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Natural killer (NK) cells kill or inhibit the growth of a number of fungi including 
Cryptococcus, Candida, Aspergillus, Rhizopus, and Paracoccidioides. Although many 
fungi are not dangerous, invasive fungal pathogens, such as Cryptococcus neoformans, 
cause life-threatening disease in individuals with impaired cell-mediated immunity. While 
there are similarities to cell-mediated killing of tumor cells, there are also important 
differences. Similar to tumor killing, NK cells directly kill fungi in a receptor-mediated 
and cytotoxic granule-dependent manner. Unlike tumor cell killing where multiple NK 
cell-activating receptors cooperate and signal events that mediate cytotoxicity, only the 
NKp30 receptor has been described to mediate signaling events that trigger the NK 
cell to mobilize its cytolytic payload to the site of interaction with C. neoformans and 
Candida albicans, subsequently leading to granule exocytosis and fungal killing. More 
recently, the NKp46 receptor was reported to bind Candida glabrata adhesins Epa1, 6, 
and 7 and directly mediate fungal clearance. A number of unanswered questions remain. 
For example, is only one NK cell-activating receptor sufficient for signaling leading to 
fungal killing? Are the signaling pathways activated by fungi similar to those activated 
by tumor cells during NK cell killing? How do the cytolytic granules traffic to the site of 
interaction with fungi, and how does this process compare with tumor killing? Recent 
insights into receptor use, intracellular signaling and cytolytic granule trafficking during 
NK cell-mediated fungal killing will be compared to tumor killing, and the implications for 
therapeutic approaches will be discussed.

Keywords: fungal cytotoxicity, tumor cytotoxicity, cytotoxic granules, fungal cytotoxic receptors, fungal 
cytotoxicity signaling pathways

inTRODUCTiOn

In the mid-1970s, two independent groups discovered natural killer (NK) cells when they described 
their ability to lyse tumor cells without prior exposure (1, 2). It is now well established that NK 
cells are also effective cytotoxic lymphocytes against fungi (3), in addition to their ability to lyse 
tumors and virus-infected tumor cells (4). NK cell-mediated cytotoxicity is a complex process 
that involves receptor-mediated binding and signaling, synapse formation, granule polarization, 
and granule release (5). For tumors, NK cell cytotoxicity is regulated by activating and inhibitory 
receptors that are expressed on its cell surface. Ligation of these receptors with their cognate ligands 
triggers downstream signaling events, and a balance in both activating and inhibiting signals tightly 
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FiGURe 1 | natural killer (nK) cell/tumor cytotoxicity pathway. 
Following receptor–ligand interaction, NK cell receptors initiate multiple 
signaling cascades. While the natural cytotoxic receptors (NKp30, NKp44, 
and NKp46) signal through Src family kinase (SFK) to activate PI3K/Rac/Erk 
pathway, DNAM-1 and 2B4 signal SFK to activate Rac/Erk pathway, thereby 
leading to cytotoxicity.
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controls NK cell function. While there are some similarities with 
respect to NK cell-mediated killing of tumor cells or fungi, some 
important differences exist. For example, in tumor cell killing, 
NK cells release perforin and granzyme B as effector molecules, 
with the perforin-forming pores in the tumor cell membrane, 
thereby allowing entrance of granzyme B to activate caspases and 
induce target cell death (6). In the case of fungi killing, there is 
no reported use of granzyme B. Instead, NK cells release perforin 
to directly kill Cryptococcus neoformans and Candida albicans 
(7, 8), or granulysin to directly kill Paracoccidioides brasiliensis 
(9), or IFN-gamma to directly damage Aspergillus fumigatus 
(10). NK cells also indirectly mediated fungal elimination by 
secreting IFN-gamma to either mediate fungicidal activity of 
murine peritoneal exudate cells against C. neoformans (11) or 
mediate phagocytosis of C. albicans by splenic macrophages 
(12) or secrete GM-CSF to promote neutrophil phagocytosis of 
C. albicans (13). It has also been shown that the receptor and 
signaling pathway used for cryptococcal killing differs from that 
used for tumor killing (14, 15). This review will focus on the 
recent insights into activating receptor-mediated signaling and 
granule trafficking during NK cell killing of fungi compared to 
that of tumor cells.

ReCePTORS USeD BY nK CeLLS 
DURinG KiLLinG

During tumor cytotoxicity, NK cells use a large number of 
activating receptors to mediate granule-dependent killing. Such 
receptors include the natural cytotoxic receptors (NCRs) such 
as NKp30, NKp44, and NKp46, as well as NKG2D, DNAM-1, 
2B4, CD2, NKp80, CD48 and Ly9 (CD229), LFA-1, and CD16 
(5, 16–28). Interestingly, no activating receptor was found to 
be sufficient in inducing degranulation, except when used in 
combination with other receptors (5, 17, 19). It is possible that 
synergy among NK receptors could be required to mediate fungal 
cytotoxicity as it is in tumor cytotoxicity.

In the context of fungal cytotoxicity, only two NK cell-
activating receptors, NKp30 and NKp46, have been identified. 
The NKp30 receptor was identified as a fungal cytotoxic receptor 
when antibodies that were generated against an NK cell line, YT, 
inhibited fungal killing by NK cells. The NKp30 receptor directly 
recognized and mediated NK cell killing of C. neoformans and 
C. albicans (7) and antibody blocking or siRNA knockdown 
of NKp30 expression reduced fungal binding and killing (7). 
More recently, the NKp46 receptor was discovered to directly 
recognize and mediate killing of Candida glabrata (29). NKp46 
was identified as a fungal cytotoxic receptor when soluble 
NKp46–IgG1 fusion construct specifically bounded multiple 
fungal adhesins, Epa1, 6, and 7, expressed on C. glabrata and 
mediated killing of C. glabrata (29). In addition, mice deficient 
in NCR1 (mouse ortholog of NKp46) could not mediate clear-
ance of systemic C. glabrata infection (29). Since several fungi 
including Cryptococcus, Candida, Aspergillus, and Coccidioides 
express adhesins (30), it is interesting to speculate that other 
fungal adhesins could be recognized by NK cell receptors for 
fungal cytotoxicity.

SiGnALinG PATHwAY ACTivATeD in 
nK CeLLS DURinG KiLLinG

Signaling through NK cell-activating receptors triggers cyto-
toxicity (6). While the molecular pathways that are associated 
with NK cell killing of tumor target cells have been elucidated 
[Figure 1; (6, 31)], the pathways associated with NK cell anti-
fungal activity are still being elucidated (Figure  2). In tumor 
killing, the inhibition of phosphatidylinositol 3-kinase (PI3K) 
in NK cells blocked p21-activated kinase 1 (PAK1), MAPK 
kinase (MEK), and extracellular signal regulated kinase (Erk) 
activation and interfered with cytotoxic granule movement 
toward the target cells, thereby suppressing NK cytotoxicity 
(32). Hence, NK cell antitumor signaling follows the sequential 
activation of PI3K  →  Rac1  →  PAK1  →  MEK  →  Erk (6, 32). 
A  Vav1  →  PLCγ2  →  Erk sequence has also been reported to 
mediate cytotoxicity (31, 33) and Vav1, which is a guanine 
exchange factor, activated Rac1 by catalyzing GDP/GTP 
exchange on Rac1 (34). Similar to tumor killing, fungal killing, 
demonstrated using Cryptococcus, depended on PI3K  →  Erk 
signaling (35). However, unlike tumor killing, PLCγ was not 
required for cryptococcal killing (15). Further, in the context of 
tumor killing, and depending on the activating receptor involved, 
Src family kinases (SFKs) either directly activated PI3K, leading 
to Rac and Erk activation, or recruited Vav1 to activate Rac 
(Figure 1). While the NCRs signal through the PI3K/Rac/Erk 
axis (6), DNAM-1 and 2B4 signal through the Vav1/Rac/Erk 
axis (36), and NKG2D transmits its signal through both axes 
(31, 33, 36–40). Similar to tumor killing, two SFKs, Fyn and 
Lyn, redundantly mediated NK cell anticryptococcal activity by 
activating PI3K and Erk1/2 (41). Also, SFK was required to form 
NK cell-cryptococcal conjugates (15), and NKp30 was required 
for NK cell–fungal conjugate formation and PI3K–Erk signaling 
(7), making it likely that NKp30 activated SFK. Unlike in tumor 
killing where Rac is activated by SFK and is downstream of PI3K, 
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FiGURe 2 | natural killer (nK) cell/Cryptococcus cytotoxicity pathway. 
Following recognition of cryptococcal capsule and cell wall component by NK 
cell-activating receptors such as NKp30, receptor binding signals both Src 
family kinase (SFK) and Rac to activate PI3K/Erk, leading to cytotoxicity.
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both Rac and SFK were found not to activate each other, but both 
were essential for PI3K activation in NK cell-mediated killing of 
Cryptococcus (15). In fact, Rac was found to be upstream of PI3K 
and was required for the activation of the PI3K → Erk signaling 
pathway during NK cell antifungal activity (15), thereby sug-
gesting two separate pathways for PI3K activation (Figure 2). 
This interesting finding that Rac is upstream of PI3K needs to 
be confirmed by others. Ultimately, in tumor and cryptococcal 
killing, all pathways converged at Erk to mediate granule polari-
zation and exocytosis, resulting in target cell death. The signal-
ing pathway activated by the other known activating receptor 
for fungi cytotoxicity, NKp46, remains to be identified, and the 
signaling pathway involved in rearming of fungal cytotoxicity 
also remains to be investigated (42).

Tumor cells express several activating ligands on their surface 
to ligate NK cell-activating receptors, thereby resulting in multi-
ple activating signaling pathways that contribute to cytotoxicity. 
For example, NKG2D binds the ULBP ligands, DNAM-1 binds 
CD112 and CD155, 2B4 binds CD48, and NKp30 binds B7-H6 
(43). To date, the only known activating fungal ligands are three 
adhesins, Epa1, 6, and 7, of C. glabrata, which bind to NKp46 
(29). Thus, whether there is coordination of signaling from mul-
tiple activating receptors expressed on NK cells to mediate fungi 
cytotoxicity remains an unanswered question.

CYTOTOXiC GRAnULe TRAFFiCKinG

In response to tumor cells, coordinated signaling through 
different NK cell receptors and signaling molecules leads to 
polarization of cytotoxic granules toward the NK immune 
synapse (NKIS) formed with the target cell (44). The polariza-
tion of cytotoxic granules to the NKIS has been described in a 
sequential order. Upon conjugate formation with the target cell, 
the engagement of LFA-1 led to Vav1 activation (45). This in 
turn led to the polymerization and recruitment of filamentous 
actin (F-actin) to the NKIS (46). Dynein, a minus-end directed 

motor, rapidly moved granules along microtubules to converge 
on the microtubule-organizing center (MTOC) (47), followed 
by the polarization of the MTOC, together with the converged 
granules, to the NKIS (48). This process was mediated by kine-
sin-1, a plus-end motor that moves granules in the opposite 
direction, away from the MTOC (48). Although it is not clear 
how a kinesin would mediate MTOC movement to the NK 
cell synapse, in T cell cytotoxicity, the distal microtubule was 
tethered at the immune synapse and the MTOC was reeled in 
to the synapse by a dynein motor (49). Also, in T cell-mediated 
killing, microtubules linked the MTOC to the target contact site 
and the MTOC was progressively pulled to the contact site by 
a microtubule sliding mechanism (50). The MTOC movement 
resulted from the vector sum of tension on multiple microtu-
bules (50). Following polarization, the lytic granules associated 
with myosin IIA, which enabled their interaction with F-actin 
and final transit through the actin-rich synapse to join the NK 
cell membrane (51). The contents of the cytolytic granules were 
then secreted directly toward the target cell through a pervasive 
F-actin network at the NKIS (52). While SFK signal mediated the 
rapid convergence of cytolytic granules to the MTOC without 
the involvement of PI3K, MEK, or PLCγ (53), PI3K–Erk signal 
was required for the polarization of the MTOC and converged 
cytolytic granules to the NKIS (32, 44).

We are only beginning to understand the mechanisms by 
which cytotoxic granules traffic during fungal killing. Cytotoxic 
granule trafficking during NK cell cytotoxicity of Cryptococcus 
was different from that of tumors, especially because NK cells 
did not require LFA-1 in the process, even though the β2 chain 
of LFA-1 bound to cryptococcal capsular components GXM and 
GalXM (14). Instead, NK cells used NKp30 to bind Cryptococcus 
and C. albicans, mediate microbial synapse formation, and 
signal PI3K–Erk to release perforin granules (7). Also the SFKs, 
Fyn and Lyn, redundantly mediated NK cell anticryptococcal 
activity by activating PI3K and Erk, which in turn polarized 
perforin-containing granules to the synapse (41). Furthermore, 
MTOC polarization toward the binding site with Cryptococcus 
was required for cryptococcal killing (54). It remains unknown 
whether a dynein is required for convergence of granules to 
the MTOC or whether a kinesin is required for polarization in 
response to fungi.

iMPLiCATiOn FOR THeRAPeUTiC 
APPROACHeS

Understanding the receptors used and signaling pathways 
activated during NK cell function may lead to therapeutic 
opportunities. For example, compared to healthy adults, NK 
cells from HIV-infected patients had diminished expression 
of NKp30 (7), defective binding, reduced perforin content, 
defective perforin-containing granule polarization (55), reduced 
perforin release in response to Cryptococcus, and reduced 
cryptococcal killing (7, 55). Interestingly, treatment of NK cells 
from HIV-infected patients with IL-12 reversed these multiple 
defects (7, 55). Since a percentage of HIV-infected patients 
are subclinically infected with C. neoformans (56), treatment 
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with IL-12, or similar agent, could reduce or eliminate this 
complication. Another example is the development of pulmo-
nary cryptococcosis and cryptococcal meningitis in patients 
with Crohn’s disease or autoimmune hepatitis that were treated 
with the purine analog, azathioprine (57, 58). Azathioprine 
prevented Rac1 activation by blocking GTP binding to Rac1 
(59, 60), and Rac1 activation in NK cells is required for NK 
cell cytotoxicity of tumors (32) and Cryptococcus (15). Thus, 
the increased susceptibility to Cryptococcus in patients with 
Crohn’s disease and autoimmune hepatitis that are treated 
with azathioprine may in part be due to the defective NK cell 
function resulting from azathioprine-induced blockade of the 
Rac1 →  PI3K  →  Erk cytotoxicity pathway.

COnCLUDinG ReMARKS

Fungi, like tumors, are susceptible to NK cell killing. While NK 
cells use multiple receptors to recognize and kill tumor cells 
(16), they use NKp30 to recognize and kill C. neoformans and C. 
albicans (7), and use NKp46 to kill C. glabrata (29). The paradigm 
in tumor cytotoxicity is that NK cells use multiple activating 

receptors to recognize tumor targets and the multiple NK cell-
activating receptors cooperate to mediate tumor cytotoxicity. 
Interestingly, several fungi express multiple pattern-associated 
molecular patterns including adhesins (30), and NK cells used 
NKp46 to recognize the fungal adhesins Epa1, 6, and 7, which 
were expressed on C. glabrata (30). Further studies are needed 
to delineate other NK-activating receptors that could mediate 
fungal killing and to investigate whether cooperative recognition 
by multiple NK cell-activating receptors is required to mediate 
fungal cytotoxicity.

AUTHOR COnTRiBUTiOnS

All the authors listed have made substantial, direct, and intel-
lectual contribution to the work and approved it for publication.

FUnDinG

This work was supported by grants from the Canadian 
Institute for Health Research (CIHR 365812 to CM), and the  
Jessie Bowden Lloyd Professorship in Immunology (CM).

ReFeRenCeS

1. Kiessling R, Klein E, Wigzell H. “Natural” killer cells in the mouse. I. Cytotoxic 
cells with specificity for mouse Moloney leukemia cells. Specificity and distri-
bution according to genotype. Eur J Immunol (1975) 5:112–7. doi:10.1002/
eji.1830050208 

2. Herberman RB, Nunn ME, Lavrin DH. Natural cytotoxic reactivity of mouse 
lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution 
of reactivity and specificity. Int J Cancer (1975) 16:216–29. doi:10.1002/
ijc.2910160205 

3. Schmidt S, Zimmermann SY, Tramsen L, Koehl U, Lehrnbecher T. Natural 
killer cells and antifungal host response. Clin Vaccine Immunol (2013) 
20:452–8. doi:10.1128/CVI.00606-12 

4. Moretta A, Marcenaro E, Parolini S, Ferlazzo G, Moretta L. NK cells at the 
interface between innate and adaptive immunity. Cell Death Differ (2008) 
15:226–33. doi:10.1038/sj.cdd.4402170 

5. Bryceson YT, March ME, Barber DF, Ljunggren HG, Long EO. Cytolytic 
granule polarization and degranulation controlled by different recep-
tors  in resting NK cells. J Exp Med (2005) 202:1001–12. doi:10.1084/jem. 
20051143 

6. Djeu JY, Jiang K, Wei S. A view to a kill: signals triggering cytotoxicity. Clin 
Cancer Res (2002) 8:636–40. 

7. Li SS, Kyei SK, Timm-McCann M, Ogbomo H, Jones GJ, Shi M, et al. The 
NK receptor NKp30 mediates direct fungal recognition and killing and is 
diminished in NK cells from HIV-infected patients. Cell Host Microbe (2013) 
14:387–97. doi:10.1016/j.chom.2013.09.007 

8. Voigt J, Hunniger K, Bouzani M, Jacobsen ID, Barz D, Hube B, et al. Human 
natural killer cells acting as phagocytes against Candida albicans and mount-
ing an inflammatory response that modulates neutrophil antifungal activity. 
J Infect Dis (2014) 209:616–26. doi:10.1093/infdis/jit574 

9. Longhi LN, da Silva RM, Fornazim MC, Spago MC, de Oliveira RT, Nowill 
AE, et al. Phenotypic and functional characterization of NK cells in human 
immune response against the dimorphic fungus Paracoccidioides brasiliensis. 
J Immunol (2012) 189:935–45. doi:10.4049/jimmunol.1102563 

10. Bouzani M, Ok M, McCormick A, Ebel F, Kurzai O, Morton CO, et al. Human 
NK cells display important antifungal activity against Aspergillus fumigatus, 
which is directly mediated by IFN-gamma release. J Immunol (2011) 
187:1369–76. doi:10.4049/jimmunol.1003593 

11. Zhang T, Kawakami K, Qureshi MH, Okamura H, Kurimoto M, Saito A. 
Interleukin-12 (IL-12) and IL-18 synergistically induce the fungicidal 
activity of murine peritoneal exudate cells against Cryptococcus neoformans 

through production of gamma interferon by natural killer cells. Infect Immun 
(1997) 65:3594–9. 

12. Algarra I, Ortega E, Serrano MJ, Alvarez de Cienfuegos G, Gaforio 
JJ. Suppression of splenic macrophage Candida albicans phagocytosis fol-
lowing in vivo depletion of natural killer cells in immunocompetent BALB/c 
mice and T-cell-deficient nude mice. FEMS Immunol Med Microbiol (2002) 
33:159–63. doi:10.1111/j.1574-695X.2002.tb00586.x 

13. Bar E, Whitney PG, Moor K, Reis e Sousa C, LeibundGut-Landmann S. 
IL-17 regulates systemic fungal immunity by controlling the functional 
competence of NK cells. Immunity (2014) 40:117–27. doi:10.1016/j.immuni. 
2013.12.002 

14. Jones GJ, Wiseman JC, Marr KJ, Wei S, Djeu JY, Mody CH. In contrast to 
anti-tumor activity, YT cell and primary NK cell cytotoxicity for Cryptococcus 
neoformans bypasses LFA-1. Int Immunol (2009) 21:423–32. doi:10.1093/
intimm/dxp010 

15. Xiang RF, Stack D, Huston SM, Li SS, Ogbomo H, Kyei SK, et al. Ras-related 
C3 botulinum toxin substrate (Rac) and Src family kinases (SFK) are 
proximal and essential for phosphatidylinositol 3-kinase (PI3K) activation 
in natural killer (NK) cell-mediated direct cytotoxicity against Cryptococcus 
neoformans.  J Biol  Chem (2016) 291:6912–22. doi:10.1074/jbc.M115. 
681544 

16. Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, et  al. 
Activating receptors and coreceptors involved in human natural killer 
cell-mediated cytolysis. Annu Rev Immunol (2001) 19:197–223. doi:10.1146/
annurev.immunol.19.1.197 

17. Bryceson YT, Ljunggren HG, Long EO. Minimal requirement for induction 
of natural cytotoxicity and intersection of activation signals by inhibi-
tory  receptors. Blood (2009) 114:2657–66. doi:10.1182/blood-2009-01- 
201632 

18. Bryceson YT, March ME, Ljunggren HG, Long EO. Activation, coactivation, 
and costimulation of resting human natural killer cells. Immunol Rev (2006) 
214:73–91. doi:10.1111/j.1600-065X.2006.00457.x 

19. Bryceson YT, March ME, Ljunggren HG, Long EO. Synergy among 
receptors on resting NK cells for the activation of natural cytotoxicity and 
cytokine secretion. Blood (2006) 107:159–66. doi:10.1182/blood-2005- 
04-1351 

20. Castriconi R, Dondero A, Corrias MV, Lanino E, Pende D, Moretta L, 
et  al. Natural killer cell-mediated killing of freshly isolated neuroblastoma 
cells: critical role of DNAX accessory molecule-1-poliovirus receptor 
interaction. Cancer Res (2004) 64:9180–4. doi:10.1158/0008-5472.CAN- 
04-2682 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1002/eji.1830050208
https://doi.org/10.1002/eji.1830050208
https://doi.org/10.1002/ijc.2910160205
https://doi.org/10.1002/ijc.2910160205
https://doi.org/10.1128/CVI.00606-12
https://doi.org/10.1038/sj.cdd.4402170
https://doi.org/10.1084/jem.20051143
https://doi.org/10.1084/jem.20051143
https://doi.org/10.1016/j.chom.2013.09.007
https://doi.org/10.1093/infdis/jit574
https://doi.org/10.4049/jimmunol.1102563
https://doi.org/10.4049/jimmunol.1003593
https://doi.org/10.1111/j.1574-695X.2002.tb00586.x
https://doi.org/10.1016/j.immuni.2013.12.002
https://doi.org/10.1016/j.immuni.2013.12.002
https://doi.org/10.1093/intimm/dxp010
https://doi.org/10.1093/intimm/dxp010
https://doi.org/10.1074/jbc.M115.681544
https://doi.org/10.1074/jbc.M115.681544
https://doi.org/10.1146/annurev.immunol.19.1.197
https://doi.org/10.1146/annurev.immunol.19.1.197
https://doi.org/10.1182/blood-2009-01-201632
https://doi.org/10.1182/blood-2009-01-201632
https://doi.org/10.1111/j.1600-065X.2006.00457.x
https://doi.org/10.1182/blood-2005-04-1351
https://doi.org/10.1182/blood-2005-04-1351
https://doi.org/10.1158/0008-5472.CAN-04-2682
https://doi.org/10.1158/0008-5472.CAN-04-2682


5

Ogbomo and Mody NK Cells Kill Fungi Pathogens

Frontiers in Immunology | www.frontiersin.org January 2017 | Volume 7 | Article 692

21. Glasner A, Ghadially H, Gur C, Stanietsky N, Tsukerman P, Enk J, et  al. 
Recognition and prevention of tumor metastasis by the NK receptor NKp46/
NCR1. J Immunol (2012) 188:2509–15. doi:10.4049/jimmunol.1102461 

22. Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N, et al. NKG2D-
deficient mice are defective in tumor surveillance in models of spontaneous 
malignancy. Immunity (2008) 28:571–80. doi:10.1016/j.immuni.2008. 
02.016 

23. Halfteck GG, Elboim M, Gur C, Achdout H, Ghadially H, Mandelboim 
O. Enhanced in  vivo growth of lymphoma tumors in the absence of the 
NK-activating receptor NKp46/NCR1. J Immunol (2009) 182:2221–30. 
doi:10.4049/jimmunol.0801878 

24. Iguchi-Manaka A, Kai H, Yamashita Y, Shibata K, Tahara-Hanaoka S, Honda S, 
et al. Accelerated tumor growth in mice deficient in DNAM-1 receptor. J Exp 
Med (2008) 205:2959–64. doi:10.1084/jem.20081611 

25. Pende D, Cantoni C, Rivera P, Vitale M, Castriconi R, Marcenaro S, 
et  al. Role of NKG2D in tumor cell lysis mediated by human NK cells: 
cooperation with natural cytotoxicity receptors and capability of recog-
nizing tumors of nonepithelial origin. Eur J Immunol (2001) 31:1076–86. 
doi:10.1002/1521-4141(200104)31:4<1076::AID-IMMU1076>3.0.CO;2-Y 

26. Sivori S, Parolini S, Marcenaro E, Castriconi R, Pende D, Millo R, 
et  al. Involvement of natural cytotoxicity receptors in human natural 
killer  cell-mediated lysis of neuroblastoma and glioblastoma cell 
lines. J Neuroimmunol (2000) 107:220–5. doi:10.1016/S0165-5728(00) 
00221-6 

27. Smyth MJ, Swann J, Cretney E, Zerafa N, Yokoyama WM, Hayakawa Y. 
NKG2D function protects the host from tumor initiation. J Exp Med (2005) 
202:583–8. doi:10.1084/jem.20050994 

28. Alari-Pahissa E, Grandclement C, Jeevan-Raj B, Leclercq G, Veillette A, 
Held W. Activation by SLAM family receptors contributes to NK cell medi-
ated “missing-self ” recognition. PLoS One (2016) 11:e0153236. doi:10.1371/
journal.pone.0153236 

29. Vitenshtein A, Charpak-Amikam Y, Yamin R, Bauman Y, Isaacson B, Stein N, 
et  al. NK cell recognition of Candida glabrata through binding of NKp46 
and NCR1 to fungal ligands Epa1, Epa6, and Epa7. Cell Host Microbe (2016) 
20:527–34. doi:10.1016/j.chom.2016.09.008 

30. de Groot PW, Bader O, de Boer AD, Weig M, Chauhan N. Adhesins in human 
fungal pathogens: glue with plenty of stick. Eukaryot Cell (2013) 12:470–81. 
doi:10.1128/EC.00364-12 

31. Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S. Controlling natural 
killer cell responses: integration of signals for activation and inhibition. 
Annu Rev Immunol (2013) 31:227–58. doi:10.1146/annurev-immunol- 
020711-075005 

32. Jiang K, Zhong B, Gilvary DL, Corliss BC, Hong-Geller E, Wei S, et al. Pivotal 
role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer 
cells. Nat Immunol (2000) 1:419–25. doi:10.1038/80859 

33. Kim HS, Das A, Gross CC, Bryceson YT, Long EO. Synergistic signals 
for natural cytotoxicity are required to overcome inhibition by c-Cbl 
ubiquitin ligase. Immunity (2010) 32:175–86. doi:10.1016/j.immuni.2010. 
02.004 

34. Crespo P, Schuebel KE, Ostrom AA, Gutkind JS, Bustelo XR. Phosphotyrosine-
dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene 
product. Nature (1997) 385:169–72. doi:10.1038/385169a0 

35. Wiseman JC, Ma LL, Marr KJ, Jones GJ, Mody CH. Perforin-dependent 
cryptococcal microbicidal activity in NK cells requires PI3K-dependent 
ERK1/2 signaling. J Immunol (2007) 178:6456–64. doi:10.4049/jimmunol. 
178.10.6456 

36. Xiong P, Sang HW, Zhu M. Critical roles of co-activation receptor DNAX 
accessory molecule-1 in natural killer cell immunity. Immunology (2015) 
146:369–78. doi:10.1111/imm.12516 

37. Billadeau DD, Upshaw JL, Schoon RA, Dick CJ, Leibson PJ. NKG2D-DAP10 
triggers human NK cell-mediated killing via a Syk-independent regulatory 
pathway. Nat Immunol (2003) 4:557–64. doi:10.1038/ni929 

38. Gilfillan S, Ho EL, Cella M, Yokoyama WM, Colonna M. NKG2D recruits two 
distinct adapters to trigger NK cell activation and costimulation. Nat Immunol 
(2002) 3:1150–5. doi:10.1038/ni857 

39. Graham DB, Cella M, Giurisato E, Fujikawa K, Miletic AV, Kloeppel T, et al. 
Vav1 controls DAP10-mediated natural cytotoxicity by regulating actin 
and microtubule dynamics. J Immunol (2006) 177:2349–55. doi:10.4049/
jimmunol.177.4.2349 

40. Upshaw JL, Arneson LN, Schoon RA, Dick CJ, Billadeau DD, Leibson PJ. 
NKG2D-mediated signaling requires a DAP10-bound Grb2-Vav1 interme-
diate and phosphatidylinositol-3-kinase in human natural killer cells. Nat 
Immunol (2006) 7:524–32. doi:10.1038/ni1325 

41. Oykhman P, Timm-McCann M, Xiang RF, Islam A, Li SS, Stack D, et  al. 
Requirement and redundancy of the Src family kinases Fyn and Lyn in perfo-
rin-dependent killing of Cryptococcus neoformans by NK cells. Infect Immun 
(2013) 81:3912–22. doi:10.1128/IAI.00533-13 

42. Marr KJ, Jones GJ, Zheng C, Huston SM, Timm-McCann M, Islam A, et al. 
Cryptococcus neoformans directly stimulates perforin production and rearms 
NK cells for enhanced anticryptococcal microbicidal activity. Infect Immun 
(2009) 77:2436–46. doi:10.1128/IAI.01232-08 

43. Chester C, Fritsch K, Kohrt HE. Natural killer cell immunomodulation: 
targeting activating, inhibitory, and co-stimulatory receptor signaling for 
cancer immunotherapy. Front Immunol (2015) 6:601. doi:10.3389/fimmu. 
2015.00601 

44. Chen X, Trivedi PP, Ge B, Krzewski K, Strominger JL. Many NK cell receptors 
activate ERK2 and JNK1 to trigger microtubule organizing center and granule 
polarization and cytotoxicity. Proc Natl Acad Sci U S A (2007) 104:6329–34. 
doi:10.1073/pnas.0611655104 

45. Riteau B, Barber DF, Long EO. Vav1 phosphorylation is induced by beta2 
integrin engagement on natural killer cells upstream of actin cytoskeleton 
and lipid raft reorganization. J Exp Med (2003) 198:469–74. doi:10.1084/
jem.20021995 

46. Watzl C, Long EO. Signal transduction during activation and inhibition 
of natural killer cells. Curr Protoc Immunol (2010) Chapter 11:Unit 11 9B. 
doi:10.1002/0471142735.im1109bs90 

47. Mentlik AN, Sanborn KB, Holzbaur EL, Orange JS. Rapid lytic granule 
convergence to the MTOC in natural killer cells is dependent on dynein but 
not cytolytic commitment. Mol Biol Cell (2010) 21:2241–56. doi:10.1091/mbc.
E09-11-0930 

48. Tuli A, Thiery J, James AM, Michelet X, Sharma M, Garg S, et  al. Arf-like 
GTPase Arl8b regulates lytic granule polarization and natural killer 
 cell-mediated cytotoxicity. Mol Biol Cell (2013) 24:3721–35. doi:10.1091/mbc.
E13-05-0259 

49. Yi J, Wu X, Chung AH, Chen JK, Kapoor TM, Hammer JA. Centrosome 
repositioning in T cells is biphasic and driven by microtubule end-on 
capture-shrinkage. J Cell Biol (2013) 202:779–92. doi:10.1083/jcb. 
201301004 

50. Kuhn JR, Poenie M. Dynamic polarization of the microtubule cytoskeleton 
during CTL-mediated killing. Immunity (2002) 16:111–21. doi:10.1016/
S1074-7613(02)00262-5 

51. Sanborn KB, Rak GD, Maru SY, Demers K, Difeo A, Martignetti JA, et  al. 
Myosin IIA associates with NK cell lytic granules to enable their interaction 
with F-actin and function at the immunological synapse. J Immunol (2009) 
182:6969–84. doi:10.4049/jimmunol.0804337 

52. Rak GD, Mace EM, Banerjee PP, Svitkina T, Orange JS. Natural killer cell 
lytic granule secretion occurs through a pervasive actin network at the 
immune synapse. PLoS Biol (2011) 9:e1001151. doi:10.1371/journal.pbio. 
1001151 

53. James AM, Hsu HT, Dongre P, Uzel G, Mace EM, Banerjee PP, et al. Rapid 
activation receptor- or IL-2-induced lytic granule convergence in human 
natural killer cells requires Src, but not downstream signaling. Blood (2013) 
121:2627–37. doi:10.1182/blood-2012-06-437012 

54. Hidore MR, Mislan TW, Murphy JW. Responses of murine natural killer cells 
to binding of the fungal target Cryptococcus neoformans. Infect Immun (1991) 
59:1489–99. 

55. Kyei SK, Ogbomo H, Li S, Timm-McCann M, Xiang RF, Huston SM, et al. 
Mechanisms by which interleukin-12 corrects defective NK cell anticryp-
tococcal activity in HIV-infected patients. MBio (2016) 7. doi:10.1128/
mBio.00878-16 

56. Sawadogo S, Makumbi B, Purfield A, Ndjavera C, Mutandi G, Maher A, 
et  al. Estimated prevalence of Cryptococcus antigenemia (CrAg) among 
HIV-infected adults with advanced immunosuppression in Namibia justifies 
routine screening and preemptive treatment. PLoS One (2016) 11:e0161830. 
doi:10.1371/journal.pone.0161830 

57. Fraison JB, Guilpain P, Schiffmann A, Veyrac M, Le Moing V, Rispail P, et al. 
Pulmonary cryptococcosis in a patient with Crohn’s disease treated with 
prednisone, azathioprine and adalimumab: exposure to chicken manure 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.4049/jimmunol.1102461
https://doi.org/10.1016/j.immuni.2008.02.016
https://doi.org/10.1016/j.immuni.2008.02.016
https://doi.org/10.4049/jimmunol.0801878
https://doi.org/10.1084/jem.20081611
https://doi.org/10.1002/1521-4141(200104)31:4﻿<﻿1076::AID-IMMU1076﻿>﻿3.0.CO;2-Y
https://doi.org/10.1016/S0165-5728(00)00221-6
https://doi.org/10.1016/S0165-5728(00)00221-6
https://doi.org/10.1084/jem.20050994
https://doi.org/10.1371/journal.pone.0153236
https://doi.org/10.1371/journal.pone.0153236
https://doi.org/10.1016/j.chom.2016.09.008
https://doi.org/10.1128/EC.00364-12
https://doi.org/10.1146/annurev-immunol-020711-075005
https://doi.org/10.1146/annurev-immunol-020711-075005
https://doi.org/10.1038/80859
https://doi.org/10.1016/j.immuni.2010.02.004
https://doi.org/10.1016/j.immuni.2010.02.004
https://doi.org/10.1038/385169a0
https://doi.org/10.4049/jimmunol.178.10.6456
https://doi.org/10.4049/jimmunol.178.10.6456
https://doi.org/10.1111/imm.12516
https://doi.org/10.1038/ni929
https://doi.org/10.1038/ni857
https://doi.org/10.4049/jimmunol.177.4.2349
https://doi.org/10.4049/jimmunol.177.4.2349
https://doi.org/10.1038/ni1325
https://doi.org/10.1128/IAI.00533-13
https://doi.org/10.1128/IAI.01232-08
https://doi.org/10.3389/fimmu.2015.00601
https://doi.org/10.3389/fimmu.2015.00601
https://doi.org/10.1073/pnas.0611655104
https://doi.org/10.1084/jem.20021995
https://doi.org/10.1084/jem.20021995
https://doi.org/10.1002/0471142735.im1109bs90
https://doi.org/10.1091/mbc.E09-11-0930
https://doi.org/10.1091/mbc.E09-11-0930
https://doi.org/10.1091/mbc.E13-05-0259
https://doi.org/10.1091/mbc.E13-05-0259
https://doi.org/10.1083/jcb.201301004
https://doi.org/10.1083/jcb.201301004
https://doi.org/10.1016/S1074-7613(02)00262-5
https://doi.org/10.1016/S1074-7613(02)00262-5
https://doi.org/10.4049/jimmunol.0804337
https://doi.org/10.1371/journal.pbio.1001151
https://doi.org/10.1371/journal.pbio.1001151
https://doi.org/10.1182/blood-2012-06-437012
https://doi.org/10.1128/mBio.00878-16
https://doi.org/10.1128/mBio.00878-16
https://doi.org/10.1371/journal.pone.0161830


6

Ogbomo and Mody NK Cells Kill Fungi Pathogens

Frontiers in Immunology | www.frontiersin.org January 2017 | Volume 7 | Article 692

as a source of contamination. J Crohns Colitis (2013) 7:e11–4. doi:10.1016/ 
j.crohns.2012.04.016 

58. Sethi NK, Torgovnick J, Sethi PK. Cryptococcal meningitis after imuran 
(azathioprine) therapy for autoimmune hepatitis. Eur J Gastroenterol Hepatol 
(2007) 19:913–4. doi:10.1097/MEG.0b013e3282cf4ed9 

59. Neurath M. Thiopurines in IBD: what is their mechanism of action? 
Gastroenterol Hepatol (N Y) (2010) 6:435–6. 

60. Tiede I, Fritz G, Strand S, Poppe D, Dvorsky R, Strand D, et  al. CD28-
dependent Rac1 activation is the molecular target of azathioprine in primary 
human CD4+ T lymphocytes. J Clin Invest (2003) 111:1133–45. doi:10.1172/
JCI16432 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Ogbomo and Mody. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License (CC BY). The use, distribu-
tion or reproduction in other forums is permitted, provided the original author(s) 
or licensor are credited and that the original publication in this journal is cited, in 
accordance with accepted academic practice. No use, distribution or reproduction is 
permitted which does not comply with these terms.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1016/j.crohns.2012.04.016
https://doi.org/10.1016/j.crohns.2012.04.016
https://doi.org/10.1097/MEG.0b013e3282cf4ed9
https://doi.org/10.1172/JCI16432
https://doi.org/10.1172/JCI16432
http://creativecommons.org/licenses/by/4.0/

	Granule-Dependent Natural Killer Cell Cytotoxicity to Fungal Pathogens
	Introduction
	Receptors Used by NK Cells During Killing
	Signaling Pathway Activated in NK Cells During Killing
	Cytotoxic Granule Trafficking
	Implication for Therapeutic Approaches
	Concluding Remarks
	Author Contributions
	Funding
	References


