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Neutrophil extracellular traps (NETs) were initially described as an antimicrobial mech-
anism of neutrophils. Over the last decade, several lines of evidence support the 
involvement of NETs in a plethora of pathological conditions. Clinical and experimental 
data indicate that NET release constitutes a shared mechanism, which is involved in a 
different degree in various manifestations of non-infectious diseases. Even though the 
backbone of NETs is similar, there are differences in their protein load in different diseases, 
which represent alterations in neutrophil protein expression in distinct disorder-specific 
microenvironments. The characterization of NET protein load in different NET-driven 
disorders could be of significant diagnostic and/or therapeutic value. Additionally, it will 
provide further evidence for the role of NETs in disease pathogenesis, and it will enable 
the characterization of disorders in which neutrophils and NET-dependent inflammation 
are of critical importance.
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iNTRODUCTiON

Neutrophils constitute an essential part of the innate immune system in host defense against patho-
gens, as shown more than 100 years ago (1, 2). Circulating neutrophils are recruited in vast numbers 
at the sites of infection or sterile inflammation, in response to a variety of pathogen and host-derived 
inflammatory mediators (3). There, via adhesive interactions with endothelial cells, neutrophils 
rapidly infiltrate the site of inflammation (4). Uncontrolled inflammation in turn results in the 
release of newly produced neutrophils from the bone marrow, in a process termed as emergency 
granulopoiesis (5).

In addition to phagocytosis and degranulation, it has been recently proposed that neutrophils 
employ an additional strategy, in order to restrain infection: the release of NETs (1, 2, 6, 7).

Neutrophil extracellular traps are extracellular chromatin structures, formed upon certain inflam-
matory stimuli and composed of cytoplasmic, granular, and nuclear components of neutrophils 
(1, 2, 6, 7). To date, it is known that they can entrap and possibly kill pathogens. It has been shown 
that NETs bind bacteria (6, 8, 9) as well as fungi (10). The antimicrobial activity of NETs relies on both 
cytoplasmic and granular proteins as well as histones. This suggests that the intact NET structure is 
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FigURe 1 | Neutrophil extracellular trap (NeT) formation and protein decoration. Representative images taken using confocal microscopy, demonstrating 
(A) NET formation mechanism and (B,C) the two-step process through which the disease-related protein is externalized.
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crucial for their antimicrobial function, enabling the increased 
local concentration of antimicrobial factors (1, 2, 6, 7, 11).

Besides their role in infectious disorders, studies carried out 
after 2008 support the role of NETs in the pathophysiology of 
non-infectious diseases, such as thrombosis (12–16), autoim-
mune diseases (14, 17–22), genetically driven autoinflammatory 
(23), and other inflammation-related diseases (24–26), metabolic 
disorders (27, 28), lung diseases (29–32), fibrosis (33), and cancer 
(34–36).

Herein, we seek to review current data regarding the proposed 
role of NETs in non-infectious human diseases. We also discuss 
the existing evidence supporting that these structures constitute a 
common mechanism of the pathophysiology of distinct diseases.

MeCHANiSM OF NeT FORMATiON

Despite the morphological similarities of NETs released by 
neutrophils in response to different stimuli and under diverse 
conditions, it is nowadays widely accepted that there is more 
than one mechanism involved in NET release (37). Additionally, 
mitochondrial DNA also contributes in NET formation (38, 39), 
whereas, even though in vitro NET formation leads to cell death 

(40), it is reported that neutrophils that undergo NET release 
in vivo may remain active and functional, suggesting that NET 
formation may not necessarily be a terminal event (41, 42).

Activated neutrophils undergo dramatic morphological 
changes in order to release NETs (43–47). The nuclear and granu-
lar membranes disintegrate and elastase enters into the nucleus, 
followed by hypercitrullination of histones, chromatin deconden-
sation into the cytoplasm, rupture of the plasma membrane, and 
extrusion of nuclear material from the cell into the extracellular 
space (43–47). The enzymes peptidyl arginine deiminase type IV 
(PAD4), neutrophil elastase (NE), and myeloperoxidase (MPO) 
have been implicated in the initial chromatin decondensation and 
in the degradation of the nuclear envelope (43–47). As a final 
step, extracellular DNA, histones, and granular enzymes form 
a network of NETs that entrap endogenous (e.g., platelets) and 
extrinsic (e.g., bacteria) particles and molecules (Figure  1A) 
(43–47). The negatively charged DNA acts as the backbone of the 
NET, interacting with other NET components through positive 
electrostatic charge (43–47). As it has been recently described, 
this scaffold is crucial for NET proteins to maintain their function 
(6, 43, 47), since dismantling of NET structures by DNase abol-
ishes their antimicrobial activity (6). However, in the majority of 
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these studies, PMA was used as a NET inducer (48, 49). Based on 
the criticism directed against the use of PMA as a NET inducer, 
the exact intracellular pathway that leads to NET release is still 
unclear (50).

At the molecular level, NET formation is still poorly under-
stood and it is not defined whether neutrophils employ a similar 
mechanism to release NETs under different circumstances. 
However, there is strong evidence that the production of reactive 
oxygen species (ROS), the relocation of NE and MPO into the 
nucleus, histone citrullination, and eventually the rupture of the 
plasma membrane are, sequentially, involved in NETosis (43–47).

Cell metabolism has major contribution in immune cell 
function (51), including neutrophil activation. Neutrophils rely 
mainly on glycolysis for their metabolic needs, enabling their 
adaptation to the highly hypoxic inflammatory sites (52, 53).

Moreover, there is evidence that the metabolic shift to the 
pentose phosphate pathway is important for NET release, due 
to the involvement of glucose-6-phosphate dehydrogenase in 
fueling NADPH oxidase-2 with NADPH, to produce an effective 
amount of ROS and thus induce NETs. In contrast, mitochondrial 
ROS release, which is NADPH-independent, is not effective in 
signaling for NET production (54, 55).

Additionally, NET formation has been shown to require, at 
least in certain circumstances, the activation of autophagy (56). 
Autophagy is an anti-apoptotic mechanism activated in response 
to cell stress, in order to regulate protein and organelle turnover, 
ensuring cell survival (57). The protein kinase mammalian target 
of rapamycin (mTOR) negatively regulates autophagy, involved 
also in NET formation (58, 59). We and others (23, 24, 33, 56, 
60–62) have shown that blocking autophagy through PI3K sign-
aling, either at the initial levels by using 3-methyladenine (24, 
60–62) or at the level of autophagosomal acidification by using 
wortmannin or bafilomycin (23, 33, 56, 62), inhibits the induction 
of NET release. However, more mechanistic studies are needed to 
identify how autophagy is involved in NET release, even though 
mTOR signaling and ROS production have been linked to both 
processes (7, 56, 59).

It is suggested that autophagy is crucial for NET release in both 
infectious and non-infectious diseases, including sepsis, familiar 
Mediterranean fever (FMF), gout, and inflammatory-driven 
fibrosis (12, 23, 56).

CAN NeT CARgO DeFiNe NeUTROPHiL 
ROLe iN DiSeASe?

Independently of the stimulus, NETs are composed of DNA, 
citrullinated histone 3 (cit-H3), NE, and MPO, the three main 
proteins commonly used for their detection (43–45, 47). Even 
though a proteomic analysis of infiltrating neutrophils in diverse 
tissues and in different disorders could be the proof of concept, 
there is evidence proposing that neutrophils express and release in 
the form of NETs a variety of proteins, depending on the specific 
inflammatory environment (63). For example, tissue factor (TF) 
was detected on NETs in vein and arterial thrombosis (16, 64, 65), 
interleukin 1 beta (IL-1β) in gouty arthritis (24) and FMF (23), 
interleukin 17 (IL-17) in psoriasis (66) and pulmonary fibrosis 

(33), antimicrobial peptide LL-37 in systemic lupus erythema-
tosus (SLE) (19), and PAD4 in rheumatoid arthritis (RA) (67).

Even though NETs constitute a common event in distinct 
pathophysiologic conditions, the expression of distinct bioactive 
proteins on NETs in different disorders might be the one that 
determines their specific function in disease pathogenesis.

A two-“hit” process has been proposed to explain the dif-
ferential protein cargo of NETs in distinct disorders. The first 
“hit” in this process is the disease-specific environment that 
primes neutrophils to express disease-associated protein. A 
second “hit” is then required for the induction of NET forma-
tion (Figures 1B,C). However, this is a simplified model, and we 
cannot exclude the possibility that the same stimulus can drive 
both events. A typical paradigm of this two-“hit” model has been 
described in ST-segment elevation acute myocardial infarction 
(16). It has been shown in acute coronary syndromes that a 
variety of inflammatory stimuli trigger the cytoplasmic expres-
sion of TF in circulating neutrophils. At sites of atherosclerotic 
plaque rupture, locally activated platelets interact with TF-loaded 
neutrophils leading to the release of TF-bearing NETs inside the 
affected artery. The release of functional TF on NETs is able to 
further induce thrombin generation and platelet activation, creat-
ing a possible vicious cycle, that leads to thrombus propagation 
and stability (16).

The expression of these “disease-related” proteins on NETs 
could increase their local bioactivity (12, 14, 16, 23, 66, 68). On 
the other hand, it has been shown that, at high densities, NETs 
limit inflammation by degrading cytokines and chemokines (69). 
This balance between the pro-inflammatory and prothrombotic 
role of NETs, though the expression of cytokines like IL-1β and 
IL-17, and their anti-inflammatory role, could be exploited for 
the development of new therapeutic approaches.

In the following section, we review the clinical and experimen-
tal data that link NETs with pathogenesis of several disorders. 
Even though the list of diseases in which NETs have been identi-
fied is extensive, we believe that the further characterization of 
the degree of NET involvement in such disorders could enable 
the classification of diseases in which NETs have a definite and 
strong involvement under the term of “NET-driven disorders” 
or “NETopathies.” The term NETopathy(ies) is derived from the 
abbreviation NET and the Greek word πάθος =  pathos, which 
means disorder.

NeTs in Thromboinflammation
The widely accepted cross talk between inflammation and throm-
bosis has led to the introduction of the term thromboinflammation 
(68). Cells of the hematopoietic system, including neutrophils, 
platelets, and monocytes, have a major role in this process (64). 
There is increasing evidence implicating NET release with the 
development of both vein and arterial thrombosis (12, 14, 16, 26, 
65, 70–77). Extracellular deposition of DNA co-localized with 
neutrophil granule proteins has been shown in thrombi from 
patients with deep vein thrombosis (DVT) (78), especially at the 
phase of organization of the thrombus (70). Additionally, circu-
lating extracellular DNA in the form of nucleosomes and DNA 
associated with neutrophil granule proteins, supporting the induc-
tion of NET release, has been identified in blood samples from 
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patients with DVT (79, 80). Similarly, NETs have been identified 
in thrombus specimens from patients undergoing thrombectomy 
in the context of myocardial infarction (15, 16, 62, 71). In a recent 
multicenter study in patients presenting with stent thrombosis, 
neutrophils were the more abundant leukocyte population in 
thrombus specimens, whereas NETs were identified in 23% 
of thrombi (71). Regarding specific disorders associated with 
thrombotic manifestations, NETs in thrombus specimens and/
or increased levels of nucleosomes have been identified in dis-
seminated intravascular coagulation in sepsis (73), in paroxysmal 
nocturnal hemoglobinuria (81), thrombotic microangiopathies 
(82), antiphospholipid syndrome (APS) (74), antineutrophil 
cytoplasmic antibody (ANCA)-associated vasculitis (AAV) (14), 
or hemodialysis-related thrombogenicity (83). These clinical data 
support a role for NETs in the development of both arterial and 
venous thrombosis.

The prothrombotic role of NETs was further confirmed in 
several experimental animal models. NETs were observed in 
thrombi, in a baboon model (75) and in several mouse models 
of DVT (64,  76, 84). In a mouse model of DVT, infusion of 
DNase I resulted in protection from thrombosis (76), whereas 
PAD4−/− mice were protected from thrombosis (85), supporting 
the pathogenetic role of NETs in venous thrombosis, at least in 
this animal model. The in vivo role of NETs in the development 
of thrombosis was further shown in a mouse model of APS 
(86). Additionally, NETs contribute in cancer-induced venous 
thrombosis, as shown in a mouse model of chronic myelogenous 
leukemia (34) and in the RIP1-Tag2 model of insulinoma and 
MMTV-PyMT model of breast cancer (77). Brill et  al. linked 
histones with the prothrombotic effect of NETs, since histone 
infusion also resulted in thrombosis. However, there is evi-
dence that NETs participate in DVT via interaction with von 
Willebrand factor, a factor that potentially activates platelets (76). 
Furthermore, it has been reported that in a mouse model of DVT 
TF triggers intraluminal fibrin formation, while the release of 
NETs activates factor XII, consolidating DVT (64). The involve-
ment of NET-bound TF, which is the main in vivo initiator of 
coagulation (87), in NET-dependent thromboinflammation has 
been shown in several studies, since TF has been identified in 
NETs released in neutrophils from patients with sepsis, APS, 
AAV, or myocardial infarction (12, 14, 16, 74) or in a mouse 
model of DVT (64).

The interplay between neutrophils and platelets has been 
shown to have a major contribution in NET release (16, 62, 72, 
84, 88). Clark et  al. have shown that upon toll-like receptor 4 
(TLR4) activation platelets induce the formation of NETs in a 
mouse model of sepsis (72). This leads not only to bacterial but 
also to platelet entrapment in NETs, resulting in tissue damage 
(72). Several studies have further identified platelet derived high 
mobility group box 1 (HMGB1) as the factor that mediates plate-
let–neutrophil interaction and NET release (62, 84). HMGB1 
released by platelets has been shown to promote thrombosis in a 
mouse model of DVT (84), whereas it mediates neutrophil activa-
tion in the context of myocardial infarction (62). The importance 
of platelet–neutrophil interaction is prominent in coronary artery 
thrombosis, since it was proved that coronary thrombi are mainly 
composed of interacting neutrophils and platelets (16, 62). The 

rupture of the atherosclerotic plaque primes a cascade of events, 
which results in platelet activation and NET release, leading to 
thrombus formation and blood vessel occlusion. The expression 
of TF on NETs may propagate the further activation of the coagu-
lation system, leading to thrombus expansion (16).

Taken together, there is strong evidence, derived by clinical 
and experimental observation, that neutrophils and NETs are 
major players in both venous and arterial thrombosis. The devel-
opment and clinical use of factors that target NETs could provide, 
however, the definite proof for the role of NETs in thrombotic 
disorders.

NeTs in Autoimmune Diseases
A growing number of studies demonstrate that NETs play a driv-
ing role in the pathogenesis of a variety of autoimmune disorders, 
such as SLE, AAV, RA, and psoriasis. In the aforementioned 
disorders, NETs are a main source of autoantigens, are present 
in excess amount, or are decorated with disease-specific proteins.

Systemic Lupus Erythematosus
Systemic lupus erythematosus is a systemic autoimmune disease 
and a well-studied model. SLE is characterized by systemic 
production of autoantibodies against a plethora of intracellular 
and extracellular targets. These autoantibodies are able to cause 
extensive tissue damage (89, 90).

There is evidence supporting the involvement of NETs in 
the pathophysiology of SLE. It has been shown that NETs are 
directly associated with the severity and the progression of the 
disease (91–95). Neutrophils from SLE patients are primed to 
undergo NET release (17, 96). Autoantibodies and more spe-
cifically antibodies against LL-37 have been shown to activate 
neutrophils for NET release (18, 19). On the other hand, NETs 
are composed of DNA, histones, and proteins-like LL-37, pro-
viding a possible source of autoantigens for the development 
of lupus-specific autoantibodies (Figure  2B) (17–19, 97–99). 
Interestingly, Villanueva et al. reported a neutrophil subpopula-
tion in SLE, termed as low-density granulocytes (LDG), prone 
to release NETs, which promote vascular damage (18, 91, 100). 
It was further demonstrated that LL-37-bearing NETs fuel the 
immune response in SLE by activating plasmacytoid dendritic 
cells (pDCs) in an Immunoglobulin-Fc region receptor II-a 
(FcRIIa) and TLR9-dependent manner. This leads to interferon 
alpha (IFNα) production, which is a critical player in the patho-
genesis of SLE. Furthermore, IFNα triggers NET generation and 
activates T and B cells leading to the production of antibodies 
against NETs, creating a vicious cycle (19, 97, 101, 102).

Interestingly, there is a disease-associated defect in the clear-
ance of NETs, due to the reduced activity of DNase I and the 
increased amounts of DNase I inhibitors (17, 20, 94, 103–106), 
supporting the hypothesis that dysregulation of NET clearance 
may be one of the initial steps that lead to lupus-specific autoan-
tibody production.

ANCA-Associated Vasculitis
Antineutrophil cytoplasmic antibody-associated vasculitis is 
described as a group of autoimmune diseases, characterized by 
the presence of autoantibodies against the neutrophil granule 
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proteins, such as proteinase 3 (PR3) and MPO. The study by 
Kessenbrock et  al. provided the initial evidence for the link 
between NETs and AAV. In this study, the intraglomerular 
deposition of NETs in biopsies from patients with small-vessel 
vasculitis was shown. Additionally, it was shown that neutrophils 
release NETs when activated with ANCA (107). Further studies 
confirmed the deposition of NETs in affected tissues from patients 
with AAV (14, 61, 108–110), whereas increased levels of circulat-
ing NET remnants were observed in patients with AAV (14, 22). 
Additionally, a recent study correlated AAV disease activity with 
the presence of NET-prone LDGs in peripheral blood (110). 
NETs were further associated with the AAV hypercoagulability, 
since NETs released during active disease are loaded with TF 
[Figure 2A (14, 111)].

Since PR3 and MPO are abundantly present in NETs, it has 
been proposed that NETs mediate the extracellular exposure of 
these potential autoantigens, having an important role in the 
initiation of the disease (17, 20, 21, 107). Sangaletti et  al. have 
shown that myeloid DCs can acquire neutrophil proteins released 
in the form of NETs. Furthermore, immunization of mice with 
DCs co-cultured with NET remnants resulted in the development 
of MPO-ANCA and renal vasculitis (112). A common charac-
teristic between SLE and AAV is the decreased degradation of 
NETs, attributed to the reduced activity and inhibition of DNase 
I, as well as to the protection over NETs by autoantibodies and 
components of the complement (17, 20, 107).

RA and Psoriasis
Rheumatoid arthritis is a chronic autoimmune disease that affects 
synovial joints. It is known that neutrophils are the most abundant 
cell type of synovial fluid in RA patients (113).

Recent studies identified the presence of NETs in the cir-
culation and the release of NETs by synovial neutrophils (114, 
115). Khandpur et  al. have shown that TNF, IL-17, and anti-
citrullinated protein antibodies (ACPA) promote NET release by 
neutrophils from patients with RA, whereas therapeutic blockade 
of TNF function has been shown to decrease the extensive NET 
generation that characterizes RA patients. Of interest, IL-17 was 
able to promote NET release only in neutrophils from patients 
with RA, which implies that the disease-specific inflammatory 
microenvironment primes neutrophils for NET formation (115).

Recent studies highlight that citrullinated histones in NETs 
consist autoantigens that stimulate and participate in the outset 
of the excessive inflammation, and more specifically in ACPA 
immune response, in RA (18, 115). It has been further demon-
strated that RA-driven NETs are decorated with enzymatically 
active PAD4, which possibly further citrullinates targets, render-
ing them autoantigens (Figure 2C) (49, 67, 116). Finally, NETs in 
RA indirectly participate in the stimulation of distinct cell types, 
such as fibroblast-like synoviocytes, which invade and damage 
cartilage in RA (115, 117).

The possible involvement of NETs in the pathogenesis of 
psoriasis has been also proposed. Psoriasis is an autoimmune 
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skin disorder characterized by epidermal hyperplasia and neu-
trophil infiltration in the epidermis. Neutrophils are involved 
in the pathophysiology of psoriasis, linking innate and adap-
tive immune system, and acting as a main source of IL-17 (66, 
118, 119).

Interleukin 17 has a significant role in the pathophysiology 
of psoriasis causing keratinocyte hyperplasia (119, 120), whereas 
therapeutic administration of antibodies against IL-17 is effica-
cious in the treatment for psoriasis (121–123). The externalization 
of IL-17 in a bioactive form is feasible through NET formation 
(Figure 2D) (66, 124), which has been also observed in models of 
RA (115) and pancreatitis (125). The fact that the active form of 
IL-17 lies on NETs renders it an easily accessible target.

Taken together, a significant amount of evidence suggests 
that NETs contribute in the pathogenesis of several autoim-
mune disorders, acting either at the initiation of disease, 
providing a source of autoantigens, or promoting tissue injury 
(66, 90, 93, 107, 109, 115). There are reports suggesting that 
NETs can activate other inflammatory cell populations and 
promote the activation of the adaptive immune system (97, 102, 
115). However, whether the specific structure of NETs and the 
possible modification in proteins loaded on NETs have a major 
impact in the break of tolerance and induction of autoimmunity 
still remains elusive.

NeTs in Autoinflammatory Diseases
Recent studies revealed a possible role for NETs in the inflam-
matory response that governs autoinflammatory syndromes, 
including gout and FMF.

Gout is an autoinflammatory type of arthritis caused by the 
intra-articular deposition of monosodium urate crystals (MSU 
crystals). The deposition causes inflammatory attacks due to 
innate immunity activation (126–129). Additionally, the chronic 
form of the disease is characterized by tophus formation, caus-
ing mechanical destruction of the joint (130). It has been shown 
that MSU crystals cause a strong induction of NETs (24, 131) 
which, in high neutrophil concentrations, ameliorates MSU 
crystal-induced inflammation by promoting the degradation of 
inflammatory cytokines and chemokines in a mouse model of 
MSU-induced inflammation (69, 132). Despite their protective 
role, NETs indirectly engender the destruction of the joint by 
easing the packing of MSU crystals and the formation of tophi 
(69, 132). However, whether NETs support the initiation of gouty 
inflammation in humans remains unanswered.

Familiar Mediterranean fever is a hereditary autoinflam-
matory disorder, characterized by inflammatory attacks and 
neutrophil infiltration into the affected sites (23). Moreover, it is 
an IL-1β-mediated disease, and this is clear due to the fact that 
IL-1β blockade constitutes an emerging treatment in FMF (23, 
133, 134). During FMF attacks, neutrophils undergo excessive 
NET formation, which decreases after the inflammation dissolu-
tion (23).

During FMF attacks increased levels of circulating MPO–
DNA complexes are detected, suggesting the release of NETs in 
the systemic circulation, whereas their levels normalize during 
the resolution phase of the disease (23). The detection of bioac-
tive IL-1β in NETs released ex vivo by patient neutrophils or 

control neutrophils treated with FMF attack serum implies that 
neutrophils serve as critical effector cells in the amplification of 
inflammation in FMF (Figure 2E) (23).

NeTs in Metabolic Disorders
In type II diabetes (T2D), immunological changes lead to altered 
levels of cytokines and changes in both number and activation 
status of various leukocytes, including neutrophils (135). Until 
recently, it was thought that inflammatory responses may have 
a dual role in T2D, as they seem to have a causal relationship 
leading to resistance to insulin, while on the other hand they 
seem to be intensified by the hyperglycemic state, resulting in 
T2D complications (135).

Bearing in mind that diabetes affects neutrophil count and 
activity, that hyperglycemia-driven oxidative stress facilitates 
diabetic complications, and that neutrophils generate oxidative 
stress in diabetes, it was assumed that a dysregulation in NETosis 
may represent the link among hyperglycemia, oxidative stress, 
inflammation, and diabetic complications (27). In this direction, 
a recent study demonstrated that high glucose in vitro and hyper-
glycemia in vivo induce release of NETs and their products (27). 
Another study provided evidence that hyperglycemic conditions 
lead to the formation of short-lived and unstable NETs, while also 
prime neutrophils and constitutively activate NET formation, 
leading to reduced response to subsequent external stimuli (136). 
Thus, it was hypothesized that neutrophils primed due to hyper-
glycemia may not respond to further external stimulus in T2D 
patients, making them susceptible to infections (136). Finally, a 
third study demonstrates that, in T2D patients, dysregulated NET 
release caused by hyperglycemia is responsible for impairment of 
wound healing as well as for diabetic complications (137). Even 
though these studies support a role for NETs in T2D, it is not clear 
to what extent manipulation of neutrophils could ameliorate or 
prevent diabetic complications.

Moreover, there is evidence that neutrophils and NETs have a 
potential role in the pathogenesis of type I diabetes (28, 138, 139); 
however, their implication in the onset and/or the development of 
this disease has not been investigated so far.

NeTs in Lung Diseases and Fibrosis
Neutrophil extracellular traps have been implicated in inflam-
matory lung diseases and inflammatory-derived fibrosis (33). 
Several inflammatory lung diseases are characterized by the 
migration and detection of neutrophils and monocytes in 
the airway lumen and the bronchoalveolar lavage fluid (140). 
NETs have been associated with inflammatory diseases, such as 
chronic obstructive pulmonary disease (COPD), cystic fibrosis 
(CF), acute lung injury, acute respiratory distress syndrome, and 
asthma (29, 30).

Cystic fibrosis is characterized by abundant free DNA struc-
tures in airway fluids that increase the viscosity of the sputum 
and lead to airflow obstruction and tissue damage. Free DNA 
originates mainly from NETs released from neutrophils that 
are recruited to the area in an effort to kill the bacterial burden, 
but they finally contribute to the damage of lung tissue (31, 32). 
Additionally, it has been proved that NE plays an equally impor-
tant role in CF, leading to tissue damage, especially in patients 
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under treatment that are characterized by increased DNA cleav-
age (141). Recombinant human deoxyribonuclease (rhDNase) 
is an adjunctive to antibiotics treatment for patients with CF 
over the last two decades, showing a beneficial effect at least in 
a subpopulation of patients with CF (142, 143). Moreover, it has 
been reported that DNase I and histone-blocking antibodies have 
been used in mice against transfusion-related acute lung injury, 
in which NETs play a crucial role (144). Inhibition of either NE 
or NET release in general could be a novel future therapeutic 
strategy in patients with CF (141, 145).

There is evidence that the inflammatory microenvironment 
developed in chronic lung diseases including COPD and intersti-
tial lung disease contributes either to localized or to generalized 
fibrosis, respectively. Specific fibrosis-related agents, such as 
cigarette smoke, magnesium silicate, and bleomycin, stimulate 
neutrophils to undergo NETosis. NETs indirectly regulate 
fibrosis by activating lung fibroblasts and differentiating them 
into myofibroblasts, through autophagy and histone hypercitrul-
lination. Subsequently, NET remnants, such as IL-17, regulate 
connective tissue growth factor (CCN2) expression and collagen 
production by the differentiated fibroblasts and not their differ-
entiation (Figure 2D). However, NET degradation significantly 
restricts these effects, indicating that it could be possibly used as 
a restraining mechanism against fibrosis (33).

NeTs in Cancer
In the last few years, NETs have redefined the role of neutrophils 
in tumor biology (34–36, 146–150). It is suggested that NETs 
may act within the primary tumor promoting tumor progression 
(146–148), while at remote sites they might sequester circulat-
ing cancer cells favoring metastasis (35, 36, 149). Additionally, 
NETs have been implicated in cancer-associated thrombosis 
(34, 147).

There is increasing evidence supporting that, in both experi-
mental models and cancer patients, NET deposition in the tumor 
mass is associated with tumor progression (35, 146, 150–153). A 
finding that supports the implication of NETs in tumor biology is 
that tumor cells predispose neutrophils to undergo NETosis (34, 
146). Moreover, in the tumor microenvironment, NETs interact 
with tumor cells and expose them to bioactive proteins, possibly 
favoring their survival through induction of proliferation and 
inhibition of apoptosis, as well as supporting their escape from 
the primary tumor (148).

Excessive NET deposition leads to a persistent inflammatory 
state (154–156), which in cancer probably promotes the expres-
sion of adhesion molecules (157–159). Under inflammatory con-
ditions, when NET formation is induced, circulating tumor cells 
are more prone to adhere to end organ vasculature (158–160). 
Thus, given that the entrapment of bacteria is one of the primary 
roles attributed to NETs, they probably act accordingly to capture 
circulating tumor cells. By entrapping tumor cells and exposing 
them to various neutrophil-derived factors, NETs may generate 
a microenvironment rich in proteins and enzymes that promote 
tumor cell survival and progression (35, 36, 149, 153). Taken 
together, these data support a potential pro-metastatic role for 
NETs, involved in early adhesion, proliferation, invasion, and 
angiogenesis.

Neutrophil extracellular traps have also been implicated in 
cancer-associated thrombosis, the second most common cause 
of death in cancer patients (34). Recently, it was demonstrated 
that, through the generation of NETs, neutrophils provide a scaf-
fold and a stimulus for platelet adhesion and thrombus formation 
(75). NETs were shown to promote coagulation as well (68, 75). 
Moreover, a recent study based on murine models reported that 
both leukemia and solid tumors produce a factor, G-CSF, that 
primes neutrophils to undergo NETosis and predisposes the host 
to thrombosis (34). In conclusion, NETs have been identified as a 
key player in cancer-associated thrombosis.

The biological significance of NETs in cancer remains unclear. 
It is hypothesized that initially they represent a reaction of the 
tumor environment against the growing cancer. However, NETs 
seem to play an adverse role in tumor growth, offering a scaf-
fold with an array of biologically active molecules attached on it, 
which may promote malignant cell survival, growth, and local 
tumor expansion.

THeRAPeUTiC AND DiAgNOSTiC/
PROgNOSTiC POTeNTiAL OF NeTs

To date, clinical and experimental evidence highlight the signifi-
cant role of NETs in the pathophysiology of the aforementioned 
diseases. Even though studies in animal models have shown the 
beneficial role of NET inhibition, especially in thrombosis, it is 
yet unknown whether NET-targeting therapies could be effective 
in clinic (161). NET induction or inhibition could be beneficial 
for patients with diseases that have been associated with restricted 
or excessive NET formation, respectively (Table 1). To this end, 
drug repositioning offers the opportunity for the immediate use 
of therapeutic agents that induce or inhibit NETs, which are 
already used in clinic (11).

Several drugs already used in clinical practice might affect 
either NET formation or integrity, or the expression of NET 
proteins. For instance, it is known that hydroxychloroquine 
(HCQ), a drug that has been used for decades in the treatment 
of SLE, has anti-autophagic effect (162). Since the autophagic 
machinery is an essential step for NETosis, the effectiveness 
of HCQ may be mediated through the indirect inhibition of 
NET formation (Table  1; Figure  3A). In addition, rhDNase 
administration, a therapy used in patients with CF aiming to 
the liquefaction of mucus (142), may possibly target NET struc-
tures. DNase promotes thrombolysis via degradation of NETs 
in murine models (Table  1; Figure  3B) (64, 76). Moreover, 
monoclonal antibodies are widely used against bioactive NET 
proteins, externalized through NET formation. In psoriasis, 
treatment with anti-IL-17 antibodies (121), probably targets 
the IL-17-decorated NETs, the main origin of bioactive IL-17 
in psoriasis (66). Finally, NET-bound IL-1β may be one of the 
targets of anti-IL-1β therapies, such as canakinumab which 
targets bioactive IL-1β in FMF or gout patients (Table  1; 
Figure 3C) (134).

There are a few recent studies demonstrating that NETs could 
also have prognostic and/or diagnostic potential, as they could 
represent a disease activity marker for some of the aforementioned 
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FigURe 3 | Targeting neutrophil extracellular trap (NeT) formation or integrity, or specific NeT proteins, promises novel therapeutic strategies.  
(A) Hydroxychloroquine inhibits NET formation through its anti-autophagic activity. (B) rhDNase and DNase I dismantle NET structures. (C) Anti-interleukin 17 (IL-17) 
and anti-interleukin 1 beta (IL-1β) antibodies blockade bioactive IL-17 and IL-1β on NETs, respectively.

TABLe 1 | Potential and applied therapeutic strategies targeting neutrophil extracellular traps (NeTs).

NeT formation blockade NeT integrity dismantling NeT components antagonism

Drug (activity) Disorder (species) Drug (activity) Disorder (species) Drug (activity) Disorder 
(species)

Hydroxychloroquine (autophagy 
inhibition)

SLE (h) (162) DNases (DNA 
dismantling)

Thrombosis, cystic  
fibrosis (h) (64, 76, 142)

Secukinumab (IL-17 
inhibition)

Psoriasis (h) 
(121)

N-acetylcysteine (ROS 
reduction)

SLE (h) (163) Heparin 
(chromatin 
dismantling)

Thrombosis (h) (75) Anakinra & 
Canakinumab (IL-1β 
inhibition)

FMF, gout (h) 
(23, 24, 134)

Sifalimumab (IFN-α inhibition) SLE (h) (164)

CI-Amidine (PAD family 
inhibition)

RA, SLE (m) (165, 166)

GSK199 (PAD4 inhibition) (m) (167)

Adalimumab (TNF inhibition) RA, psoriasis (h) (115, 168)

Roflumilast (neutrophil–platelet 
interaction inhibition)

Thrombosis (h) (169)

Eculizumab (C5a inhibition) PNH (h) (170)

FMF, familial Mediterranean fever; h, human model; IFN-α, interferon alpha; IL-17, interleukin 17; IL-1β, interleukin 1 beta; m, murine model; PAD4, peptidyl arginine deiminase type 
IV; PNH, paroxysmal nocturnal hemoglobinuria; RA, rheumatoid arthritis; ROS, reactive oxygen species; SLE, systemic lupus erythematosus; TNF, tumor necrosis factor.
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diseases (161). Furthermore, the measurement of NET release or 
specific NET protein expression in blood samples and biopsies 
could be a useful diagnostic tool (150, 171). Nevertheless, further 
experimental data are needed to evaluate the therapeutic, prog-
nostic, and/or diagnostic potential of NETs.

CONCLUSiON

The identification of NETs and the characterization of their role 
in disease have revived the overlooked role of neutrophils in 
disease pathogenesis. Phagocytosis of pathogens and limitation 
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of infection was considered the exclusive role of neutrophils. 
However, mechanistic studies in animal models and clinical 
observation dramatically altered our perception of the involve-
ment of neutrophils in disease during the last decade. From a 
patrolling police force, neutrophils are considered nowadays 
an important player in autoimmune diseases or thrombotic 
disorders, which were previously thought to be exclusively 
mediated by adaptive immune system and platelet or endothelial 
cells, respectively. The characterization of the differential protein 
load and function of neutrophils, and subsequently of NETs, in 
distinct disorders can provide novel diagnostic targets and targets 
for therapeutic intervention. Additionally, the study on the role of 
NETs in modulation of tissue homeostasis, including the initia-
tion and resolution of inflammation and the elucidation of the 
effect of NETs on different cell population involved in inflam-
matory, autoimmune, or thrombotic disorders, will increase our 

knowledge in the mechanisms that govern the pathogenesis of 
complex disorders. The clarification of the role of NETs in the 
pathogenesis of such disorders and the clinical use of therapeutic 
agents that target NETs will enable the identification of a group of 
disorders that could be characterized by the term NET-associated 
diseases or NETopathies.
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