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Two distinct forms of erythropoiesis, primitive and definitive, are found in mammals. 
Definitive erythroid precursors in the bone marrow mature in the physical context of 
macrophage cells in “erythroblastic islands.” In the murine embryo, overlapping waves of 
primitive hematopoietic progenitors and definitive erythro-myeloid progenitors, each con-
taining macrophage potential, arise in the yolk sac prior to the emergence of hematopoi-
etic stem cells. Primitive erythroblasts mature in the bloodstream as a semi-synchronous 
cohort while macrophage cells derived from the yolk sac seed the fetal liver. Late-stage 
primitive erythroblasts associate with macrophage cells in erythroblastic islands in the 
fetal liver, indicating that primitive erythroblasts can interact with macrophage cells extra-
vascularly. Like definitive erythroblasts, primitive erythroblasts physically associate with 
macrophages through α4 integrin–vascular adhesion molecule 1-mediated interactions 
and α4 integrin is redistributed onto the plasma membrane of primitive pyrenocytes. 
Both in vitro and in vivo studies indicate that fetal liver macrophage cells engulf primitive 
pyrenocytes. Taken together, these studies indicate that several aspects of the interplay 
between macrophage cells and maturing erythroid precursor cells are conserved during 
the ontogeny of mammalian organisms.
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iNTRODUCTiON

Two distinct forms of erythropoiesis, primitive and definitive, occur sequentially during  
ontogeny. Both forms of erythropoiesis consist of lineage-specific progenitors that give rise to 
maturing erythroblasts that enucleate to form reticulocytes, which mature into red blood cells, 
and into pyrenocytes, which are rapidly engulfed by macrophage cells. Definitive erythroblasts 
mature extravascularly in the fetal liver and postnatal bone marrow in physical contact with mac-
rophage cells in erythroblastic islands. The function of these central macrophage cells is poorly 
understood and currently under active investigation. In contrast to definitive erythropoiesis, 
primitive  erythroid progenitors emerge within the forming vasculature of the yolk sac and give 
rise to primitive erythroblasts that mature within the fetal bloodstream. Macrophage potential 
first emerges in the yolk sac and macrophage progenitors seed the liver prior to the emergence of 
hematopoietic stem cell (HSC). It is now recognized that late-stage primitive erythroblasts interact 
physically with macrophage cells within erythroblastic islands of the fetal liver. The emergence 
and interaction of the primitive erythroid and macrophage lineages is the subject of this review.
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FiGURe 1 | working model of interactions between the primitive erythroid and macrophage lineages. Two overlapping waves of hematopoietic 
progenitors, primitive hematopoietic progenitors and definitive erythro-myeloid progenitors (EMP) emerge in the yolk sac from extraembryonic mesoderm cells that 
egress through the posterior primitive streak. Primitive erythroid progenitors (EryP-CFC) give rise to a cohort of primitive erythroblasts that progressively mature in the 
bloodstream. EMP contain definitive erythroid progenitor [burst-forming units erythroid (BFU-E)] and macrophage progenitor (Mac-CFC) potential. EMP emerge from 
hemogenic endothelium (HE) in the yolk sac and contain both definitive erythroid (BFU-E) and macrophage (Mac-CFC) potential. EMP, BFU-E, and Mac-CFC seed 
the liver where they give rise to the first maturing definitive erythroblasts and macrophage cells. Macrophage cells in the liver support definitive erythropoiesis by 
forming erythroblastic islands. Late-stage primitive erythroblasts enter the fetal liver and physically interact with macrophage cells. Following their enucleation, both 
primitive and definitive reticulocytes enter the bloodstream, while the resulting pyrenocytes are engulfed by macrophage cells. Embryonic days (E) of development in 
the murine embryo are provided at the bottom of the figure.
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ONTOGeNY OF eRYTHROPOieSiS

Primitive erythropoiesis
Studies conducted more than a century ago identified the emer-
gence of pools of large nucleated erythroid cells in yolk sac blood 
islands as the first cellular evidence of hematopoiesis (1). These 
pools of “primitive” erythroid cells rapidly become enveloped by 
endothelial cells that give rise to a plexus of blood vessels in the 
yolk sac (2). Maturing primitive erythroblasts arise from a tran-
sient population of primitive erythroid progenitors (EryP-CFC) 
that are first detected at embryonic day 7.5 (E7.25) in the yolk sac 
of the mouse embryo (3, 4). Murine EryP-CFC are defined by their 
capacity to generate colonies that contain hundreds of primitive 
erythroblasts within 5 days of in vitro culture in semisolid media. 
The number of EryP-CFC increase transiently in the yolk sac 
between E7.25 and E8.5 and subsequently generate a cohort of 
maturing primitive erythroblasts that begin to circulate into the 
embryo proper with the onset of the cardiac contractions (5, 6).

Primitive erythroblasts in the mouse embryo mature as a 
semi-synchronous cohort within the bloodstream. They expand 
in numbers while undergoing progressive changes in morphology 
and gene expression, consistent with a transition from immature 
(proerythroblasts) at E9.5 to late-stage (orthochromatic) erythro-
blasts at E12.5 (7) (Figure 1). These morphologic changes include 
a decrease in cell size, nuclear condensation, and the loss of cyto-
plasmic basophilia due to the accumulation of hemoglobin and 
the loss of RNA content. In addition, primitive erythroblasts lose 
nuclear histone proteins and also lose the intermediate filament 
vimentin, which permits movement of the nucleus within the cell 
to facilitate enucleation (8, 9). In the murine embryo, primitive 

erythroblasts rapidly upregulate and dynamically express primar-
ily embryonic (βH1 and εy) globin genes, which distinguishes 
them from definitive erythroblasts, which exclusively express 
adult (β1 and β2) globin genes (10). Primitive erythroid cells are 
considerably larger than their definitive counterparts in the fetus 
and ultimately contain fourfold to fivefold more hemoglobin (11).

These maturational changes culminate in the generation of late-
stage primitive erythroblasts, which go on to enucleate between 
E12.5 and E16.5 (12, 13). The expression of the transferrin recep-
tor and α4 integrin are lower in primitive reticulocytes compared 
to late-stage erythroblasts, consistent with the partition of these 
molecules to nascent pyrenocytes prior to enucleation (13). During 
this time period (E12.5–E16.5), primitive reticulocytes increase 
the physical association of their cytoskeletal network with the 
outer membrane bilayer, thus gaining increased cellular deform-
ability (14). Like definitive reticulocytes, primitive reticulocytes 
significantly decrease their total cell volume and surface area as 
they mature (14). Fully mature primitive erythrocytes continue 
to circulate throughout the remainder of murine embryogenesis 
and even persist for several days after birth (12, 13).

Both megakaryocyte and macrophage (Mac-CFC) progeni-
tors emerge in the yolk sac concomitantly with EryP-CFC (4, 15, 
16). These findings, supported by studies of in  vitro differenti-
ated human embryonic stem cells (17), support the notion that 
primitive hematopoiesis is restricted to the primitive erythroid, 
macrophage, and megakaryocyte lineages. The first blood cells 
in the yolk sac are ultimately derived from mesoderm cells that 
emerge from the posterior primitive streak during gastrulation. 
In vitro studies of murine embryonic stem cells led to the identi-
fication of blast colony-forming cells (Blast-CFC) that contained 
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hematopoietic, endothelial, and smooth muscle potential (18). 
Blast-CFC were subsequently identified in the primitive streak 
of E7.5 mouse embryos, suggesting that primitive hematopoiesis 
arises from hemangioblasts (19). In addition, primitive erythroid 
potential was found to emerge from cells with endothelial identity 
(20). However, fate-mapping studies of in vitro cultured mouse 
embryos failed to establish clonal relationships between blood 
islands and their surrounding vasculature and cell-labeling stud-
ies did not mark both blood and endothelial cells within the yolk 
sac (21, 22). These studies, taken together, suggest that if heman-
gioblasts or hemogenic angioblasts do exist, they constitute rare 
and/or extremely transient cell populations during gastrulation.

emergence of Definitive erythropoiesis
Analysis of hematopoietic progenitors in embryonic time and 
space revealed that the first definitive erythroid progenitors, 
termed burst-forming units erythroid (BFU-E), also arise in the 
yolk sac (3, 4). Murine BFU-E are distinguished from EryP-CFC 
by their ability to generate colonies of several 100 definitive 
erythroid cells in 7–10  days of in  vitro culture in semisolid 
media. BFU-E expand in numbers within the yolk sac of the 
mouse embryo beginning at E8.25, enter the bloodstream, 
seed the newly forming liver as early as E10.5, and mature to 
generate the first circulating definitive erythrocytes, which are 
first evident at E11.5–E12.5 (23) (Figure 1). Ncx-1-null mouse 
embryos, which lack a beating heart and therefore a functional 
circulation, contain normal numbers of BFU-E in the yolk sac but 
fail to seed the liver with hematopoietic progenitors (24). These 
findings indicate that yolk sac-derived BFU-E jump-start blood 
cell production in the fetal liver prior to the seeding of the liver by 
HSC. The lymphangiogenic growth factor VEGF-C is necessary 
for the appropriate expression of α4 integrin on erythro-myeloid 
progenitors (EMP) and for EMP colonization of the fetal liver 
(25). Interestingly, deletion of VEGF-C after midgestation or in 
the adult does not cause anemia, indicating a specific role for this 
cytokine signaling pathway in yolk sac-derived erythropoiesis. 
Consistent with murine studies, limited investigation of human 
embryos indicate that BFU-E also first emerge in the yolk sac and 
colonize to the fetal liver prior to HSC emergence (26, 27).

The emergence of BFU-E in the murine embryo is associated 
both temporally and spatially with the emergence of megakaryo-
cyte, macrophage (see below), granulocyte, and mast cell line-
ages (4, 15, 16). A multipotential hematopoietic progenitor cell 
with definitive erythroid, megakaryocyte, and multiple myeloid 
lineage components, termed the EMP, has been identified in 
the E9.5–E10.5 murine yolk sac by the concomitant cell surface 
expression of kit, CD41, and CD16/32 (28–31). Clonal studies 
indicate that single EMP can contain both definitive erythroid 
and myeloid lineage potential (31).

Hematopoietic stem cells emerge in endothelial-associated 
cell clusters in large arterial vessels through a Runx1-dependent 
endothelial-to-hematopoietic transition (32, 33). Interestingly, 
EMP also emerge in cell clusters, which are localized to the yolk 
sac in kit+Runx1+ cells (34, 35). In addition, like HSC, EMP 
require Runx1 for their emergence, providing further evidence 
that EMP emerge via an endothelial-to-hematopoietic transition 
(35, 36). Recent studies indicate that EMP and some HSC, but not 

primitive erythroid cells, emerge from LYVE-1+ endothelium 
(37). These results point to the distinct developmental origins 
of primitive- and EMP-derived hematopoiesis from posterior 
mesoderm (Figure 1).

ONTOGeNY OF THe MACROPHAGe 
LiNeAGe(S)

The first myeloid cell potential in the murine embryo consists 
specifically of macrophage progenitors (38). Mac-CFC first 
emerge and expand the number within the yolk sac concomitant 
with primitive erythroid progenitors (4) (Figure 1). These initial 
Mac-CFC give rise directly to macrophage cells, rather than going 
through a monocyte intermediate (39). Mac-CFC continue to 
expand in numbers in the yolk sac concomitant with definitive 
erythroid progenitors, and like BFU-E, are subsequently found 
in the bloodstream and fetal liver (4, 38). These kinetics indicate 
that the macrophage lineage, as has also been found for the mega-
karyocyte lineage, is a component both of the first (primitive) 
and of the second (EMP) waves of hematopoietic progenitors that 
emerge in the yolk sac (Figure 1).

The first immature embryonic macrophages are detected in 
the murine yolk sac at E9.0 (40–42). Soon thereafter, macrophage 
cells become widely distributed throughout the embryo, with the 
highest concentration localized within the fetal liver (Figure 1). 
It is now recognized that these yolk sac-derived macrophage 
cells give rise to multiple long-lived tissue-resident macrophage 
populations, including microglia in the brain, Langerhans cells 
in the skin, and Kupffer cells in the liver (43–45). Tissue-resident 
macrophages express organ-specific genes that are regulated 
by distinct enhancer profiles (46, 47). The tissue-specific gene 
expression programs of tissue-resident macrophage cells become 
specified soon after macrophage cells seed organs during embry-
ogenesis (48). However, the developmental origin and specific 
gene expression program of macrophage cells associated with 
erythroblastic islands remain poorly understood. Tissue-resident 
macrophage cells also use a self-renewal program identified in 
embryonic stem cells to maintain their long-term presence within 
tissues (49).

iNTeRACTiONS OF MACROPHAGe CeLLS 
AND DeFiNiTive eRYTHROBLASTS

Pioneering studies by Bessis and Mohandas indicated that all 
erythroblasts in the bone marrow mature within “erythroblastic 
islands” consisting of central macrophages that extend cytoplas-
mic projections to a ring of surrounding erythroblasts (50, 51). 
Erythroblastic islands had not been previously recognized because 
they are physically disrupted when smears are prepared from the 
marrow. However, after gentle physical or enzymatic disruption, 
erythroblast islands in the bone marrow or the fetal liver can be 
identified and enumerated (52, 53). Erythroblastic islands can be 
reconstituted in  vitro when erythroblasts are coincubated with 
freshly isolated macrophage cells (54).

The isolation of intact erythroblastic islands and their physical 
reconstitution indicate that adhesive interactions occur between 
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FiGURe 2 | wright–Giemsa stain of murine fetal liver cells. An 
erythroblastic island with a central macrophage (μϕ) to which are attached 
many intermediate-stage definitive erythroblasts, well as one late-stage, 
well-hemoglobinized primitive erythroblast (arrow).
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erythroid precursors and macrophage cells. Several adhesion 
molecules have been identified that mediate these interactions. 
Adhesive interactions occur between α4β1 integrin expressed on 
erythroblasts and its counter-receptor vascular adhesion mol-
ecule 1 (VCAM-1) expressed on macrophage cells. Monoclonal 
antibodies directed against β1 integrin or VCAM-1 each disrupt 
erythroblastic island formation in vitro (55).

Another adhesive interaction between definitive erythroid cells 
and macrophage cells is mediated by erythroblast-macrophage 
protein, which is encoded by Maea. Maea is a 36-kD transmem-
brane protein expressed both by erythroblasts and macrophage 
cells (56, 57). Culture of human erythroblasts without macrophage 
cells or in the presence of macrophage cells and anti-MAEA anti-
bodies resulted in a marked decrease in erythroblast proliferation 
and enucleation and a marked increase in erythroblast apoptosis 
(56). MAEA-null mouse fetuses have increased numbers of 
nucleated erythroid cells in the bloodstream and die of anemia 
before birth (58). In vitro erythroblast island reconstitution assays 
indicate that MAEA function is mediated by its expression both 
on erythroid cells and on macrophage cells.

Yet another adhesive interaction is the erythroid-specific 
isoform of intercellular adhesion molecule 4 (ICAM-4), which 
interacts with αv integrin on macrophage cells (59), as well as the 
β1 integrin on leukocytes and the platelet integrin αIIβ3. The addi-
tion of synthetic αv peptides blocks this interaction and disrupts 
erythroblastic island integrity in vitro (53). Targeted disruption of 
ICAM-4 causes a 50% reduction in the number of erythroblastic 
islands in the marrow; however, steady-state erythropoiesis is not 
adversely affected in adult ICAM-4-null mice (53).

Functions of erythroblastic islands
Definitive erythroblasts can proliferate, mature, and enucleate 
in vitro in the absence of other cell types. However, this process 
is inefficient and terminal erythroid maturation can be enhanced 
by coculture with accessory cells (60, 61). Electron-microscopic 
studies of erythroblastic islands have suggested that macrophages 
may “nurse” erythroblasts by supplying them with iron (62). This 
process was subsequently recognized to be micropinocytosis, 
a process by which immature erythroblasts accumulate iron 
through a specific acid ferritin receptor (63). It has also been pro-
posed that central macrophage cells may serve as an important 
source of cytokines, in particular EPO, that support erythroid 
maturation (64). Consistent with this hypothesis, the coculture 
of erythroblasts with macrophage cells prevents erythroblast 
apoptosis (57).

The in vitro coculture of macrophage cells with human and 
murine definitive erythroblasts results in increased numbers 
of maturing erythroid cells (56, 61). The chronic depletion of 
macrophage cells in adult mice led to decreased phagocytosis 
of senescent red blood cells resulting in a prolonged red cell 
lifespan and a compensatory decrease in red blood cell output 
from the bone marrow. However, the response to the induction 
of acute anemia is blunted in macrophage-depleted mice (65, 
66). While controversial, these findings suggest that macrophage 
cells, or potentially dendritic cells (67), which are also depleted 
by clodronate, play an important role in the stress response of 
adult mice (68).

The attachment to numerous erythroblasts to a central 
macrophage brings erythroblasts into close physical proximity 
(Figure  2). This proximity facilitates erythroblast–erythroblast 
interactions, such as the regulation of erythroid cell numbers by 
Fas–FasL signaling. Expression of FasL on late-stage erythroblasts 
can transmit a death signal to adjacent immature erythroblasts 
that express Fas (69). High levels of EPO protect immature eryth-
roblasts from such death signals, leading to increased erythroid 
cell survival (69, 70).

Finally, macrophage cells play an important role in eryth-
ropoiesis by engulfing and digesting pyrenocytes derived from 
the process of enucleation. This engulfment is mediated by 
macrophage responses to the display of an “eat me” signal, 
phosphatidylserine, along with Protein S, on the surface of 
pyrenocytes and involves the recognition of the latter by the 
Mer tyrosine kinase receptor on macrophage cells (71, 72). 
Digestion of the nucleus present in the engulfed pyrenocyte 
requires the enzyme DNAse II, which is upregulated in fetal 
liver macrophages by the transcription factor Klf1 (73). While 
Klf1 was considered to be an exclusively erythroid-specific 
transcription factor, it is also expressed by hematopoietic pro-
genitors (EMP) in the yolk sac that give rise to the macrophage 
cells that seed the fetal liver (74). Thus, Klf1 is responsible not 
only for intrinsically regulating the maturation of primitive and 
definitive erythroid cells (75, 76), it also regulates the tissue-
specific gene expression program in the macrophage cells that 
interact with maturing erythroblasts. Targeted disruption 
of DNAse II leads to macrophage cells in the fetal liver that 
becomes massively engorged with erythroblast nuclei, result-
ing in the expression of autoimmune-related cytokines, severe 
fetal anemia, and ultimately perinatal death (77, 78). These 
findings speak to the importance of pyrenocyte clearance by 
macrophage cells.

Two genes have been implicated in the regulation of definitive 
erythroid and macrophage lineages that regulate their interac-
tions within erythroblastic islands. The first is retinoblastoma 
(Rb), which regulates the G1-to-S-phase transition of the cell 
cycle. Targeted disruption of Rb results in fetal anemia, though 
its preferential requirement in definitive erythroid versus mac-
rophage cells remains controversial (54, 79–81). The second is 
Tropomodulin 3 (Tmod3) that binds tropomyosins and regulates 
the length and stability of actin filaments. Targeted disruption 
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FiGURe 3 | expression of Maea gene transcripts in maturing primitive and definitive erythroid cells. ProE, proerythroblasts; BasoE, basophilic 
erythroblasts; OrthoE, late-stage polychromatophilic and orthochromatic erythroblasts. Data were derived from http://www.cbil.upenn.edu/ErythronDB (7).
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of Tmod3 induces multiple defects of definitive erythroid 
maturation in the fetal liver, disrupts formation of erythroblastic 
islands, and ultimately causes fetal demise between E14.5–E18.5 
(82). Interestingly, in vitro reconstitution studies indicate that 
Tmod3 is required both in definitive erythroid cells and in 
macrophage cells.

The importance of macrophage cells for the terminal matura-
tion of definitive erythroid cells in the fetal liver is evidenced by the 
progressive fetal anemia and fetal death of Palladin (Palld)-null 
embryos (83). Targeted loss of this actin cytoskeleton-associated 
protein results in the disruption of erythroblastic islands in 
the fetal liver and a marked lack of definitive, but not primi-
tive, erythroid cells in the E13.5–E14.5 mouse embryo. In vitro 
erythroblastic island reconstitution studies indicate that Palladin 
function is specifically required in macrophage cells.

iNTeRACTiONS OF PRiMiTive 
eRYTHROBLASTS wiTH MACROPHAGeS 
iN THe FeTAL LiveR

The liver serves as the site of fetal erythropoiesis, which is 
colonized by macrophage cells before the appearance of differ-
entiating definitive erythroblasts (84). BFU-E are found as early 
as E10.5 in the murine fetal liver and the number of cells in the 
liver expands exponentially between E11.5 and E15.5, reflecting 
a massive increase in definitive erythropoiesis (85). These matur-
ing definitive erythroblasts are localized near macrophage cells 
within erythroblastic islands (86). Immunohistochemical stud-
ies of E15.5 fetal livers revealed the spatial association not only 
of definitive erythroblasts, but also of primitive erythroblasts 
with F4/80-positive macrophage cells (87). Isolation of eryth-
roblastic islands from E14.5 fetal livers also revealed late-stage 
primitive erythroblasts attached to central macrophage cells 
(87) (Figure 2). These findings, along with the disproportionate 
concentration of nucleated primitive erythroblasts in the E15.5 
fetal liver compared to the bloodstream, provided evidence 
that primitive erythroblasts enter the fetal liver and physically 

interact with macrophage cells. This conjecture was tested by 
in vitro erythroblastic island reconstitution studies. Late-stage 
primitive erythroblasts collected from the fetal bloodstream 
were able to reconstitute erythroblastic islands when incubated 
with fetal liver-derived macrophage cells that had been stripped 
of their attached definitive erythroblasts (87, 88). Further evi-
dence of primitive erythroblast–macrophage interactions has 
come from the identification of erythroblastic islands composed 
of central macrophage cells surrounded by maturing primitive 
erythroblasts in cultures of in  vitro differentiated embryonic 
stem cells (74).

Late-stage primitive erythroblasts in the fetal liver upregulate 
the surface expression of α4 and α5 integrins (13, 88), suggest-
ing that integrins mediate primitive erythroblast adherence to 
macrophage cells. This conjecture was tested by the blockade of 
α4 integrin and of the α4 counter-receptor on macrophage cells, 
VCAM-1, each of which led to decreased numbers of primitive 
erythroblasts associated with macrophage cells (87, 88). These 
findings indicate that α4 integrin–VCAM-1 adhesive interactions 
function both in primitive and definitive erythropoiesis. While 
Maea transcripts are expressed at similar levels in primitive 
and definitive erythroid cells (Figure  3), the potential role of 
Maea–Maea, or of other adhesive interactions, in primitive eryth-
roblast–macrophage interactions has not, to my knowledge, been 
reported. The potential roles of Palladin, Rb, and Tmod3 in primi-
tive erythroblast–macrophage interactions remain unknown.

What are the functions of macrophage cell interactions with 
primitive erythroblasts in the fetal liver? In definitive erythro-
poiesis, all stages of erythroblast maturation are associated with 
macrophages in erythroblastic islands (Figure  1). By contrast, 
EryP-CFC (E7.25–E8.5) and proerythroblast (E9.5) stages of 
primitive erythropoiesis occur before the fetal liver is formed and 
primitive erythroblasts isolated from E9.5 mouse embryos do not 
readily attach to macrophage cells (88). Together with the immu-
nohistochemical and reconstitution studies described above, 
these findings suggest that only late-stage primitive erythroblasts 
interact with macrophages cells, unlike definitive erythroblasts 
that physically interact with macrophage cells throughout their 
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