRNA genome, relies on RIG-I 
functionality (24). It is worth noting that the in vitro-synthesized 
5′pppRNA sequences also trigger RIG-I activation (25). These 
agonists have demonstrated their therapeutic potential as broad-
spectrum antiviral agents and could be optimized as vaccine 
adjuvant candidates (26–30). Furthermore, the recognition 
of several DNA viruses, including herpes simplex virus type 1 
(HSV-1), Epstein–Barr virus (EBV), vaccinia virus (VACV), and 
adenovirus, via the RNA polymerase III were found to be RIG-I-
dependent (31, 32). Interestingly, the RIG-I-mediated upregula-
tion of STING is required for protection against the HSV-1 by the 
RIG-I agonist, offering new evidence of the overlapping between 
RIG-I signaling and the host response to DNA viral infection (33). 

Notably, viral RNA triggered RIG-I signaling also mediates the 
inflammatory response via distinct pathways. The first involves 
the formation of the RIG-I inflammasome through interactions 
between RIG-I, ASC, and caspase-1 and the stimulation of IL-1β 
release. The second involves the adaptor proteins CARD9, Bcl-10, 
mitochondrial antiviral signaling protein (MAVS), and the acti-
vation of nuclear factor-κB (NF-κB) (34, 35). Upon RNA ligand 
binding, RIG-I undergoes a series of conformational changes and 
posttranslational modifications (PTMs) to achieve full activation 
(further detail below).

RiG-i SiGNALiNG TRANSDUCTiON

Activated RIG-I recruits its downstream adaptor molecule 
MAVS (also known as IPS-1, CARDIF, and VISA) through 
CARD–CARD-mediated interactions (36, 37). The oligomeric 
RIG-I CARD assembly and the polymeric formation of MAVS, 
together serve as a signaling platform for protein complexes 
that mediate the bifurcation of signaling into two branches. One 
branch recruits tumor necrosis factor receptor-associated factors 
(TRAF)-2/6 and the receptor-interacting protein 1 to subse-
quently activate the IKK complex, resulting in NF-κB activation 
(38). The other branch signals through TRAF3 and activates the 
TANK/IKKγ/IKKϵ/TBK1 complex, leading to the phosphoryla-
tion and dimerization of interferon regulator factors (IRF)-3 and 
-7 (39, 40). Activated IRF3/7 and NF-κB then translocate to the 
nucleus, together with ATF2, c-Jun, and the transcription coac-
tivator CREB-binding protein/p300, to coordinate the IFN and 
pro-inflammatory gene expressions (41). Once secreted, IFNs 
bind to specific cell surface receptors and activate the JAK–STAT 
pathway. The activated transcription factors STAT1, STAT2, 
and IRF9 form the interferon-stimulated gene factors (ISGF3) 
complex. ISGF3 then translocates to the nucleus and coordinates 
the transcription of hundreds of ISGs including RIG-I, thus gen-
erating an amplifying loop leading to the accumulation of RIG-I 
during several types of infections (8) (Figure 1B).

MeCHANiSMS OF RiG-i ACTivATiON

RiG-i Autorepression
Structural and biochemical studies have demonstrated that 
the activation of RIG-I is a multi-step process and is primarily 
regulated by conformational changes and PTMs. When initially 
identified as a dsRNA sensor, it was hypothesized that RIG-I was 
under negative regulation in physiological conditions. The over 
expression of the CARD domain of RIG-I alone demonstrated 
superior signaling activity than full length RIG-I in absence of 
viral PAMPs (2). Studies by Saito et al. showed that the deletion of 
CARD was dominant-negative for RIG-I signaling. By contrast, 
the deletion of repressor domain (RD) resulted in constitutive 
signaling, whereas RD expression alone ablated RIG-I signaling 
actions. Together, these findings provided the model of RIG-I 
autoregulation in which the RD is predicted to mask CARDs 
for signaling transduction in uninfected cells (42). The crystal 
structural analysis further delineated the models of autore-
pressed and ligand activated states of RIG-I, respectively. In a 
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FiGURe 1 | (A) Domain structure of retinoic acid-inducible gene-I (RIG-I). RIG-I belongs to the DExD/H-box family of helicases and is comprised of helicase domains 
1 (Hel1) and 2 (Hel2) with a Hel2i insertion, N-terminal caspase activation and recruitment domains, and a C-terminal domain (CTD) or repressor domain. RIG-I CTD 
is responsible for recognizing a plethora of RNA viruses with short 5′ triphosphate (5′ppp) RNA and 5′-diphosphate-bearing RNA structures. RIG-I also detects 
5′ppp RNA species synthesized through the transcription of viral DNA by RNA polymerase III. (B) The cytoplasmic pattern-recognition receptor RIG-I is essential for 
recognizing RNA viruses with a 5′ppp signature. Upon viral RNA recognition, RIG-I recruits the adaptor protein mitochondrial antiviral signaling protein to activate the 
TBK1–IKKϵ complex and IKKα–IKKβ complex, which are responsible for the activation of transcription factors interferon regulator factor (IRF) 3, IRF7, and nuclear 
factor-κB. These transcription factors then translocate to the nucleus and coordinate the induction of type I interferons (IFNs). This is followed by the binding of the 
IFNs α and β to their cognate receptor, which will lead to the transcriptional activation of interferon-stimulated genes (ISGs) by the JAK/STAT signaling pathway. The 
products of ISGs are key factors in limiting pathogen spreading.
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ligand-free state, CARDs and Hel2i interactions hinder dsRNA 
binding and inactivate RIG-I (14). The binding of 5′ppp dsRNA 
to RD leads to a conformational switch of RIG-I, which releases 
the autorepressed CARDs and exposes the helicase domain 
for ATP binding (14, 43). ATP hydrolysis is essential for RIG-I 
signaling. It enables RIG-I to translocate along the dsRNA, and 
further promotes the oligomerization of RIG-I CARDs. These 
processes assemble RIG-I into a filamentous architecture which 
facilitates the CARD–CARD interactions with the mitochon-
drial MAVS, leading to the subsequent signaling transduction 
for IFN production (44, 45). Importantly, RIG-I ATPase activity 
also plays a role in distinguishing self-RNA from non-self-RNA 
(46). It was reported that RIG-I ATP hydrolysis increases the 
binding affinity of RIG-I and dsRNA ligands; whereas the RIG-I 
mutants deficient in ATP hydrolysis promotes the interaction 

of RIG-I and self-dsRNA and results in unintentional immune 
signaling (47).

Posttranslational Control of RiG-i
Ubiquitination
One of the first PTMs of RIG-I following the initial ligand rec-
ognition is performed by the robust ubiquitination machinery 
(Figure 2). Mass spectrometry analysis revealed that TRIM25, a 
member of the tripartite motif (TRIM) protein family possessing 
E3 ligase activity, induces the covalent Lys63-linked ubiquitina-
tion of RIG-I. Mechanistically, the C-terminal SPRY domain of 
TRIM25 interacts with CARD1 and facilitates the ubiquitination 
of CARD2 at K172 (48). The RIG-I–TRIM25 ubiquitination 
complex, associates with the adaptor protein 14-3-3ϵ and 
translocates to mitochondria for MAVS binding (49). Mutation 
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FiGURe 2 | Regulation of retinoic acid-inducible gene-i (RiG-i) activation. (a) In resting cells, RIG-I is kept inactivated through the phosphorylation of caspase 
activation and recruitment domains (CARDs) and C-terminal domain (CTD) mediated by casein kinase II and protein kinase C-α/β, respectively. (b) Following the 
binding of 5′ triphosphate (5′ppp) RNA and ATP hydrolysis, RIG-I is dephosphorylated by phosphoprotein phosphatase 1-α/γ and results in a conformational 
change that opens CARDs. HDAC6-mediated deacetylation of RIG-I CTD is critical for RIG-I and 5′pppRNA binding. The Lys63-linked ubiquitination of RIG-I 
mediated by TRIM25, Riplet, oligoadenylate synthetases-like protein, and MEX3C at both CARDs and CTD further activate RIG-I and facilitate its tetramerization.  
(c) Interactions between RIG-I–TRIM25 complex and 14-3-3ϵ promote RIG-I translocation to mitochondrial mitochondrial antiviral signaling protein (MAVS) for 
downstream signaling, leading to interferon production. Interactions between TRIM25, RIG-I, and MAVS are further negatively regulated by the Lys48-linked 
ubiquitination, which is meditated by LUBAC, RNF125, and RNF122. SEC14L1 and Atg5–Atg12 both inhibit the signaling by interrupting RIG-I–MAVS interactions, 
whereas SUMOylation promotes RIG-I–MAVS binding.
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of K172 disrupts the interaction between RIG-I and MAVS thus 
abrogating downstream signaling and IFNs production (50). 
Furthermore, a RIG-I splice variant which lacks the TRIM25 
interaction domain acts as a feedback inhibitor of RIG-I signal-
ing transduction upon viral infections (48). In addition, Riplet 
(RING-finger protein leading to RIG-I activation, also named 
RNF135 or REUL), another E3 ubiquitin ligase, also promotes 
RIG-I ubiquitination. Multiple sites within the CARDs, as well 
as within the CTD of RIG-I, were identified as the crucial ubiq-
uitin anchoring residues (51–53). Among which, K63-linked 
polyubiquitination (pUb) at Lys788, is demonstrated as being 
critical for RIG-I activation. However, unlike TRIM25-induced 
ubiquitination, Riplet induced RIG-I pUb is dispensable for 
RIG-I-RNA binding but is essential for releasing CARD from its 
autorepressed state. This enhances TRIM25 functionality as well 
as promoting the oligomerization of RIG-I and the activation of 

MAVS (54). MEX3C (Mex-3 RNA binding family member C), 
another recently identified E3 ligase, also mediates Lys63-Ub at 
K99 and K169 of CARD, playing a critical role in RIG-I activation 
(55). In addition, the oligoadenylate synthetases-like (OASL) 
protein, although not an E3 ubiquitin ligase itself, contains 
a dsRNA-binding groove and enhances RIG-I activation by 
mimicking the K63-linked pUb through its ubiquitin-like (UBL) 
domain (56, 57). Non-covalent binding of K63-ubiquitin chains 
to CARDs also potently activates RIG-I (58). Recent structural 
analysis suggests that covalent and non-covalent binding of ubiq-
uitin synergistically stabilize RIG-I tetramerization and enhance 
polymerization of MAVS CARDs (59).

On the other hand, several deubiquitinating enzymes (DUBs) 
were identified to remove K63-linked pUb chains from RIG-I, 
thus dampening RIG-I signaling. The tumor suppressor protein 
cylindromatosis (CYLD) removes K63-linked pUb chains from 
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RIG-I as well as TBK1 and IKKϵ to inhibit the IRF3 response, 
serving as a pathway negative regulator (60). Syndecan-4, a newly 
identified negative regulator of RIG-I, functions through attract-
ing CYLD to RIG-I complex, thus potentiating the K63-mediated 
deubiquitination of RIG-I (61). In addition, the ubiquitin-specific 
protease (USP) family members, such as USP3 and USP21, were 
also identified as inhibitors of RIG-I activation by deubiqutinat-
ing RIG-I (62, 63).

In contrast to K63-linked ubiquitination, which promotes pro-
tein activation, K48-linked ubiquitination triggers proteasomal 
degradation of its target. For instance, the RING-finger protein 
125 (RNF125), together with the ubiquitin E2 ligase UbcH5, con-
jugate K48-linked ubiquitin to RIG-I and MAVS, targeting them 
for proteasomal degradation and thereby inhibiting downstream 
signaling (64). Similarly, RNF122 was recently demonstrated to 
mediate the proteasomal degradation of RIG-I by delivering the 
K48-linked ubiquitin to RIG-I CARDs (65). The linear ubiquitin 
assembly complex (LUBAC) has been shown to promote K48 
pUb of TRIM25, leading to its degradation (66). Conversely, the 
deubiquitinase USP15 antagonizes LUBAC by removing K48-
linked ubiquitin from TRIM25, leading to its stabilization and 
thereby promoting RIG-I-mediated antiviral signaling (67).

Phosphorylation
In parallel with ubiquitination, phosphorylation has emerged 
in the past several years as a critical regulator of the RIG-I 
signaling transduction (Figure  2). Protein purification and 
mass spectrometry analysis identified that phosphorylation of 
Thr170 in the CARDs antagonizes RIG-I signaling by inhibiting 
TRIM25-mediated Lys172 ubiquitination and MAVS binding 
(68). Ser8 phosphorylation of CARDs also serves as a negative 
regulator of RIG-I (69). In addition, the CTD of RIG-I is con-
stitutively phosphorylated at Thr770 and Ser854/855 by casein 
kinase II to promote intermolecular interactions between CTD 
and CARDs, thereby maintaining RIG-I at an autorepressive 
state to prevent premature downstream signaling (70). A recent 
mass spectrometry analysis revealed that IKK phosphorylates 
RIG-I at Ser855, thereby providing a negative feedback regula-
tion of RIG-I (71). Furthermore, conventional protein kinase 
C-α (PKC-α) and PKC-β have also been shown to phosphorylate 
CARDs, thus suppressing RIG-I–TRIM interaction and subse-
quent antiviral responses (72). In fact, RIG-I signaling activity is 
controlled by a dynamic balance between phosphorylation and 
dephosphorylation. Dephosphorylation of RIG-I occurs rapidly 
with the presence of viral RNA. A functional siRNA screen 
identified phosphoprotein phosphatase 1-α (PP1α) and PP1γ as 
essential phosphatases responsible for CARDs dephosphoryla-
tion at Ser8 and Thr170, leading to RIG-I signal activation and 
viral inhibition (73).

Acetylation
In addition to the ubiquitination and phosphorylation described 
above, acetylation modulation has recently started to gain more 
acknowledgment for controlling RIG-I activity (Figure 2). Mass 
spectrometry has identified the acetylation of two lysine residues 
(K858 and K909) in the CTD of RIG-I at its inactivate state 

and are deacetylated during viral infection (74). The mutation 
of these two sites restricts RIG-I from undergoing the virus-
induced interaction with MAVS. K858 and K909 acetylation of 
RIG-I has also been shown to control the PAMP RNA-induced 
RIG-I oligomerization (75). The cytoplasmic deacetylase 
HDAC6-mediated removal of K909 acetylation has been shown 
as critical for RIG-I binding to dsRNA during viral infections 
(76). Furthermore, HDAC6-dependent RIG-I deacetylation 
also regulates RIG-I oligomerization upon ligand binding, thus 
facilitating RIG-I activation (75).

Other Regulatory Mechanisms
RIG-I signal transduction is further regulated by additional PTMs, 
regulatory proteins, and other cellular processes (Figure  2). 
It is worth noting that a number of UBL proteins including 
SUMO, ISG15, FAT10, and Atg8–Atg12 are involved in these 
positive or negative regulatory mechanisms (77). SUMOylation 
serves as a positive regulator of RIG-I by enhancing the RIG-I 
and MAVS binding (78). On the contrary, the HLA-F adjacent 
transcription 10 (FAT10), an UBL modifier protein, was shown 
to negatively regulate RIG-I by modulating RIG-I solubility 
through a non-covalent association with CARDs (79). In addi-
tion, IFN-induced ISG15 negatively regulates the RIG-I mediated 
signaling in a feedback-loop control manner (80). SEC14L1 
has been observed competing with MAVS for RIG-I CARD 
binding (81). Furthermore, autophagy has been reported to be 
involved in RIG-I modulation through its key regulator, the 
Atg5–Atg12 conjugate. Atg5–Atg12 has been found to suppress 
RIG-I–MAVS interaction, thereby inhibiting downstream signal-
ing (82). Recently, deamidation of CTD has been described as a 
distinct means to induce RIG-I activation. For examples, vGAT 
(glutamine amidotransferase), from KSHV (kaposi’s sarcoma-
associated herpesvirus) and γHV68 (murine gamma herpesvirus 
68), recruits cellular phosphoribosylformyglycinamide synthase 
to deamindate and activate RIG-I (83, 84).

viRAL ANTAGONiSM OF RiG-i SiGNALiNG

In order to establish infections, viruses have developed sophis-
ticated mechanisms to counteract host immune responses. 
With regard to RIG-I signaling, these include mechanisms such 
as altering viral genomes and their intermediate transcripts to 
avoid detection, manipulating the activation and degradation of 
RIG-I and MAVS, as well as modulating downstream signaling 
cascades. Studying these antagonistic viral strategies has greatly 
broadened our understanding of RIG-I activation and regulation.

Sequestration of viral RNAs
Since 5′ triphosphate (5′ppp) is an important feature recognized 
by RIG-I, modification of this motif has long been described as 
one of the major mechanisms for viruses to antagonize RIG-I 
signaling. Crimean–Congo hemorrhagic fever virus, Borna 
disease virus (BDV), and hantavirus (HTNV) remove the 5′ppp 
group on their genome posttranscriptionally, make RIG-I unable 
to bind to viral RNA, and therefore incapable of triggering RIG-I 
activation (85). Mechanistically, HTNV uses the “prime and 
realign” strategy to generate a 5′-terminal monophosphorylate  
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(86, 87). BDV on the other hand, employs genome trimming 
to form a 3′-terminal overhang as well as convert 5′ppp to 5′p 
to avoid detection by RIG-I (88). The arenavirus presents an 
unpaired 5′ppp-nucleotide overhang to evade recognition by 
RIG-I (89). The 5′-end of viral RNA can also be modified through 
RNA-capping pathways. For example, the genomic RNA of 
polioviruses linked to Vpg (viral protein genome-linked) to cap 
the 5′-end from exposure to RIG-I (90). The 5′-end capping with 
7-methyl guanosine and methylation of 5′ppp dsRNA at the 2′-O 
position makes viral RNA non-distinguishable from the host 
mRNAs, and therefore does not stimulate RIG-I (91, 92).

By contrast, some viruses encode viral proteins to prevent 
RNA recognition. The EBOV utilizes its VP35 protein to seques-
ter viral RNA (18). The crystal structural analysis indicates that 
the VP35 interferon inhibitory domain competes with RIG-I for 
dsRNA binding by forming an “end-cap” complex with dsRNA, 
resulting in substantially diminished activation of RIG-I (93). 
Similarly, the marburg virus VP35 spirals around the dsRNA 
backbone and end-caps the dsRNA to escape from RIG-I detec-
tion (94, 95). The IAV non-structural protein 1 (NS1) possesses 
dsRNA-binding properties to shield viral RNA from RIG-I (96). 
IAV has also been shown to antagonize RIG-I activation via its 
viral polymerase subunit PB2. PB2 position 627K in the mam-
malian strain increases PB2-nucleocapids binding affinity, thus 
inhibiting RIG-I interaction with the nucleoprotein-encapsidated 
5′ppp RNA (22, 97).

In addition to altering and concealing their genome to prevent 
RNA binding, viruses also re-localize viral RNA to specific cellu-
lar compartments, such as mitochondria, endoplasmic reticulum 
(ER), and Golgi, to avoid cytosolic surveillance by RIG-I. For 
instance, the DENV conceals dsRNA in the intracellular mem-
brane as an escape strategy (98). ER is an important organelle for 
viral entry, replication, and assembly. The severe acute respiratory 
syndrome (SARS) coronavirus (SARS-CoV) has been shown to 
induce a modified ER to hide its replicating RNA from detection 
(99). These viral antagonism strategies highlight the importance 
of cellular organelle localization in viral–host interactions during 
innate antiviral responses.

Manipulation of RiG-i–MAvS Signaling
Modulation of the PTMs
As reviewed above, ubiquitination represents one critical PTM 
mechanism of RIG-I activation and, not surprisingly, is an 
attractive target for viral manipulation (Figure 3A). Viruses have 
evolved ways to inhibit K63-linked ubiquitination of RIG-I by 
interacting with the E3 ligases TRIM25 and Riplet. For instance, 
IAV NS1 from various strains has been shown to suppress 
TRIM25-mediated RIG-I CARDs ubiquitination. Among all 
the TRIM25 binding amino acids identified in NS1, R38/K41 
and E96/E97 were described as critical in interfering with the 
coil-coiled domain of TRIM25. These interactions resulted in an 
inhibition of TRIM25 multimerization and therefore blocked the 
RIG-I CARDs ubiquitination (100). Intriguingly, NS1-TRIM25 
binding is found to be preserved in human and avian, but lost in 
mouse, indicating a species-specific manner of inhibition. This 
study further demonstrates that the NS1 suppression of RIG-I 

ubiquitination in mouse is Riplet-dependent (101). Conversely, 
phosphorylation of NS1 at Thr49 was recently identified as 
impairing the NS1–TRIM25 interaction, thereby suppressing its 
antagonistic activity of RIG-I signaling (102). Phosphorylation 
of another site on NS1, Thr80, has also been reported to disrupt 
NS1 binding affinity with RIG-I (103). Similar to IAV, the IBV 
non-structural NS protein (NS1-B) has recently been described 
as inhibiting RIG-I ubiquitination, which involves TRIM25-NS1 
C-terminal effector domain interaction and the RIG-I/TRIM25/
NS1-B complex formation (104). By contrast, the protease NS3-4A 
of HCV functions differently, rather than inhibiting TRIM25, it 
is thought to target the E3 ligase Riplet. NS3-4A directly disrupts 
Riplet, abolishes Riplet-mediated RIG-I ubiquitination, and 
further reduces the interaction between TRIM25 and RIG-I (54).

On the other hand, some viruses encode enzymes that directly 
deubiquitinate RIG-I. For instance, KSHV encoded deubiquit-
inase ORF64 cleaves Lys63-ubiquination chains on CARDs, 
blocks CARDs interaction between RIG-I and MAVS, thereby 
downregulating RIG-I signaling (105). Other viruses including 
arterivirus, nairovirus, SARS-CoV, and foot-and-mouth disease 
virus (FMDV) have also been reported to downregulate RIG-I 
ubiquitination through their viral encoded DUBs (106, 107).

Few viruses have been shown to manipulate RIG-I regulation 
with regards to targeting the phosphorylation or dephospho-
rylation process of RIG-I. Nevertheless, it was reported that 
MV efficiently escapes antiviral response via suppressing RIG-I 
dephosphorylation in dendritic cells (DCs). In this study, the 
growth arrest and DNA damage protein (GADD34) was shown to 
form complexes with PP1 to facilitate RIG-I activation. The MV 
infection induced DC-SIGN signaling results in an inhibition of 
GADD34-PP1 phosphatases activity and thereby impairs RIG-I 
activation (108).

Degradation of RiG-i and MAvS
Another distinct strategy used by viruses to antagonize RIG-I 
signaling is the direct cleavage or degradation of the receptor and 
multiple members of the signaling cascade (Figure 3A). RIG-I has 
been reported in some studies to be cleaved by the proteinase 3Cpro 
during infections with picornavirus, coxsackievirus B3 (CVB3), 
and enterovirus 71 (EV71) (109, 110). The encephalomyocarditis 
virus directs both caspase- and proteasome-dependent degrada-
tion of RIG-I (111). Intriguingly, the NS1–NS2 degradasome of 
the respiratory syncytial virus (RSV) has been shown to mediate 
the proteasomal degradation of RIG-I (112).

Mitochondrial antiviral signaling protein is also a well-studied 
molecule which is often targeted by many types of viral-induced 
cleavage. For example, the hepatitis A virus (HAV) cleaves MAVS 
for proteolysis by its protease 3Cpro (113). Both CVB3 proteinase 
2Apro and 3Cpro trigger MAVS cleavage at different sites during 
infection, and the cleavage of MAVS by EV71 is accomplished via 
its 2Apro activity (110, 114). In addition, serine protease NS3-4A 
of HCV cleaves MAVS, removing it from the mitochondria, 
thereby inhibiting downstream signaling (36, 115). In a parallel 
fashion, many viruses mediate cellular proteolytic degradation of 
MAVS to attenuate RIG-I antiviral responses. Hepatitis B virus 
viral protein HBx triggers the proteasome-mediated degradation 
of MAVS through Lys136 ubiquitination (116). Another study 
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reported that the HAV cysteine protease ABC targets MAVS 
for proteolysis at mitochondrial membrane (113). Additionally, 
viral modulation of cellular organelles such as mitochondria also 
affects RIG-I–MAVS signaling. The PB1-F2 of IAV, for instance, 
has been described as decreasing the mitochondrial membrane 
potential, resulting in the acceleration of mitochondrial fragmen-
tation, thereby inhibiting RIG-I–MAVS signaling (117–119).

It is important to note that the proper localization of RIG-I 
and MAVS is a prerequisite for effective signaling transduction. 
MAVS resides on the mitochondrial membrane, peroxisomes, 
and mitochondria-associated membranes for antiviral signaling. 
In fact, a RIG-I translocon has been identified to direct RIG-I 

redistribution from cytosol to membranes during viral infection 
(49). Studies have shown that several viruses encode proteins 
to disrupt the proper localization of RIG-I or MAVS as a novel 
mechanism of regulation, such as NS3 of DENV (113), nucleo-
protein of RSV (120), and non-structural proteins of thrombocy-
topenia syndrome virus (SFTSV) (121).

Modulation of Downstream Signaling 
Components
To ensure successful RIG-I signaling transduction, the kinase 
activities of TBK1 and IKKϵ are tightly controlled via various 
regulatory mechanisms and are common targets of viruses 
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(Figure  3B). For example, both the leader proteinase (Lpro) of 
FMDV (122) and the non-structural protein 3 (ns3) of the mouse 
hepatitis virus A59 (123) inhibit ubiquitination of TBK1. Dengue 
virus serotype4 non-structural proteins, NS2A and NS4B, as well as 
the FLIPs proteins encoded by the molluscum contagiosum virus 
(MCV), all reduce TBK1 phosphorylation, thereby preventing its 
activation (124, 125). Several viruses have been shown to prevent 
the formation of functional TBK1-containing complexes. The K7 
protein of the VACV prevents TBK1/IKKϵ complex-induced IRF 
activation by targeting host DEAD box protein 3 (DDX3) (126). 
Two other viruses, the NY-1 HTNV and SARS-CoV, disrupt the 
TBK1–TRAF3 and TANK–TBK1/IKKϵ complex, respectively 
(127, 128). Moreover, SFTSV has been shown to irreversibly 
re-localize TBK1 and IKK from mitochondria and sequester the 
TBK1/IKKϵ/IRF3 complex via the formation of inclusion bodies, 
causing signaling cascade termination (129).

Viral regulation of the transcription factors, IRFs and NF-κB, 
further serve as points of control in RIG-I signaling (Figure 3B). 
One of the best studied examples is the inhibition of IRF3 activity 
by the IAV NS1 protein (130). Besides this, the HSV-1, rabies 
virus, SARS-CoV, as well as several paramyxoviruses have been 
demonstrated to interfere with the phosphorylation state of IRF3, 
thereby blocking IFN induction (131–134). The EBV conjugates 
SUMO to IRF7 at lysine 452 to decrease IRF7 transcriptional 
activity (135). The rotavirus NS1, targets both IRF3 and IRF7 
for degradation to prevent IRFs from undergoing dimerization 
(136). Viruses have also developed various means to suppress 
the IRF3 DNA binding ability. Herpes simplex virus, thogoto 
virus, and KSHV, all developed strategies to downregulate 
IRF3 transcriptional activity by either disrupting IRF3 binding 
complex formations or competing binding regions on the IFNB 
promoter (137–139). Viral strategies in inhibiting cytoplasmic or 
transcriptional activities of NF-κB have been extensively studied 
during the VACV infection. Studies reported that multiple pro-
teins encoded by VACV and HSV-1 suppress NF-κB activation 
(140–143).

Viruses have also developed multiple inhibitory mechanisms 
to counteract the IFN stimulation of ISGs by targeting STAT1 
and/or STAT2 (Figure  3B). For example, the langat virus was 
shown to inhibit the phosphorylation of both STAT1 and STAT2 
(144). Varicella viruses and the Japanese encephalitis virus, both 
block the JAK/STAT1 pathway through multiple mechanisms 
including inhibiting STAT proteins phosphorylation and nucle-
otranslocation (145, 146). The non-structural protein NS5 of 

several flaviviruses, have been shown to target STAT proteins via 
distinct mechanisms. For example, MNV NS5 inhibits STAT1 
phosphorylation, whereas DENV NS5 interacts with UBR4 to 
promote STAT2 degradation (147, 148). By contrast, the Zika 
virus NS5 induced proteasomal degradation of STAT2 was 
recently identified as UBR4 independent (149). Furthermore, 
other viruses, such as HCV (150), RSV (151), and paramyxovirus 
(152), also demonstrate negative regulation of the JAK–STAT 
pathway.

CONCLUDiNG ReMARKS

Studies from the past decade have well established RIG-I as 
one of the principal PRRs for the recognition of cytoplasmic 
viral RNA, as well as defining its critical role in the induction 
of IFNs during viral infections. Our understanding of the RIG-
I-mediated antiviral response has been greatly expanded with 
the key discoveries made regarding the molecular mechanism of 
RIG-I regulation, such as ubiquitination, phosphorylation, and 
acetylation. Meanwhile, investigating viral strategies to manipu-
late RIG-I responses not only allow us to understand the viral 
pathogenesis, but also significantly contributed to our knowledge 
of how RIG-I is activated and regulated. These new insights into 
the viral-mediated RIG-I regulations are important for vaccine 
and drug development aiming to suppress infectious diseases and 
enhance immune responses.
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