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Natural killer (NK)-cells are major players in the fight against viral infections and trans-
formed cells, but there is increasing evidence attributing a disease-promoting role to 
NK-cells. Cytokines present in the tumor microenvironment shape NK-cell maturation, 
function, and effector responses. Many cytokines signal via the Janus kinase (JAK)–
signal transducer and activator of transcription (STAT) pathway that is also frequently 
altered and constitutively active in a broad range of tumor cells. As a consequence, 
there are currently major efforts to develop therapeutic strategies to target this pathway. 
Therefore, it is of utmost importance to understand the role and contributions of JAK–
STAT molecules in NK-cell biology—only this knowledge will allow us to predict effects of 
JAK–STAT inhibition for NK-cell functions and to successfully apply precision medicine. 
We will review the current knowledge on the role of JAK–STAT signaling for NK-cell 
functions and discuss conditions involved in the switch from NK-cell tumor surveillance 
to disease promotion.

Keywords: JAK–STAT, tumor surveillance, cytotoxicity, immunologic, mouse models, nK cells, veGF-A, tumor 
promotion

inTRODUCTiOn

Natural killer (NK) cells are major players of the innate immune system and immediate effector cells 
against viral infections, pathogens, and malignant cells. In humans, NK-cells compromise 5–15% 
of circulating blood lymphocytes and are further sub-divided based on the expression of the cell 
adhesion molecule CD56 and the low affinity Fc-receptor CD16 into CD3−CD56brightCD16− and 
CD3−CD56dimCD16+ NK-cells. CD56bright NK-cells are mainly found in lymph nodes, produce 
cytokines upon activation, and possess only minor cytotoxic potential. Upon maturation to CD56dim 
cells—the majority of circulating NK-cells in healthy humans representing approximately 90% 
of NK-cells—gain significant cytotoxic potential (1, 2). There is ample evidence for the ability of 
NK-cells to recognize and lyse a broad variety of tumor cells (3–5). The ability of NK-cell-mediated 
immune surveillance extends to the prevention of metastatic spread (6–8), which is currently one of 
the dominating clinical problems in cancer therapy.

Initially described to function without prior sensitization, accumulating evidence demonstrates 
that NK-cell effector function is a complex and tightly regulated process (9–12). This ensures rapid 
effector reactions while preventing autoimmunity (13). During development, NK-cells undergo a 
licensing process that shapes their responsive steady state. NK-cells lacking inhibitory receptors or 
unable to recognize cognate MHC molecules maintain a hyporesponsive state (13, 14). Even if fully 
developed and equipped to act against target cells, NK-cells require a costimulatory signal to pull 
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the final trigger. Cytokines provided by the microenvironment 
or the ligation of activating receptors serve as promoting signals 
(15, 16). NK-cell activation is thus also controlled by the avail-
ability of cytokines including type I interferons (IFNs) from TLR+ 
cells. IFNAR signaling in dendritic cells leads to the subsequent 
production of IL-15 that is trans-presented to activate NK-cells 
(17). Besides IL-15, also IL-2 produced by CD4+ T cells stimulates 
NK-cell activation while regulatory T cells (Tregs) inhibit NK-cell 
responses in a TGF-β-dependent manner. Moreover, Tregs express-
ing the high affinity IL-2 receptor alpha chain CD25 limit the 
availability of IL-2 for NK-cells (18, 19).

Another layer of complexity is added by the escape mecha-
nisms of tumor cells. Tumor cells evade NK-cell recognition by 
several mechanisms including changes in expression of MHC 
class I or secretion of cytokines and mediators impeding NK-cell 
responses (20). Immunosuppressive cytokines such as TGF-β or 
adenosine in the tumor microenvironment block NK-cell matu-
ration and their cytotoxic potential or act indirectly by recruiting 
suppressor cells (21, 22). Cytokines have thus both abilities; they 
may activate or block NK-cells.

Most cytokines influencing NK-cell functions signal via Janus 
kinase (JAK)–signal transducer and activator of transcription 
(STAT) pathway, a conserved pathway transmitting extracellular 
signals from the cell surface to the nucleus (23). The JAK–STAT 
pathway is frequently altered and constitutively active in a broad 
range of tumors. There are major efforts to develop therapeutic 
strategies to target components of this pathway (24–26). It is 
thus critical to comprehend the role of JAK–STAT molecules in 
NK-cell biology. This knowledge will enable to predict effects of 
JAK–STAT inhibition for NK-cells, a prerequisite for precision 
medicine.

JAK–STAT

Cytokine binding to a respective receptor on the cell surface 
leads to the activation of receptor-associated tyrosine kinases, 
the JAKs. Once activated, JAKs trans-phosphorylate each other, 
thereby creating docking sites for signal transducer and activator 
of transcription (STAT) molecules. Subsequent to binding, STATs 
become activated by JAK-mediated tyrosine phosphorylation 
and form homo- or heterodimers, translocate to the nucleus 
where they regulate transcription (27, 28). Four distinct JAK 
kinases (JAK1, 2, 3, and TYK2) as well as seven different STAT 
proteins exist (STAT1, 2, 3, 4, 5A, 5B, and 6). One cytokine may 
activate more than one member of the JAK and/or STAT family 
(29). Table 1 summarizes our current knowledge on JAK–STAT 
signaling in NK-cells.

JAKs: THe DRiveR OF THe STATs

One cytokine may activate more than one JAK and each JAK 
targets more than one STAT protein. This multilayered and 
complex activation pattern creates sometimes elaborate phe-
notypes upon deletion or inhibition of single components (46). 
The distinct roles of JAK kinases for NK-cell biology are on the 
edge of being unraveled, currently only limited information is 
available.

Treatment with the JAK1/JAK2 inhibitor ruxolitinib reduces 
NK-cell numbers, impairs their proliferation, maturation, and 
cytolytic capacity. Application of ruxolitinib in a murine breast 
cancer model enhanced metastatic spread by interfering with 
NK-cell functions (7, 47). The fact that ruxolitinib efficiently 
inhibits JAK1 and JAK2 but also with low affinity JAK3, makes 
it difficult to assign specific roles to distinct members of the JAK 
family. NK-cells fail to develop in Jak3−/− mice—a phenotype that 
is mirrored in patients harboring Jak3 mutations. These patients 
suffer from a SCID phenotype lacking T and NK-cells (48–50). 
The contribution of JAK1 and JAK2 on NK-cell development and 
function needs to be further explored. While JAK3 is predomi-
nantly expressed in the hematopoietic compartment, JAK1 and 
JAK2 are ubiquitously expressed and Jak1 and Jak2 knockouts 
are perinatal/embryonic lethal (51, 52). JAK1 has been reported 
to be crucial for lymphopoiesis, and both JAK1 and JAK3 are 
important upstream kinases mediating IL-15-dependent signal-
ing and subsequent STAT5 activation (52–54). It is attractive 
to speculate that loss of JAK1 would as well induce the loss of 
peripheral NK-cells.

Experiments using Jak2− conditional knockout mice uncov-
ered a critical role for JAK2 in NK-cell maturation (7). Breast 
cancer metastasis related to impaired NK-cell function was 
enhanced in mice treated with the JAK2-specific inhibitor 
BSK805. Simultaneous treatment with IL-15 prevented the 
enhanced metastasis provoked by JAK2 inhibition. This indicates 
that BSK805-mediated JAK2 inhibition does not affect IL-15-
mediated responses in NK-cells presumably acting via JAK1 and 
JAK3 (7). Only the generation and analysis of NK cell-specific 
conditional knockout mice will allow us to characterize the 
individual effects of JAKs on NK-cell development and effector 
function.

In contrast to other JAKs, Tyk2−/− NK-cells are present at nor-
mal numbers but show impaired IL-12/IL-18-mediated signaling 
with reduced STAT4 activation. Consequently, Tyk2−/− NK-cells 
possess a severely impaired cytolytic activity, do not efficiently 
clear certain infections, and display an impaired tumor immune 
surveillance (55–58). In line, patients with autosomal recessive 
Tyk2 mutations suffer from recurrent bacterial and viral infec-
tions and display impaired NK-cell responses (59).

THe GOOD: STAT1: iT TURnS THe 
KiLLinG On

STAT1 and STAT2 are well studied transcription factors and 
important for signals in response to IFNs (60). Our knowledge 
on STAT2-regulated NK-cell functions is limited; it is known 
that STAT2 controls viral load during LCMV infections (61). In 
contrast, STAT1 effects have been characterized in more detail. 
STAT1 is a crucial regulator of IFN-γ production and NK-cell 
cytotoxicity (60–62). Stat1-deficient mice are highly susceptible 
to bacterial and viral infections. Stat1−/− mice show reduced 
expression of MHC class I molecules, which is thought to lead 
to hyporesponsive, unlicensed NK-cells (63, 64). It is currently 
unclear whether the impaired cytotoxicity is solely the consequence 
of the impaired licensing or whether STAT1 fulfills other major 
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TABLe 1 | Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling in natural killer (nK)-cells (27, 30–45).

Cytokine Receptor-associated 
JAKs

Activated STATs Function effect induced by

IL-2 JAK1, JAK3 STAT1, STAT3, STAT5 Proliferation STAT5
JAK2 STAT4 Activation STAT1/4/5; STAT3?

IL-7 JAK1, JAK3 STAT5 Survival of CD56bright NK-cells, upregulation of FasL STAT5
Development of distinct NK-cell subsets

IL-12 JAK2, TYK2 STAT1, STAT3, STAT4 Activation STAT1/4
Induction of Vegf-A expression STAT3?

IL-15 JAK1, JAK3 STAT5 Survival, maturation, proliferation STAT5
STAT3 Activation STAT5, STAT3?

IL-10 JAK1 STAT3 Activation STAT3
Induction of Vegf-A expression STAT3?

IL-21 JAK1, JAK3 STAT1, STAT3 Antiproliferative (mouse NK-cells), proliferation (human NK-cells) STAT3?
Maturation, activation STAT1?
Induction of Vegf-A expression STAT3?

IL-27 JAK1 STAT1, STAT3, STAT5 Activation Unknown
Increased ADCC STAT5?
Increased IL-10 production STAT3?
Increased viability STAT5?
Decreased proliferation STAT3?

Interferon-α/β JAK1, TYK2 STAT1, STAT3 Maturation STAT1; STAT4?
Activation STAT1/3/4
Induction of Vegf-A expression STAT3?

3

Gotthardt and Sexl JAK–STAT in NK Cells

Frontiers in Immunology | www.frontiersin.org January 2017 | Volume 7 | Article 694

functions. The complexity of STAT1 signaling in innate immunity 
is further highlighted by the existence of a non-canonical STAT1 
pathway. STAT1Y701F mutant proteins that cannot be activated by 
JAKs in the canonical manner partially rescue impaired cytolytic 
responses of Stat1−/− NK-cells. One potential explanation for 
this unexpected phenomenon is the finding that STAT1 locates 
to the immunological synapse when NK-cells conjugate target 
cells. In line, STAT1 has been shown to bind proteins involved 
in cell junction formation at the immunological synapse during 
tumor cell recognition (65). Moreover, ex vivo derived NK-cells 
show a constitutive phosphorylation of the STAT1-S727 residue 
restraining NK-cell cytotoxicity. This phosphorylation is present 
without any stimulus and prior to tyrosine phosphorylation, 
thus deviating from the canonical STAT activation (6, 28). These 
observations point at a complex and multilayered function of 
STAT1 in NK-cells and suggest STAT1 as a central node integrat-
ing several processes.

Many effects described in Stat1-deficient mice are mirrored in 
patients. STAT1 deficiency in humans is an autosomal recessive 
immune disorder; null mutations are associated with recurrent 
bacterial and viral infections indicating impaired NK-cell activi-
ties although no detailed information is available so far (66–70).

THe UGLY: STAT3: AvOiDinG 
AUTOiMMUniTY OR THe TARGeT FOR 
nK-CeLL THeRAPY?

While cytokines such as IL-12, IL-15, IL-21, and type I IFNs 
induce STAT3 tyrosine phosphorylation in NK-cells, the most 
potent activation is achieved by treatment with the immunosup-
pressive and anti-inflammatory cytokine IL-10 (71). Many tumors 
harbor constitutively active STAT3 that triggers the release of 
immunosuppressive cytokines such as IL-10 or TGF-β. These 

tumor-derived cytokines further induce a pronounced STAT3 
phosphorylation in infiltrating immune cells. There, induced 
STAT3 activation is considered to impair tumor immune surveil-
lance and allows the tumor to escape immune control (72, 73). 
High levels of STAT3 phosphorylation in the tumor stroma often 
correlate with loss of intact tumor immune surveillance (74). This 
effect is of therapeutic interest as STAT3 inhibitors are currently 
developed to treat patients suffering from cancer of various origin 
(75, 76). There is dual hope in these STAT3-directed therapies; on 
the one side, they are expected to block STAT3-mediated growth 
promoting and pro-survival signals in the tumor cells themselves. 
On the other hand, STAT3 inhibitors directly act on the infiltrat-
ing immune cells and might boost their cytotoxic behavior.

There is first evidence that this concept holds true for NK-cells. 
Studies in mouse models uncovered that STAT3 activation in 
NK-cells indeed suppresses cytotoxicity. The deletion of STAT3 in 
NK-cells enhanced cytotoxicity in melanoma and leukemia mod-
els (71, 77) and resulted in a prolonged survival (71). The absence 
of STAT3 was paralleled by an increased expression of perforin 
and granzyme B and the activating receptor DNAM-1. There is 
conflicting evidence if and how STAT3 also regulates the expres-
sion of the activating NKG2D receptor in NK-cells. In human, 
NK-cells stimulation with IL-10 and IL-21 induces NKG2D 
expression in a STAT3-dependent manner. Similar results were 
obtained in a mouse study showing enhanced NKG2D-mediated 
antitumor responses upon IL-21 treatment (78, 79). Against the 
expectations, Stat3−/− NK-cells isolated from Stat3fl/flNcr1-CreTg 
mice, where deletion of STAT3 is restricted to NKp46+ cells, show 
no changes in NKG2D expression (71). In contrast, NK-cells 
analyzed from Stat3fl/flVavCre mice showed reduced NKG2D 
expression (79). The controversy is further heated by a study 
showing that IL-21 stimulation inhibits NKG2D expression of 
IL-2-cultured primary human NK-cells (80). Several scenarios 
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may explain these conflicting results; one may envision that 
STAT3 is involved in epigenetic processes that control NKG2D 
expression and that occur prior to NKp46 expression. In such a 
scenario, the deletion of STAT3 in a NKp46+ population would 
be too late in NK-cell development to interfere with NKG2D 
expression. Alternatively, the regulation of NKG2D expression in 
NK-cells might require cell extrinsic-cues that depend on STAT3 
and are lost in Stat3fl/flVavCre mice upon deletion in the entire 
hematopoietic system (79).

Of note, STAT3 inhibition in tumors has been shown to 
enhance immunogenicity even in tumors that do not depend 
on STAT3 for survival and growth. One of the mechanisms 
how immunogenicity is increased is the enhanced expression of 
NKG2D ligands on tumor cells (81, 82).

Another consequence of STAT3 deletion in NK-cells is an 
increased expression level of STAT5 (71). As described below, 
STAT5 is a potent stimulator of NK-cell survival and cytotoxicity. 
It remains to be determined how any STAT3-directed therapy will 
interfere with the delicate balance of STAT3-mediated suppres-
sion and STAT5-mediated activation of NK-cell cytotoxicity. This 
is of particular relevance when employing cytokines that act via 
both STAT proteins, e.g., IL-15. It is attractive to speculate that 
IL-15-induced STAT3 activation may serve to counteract the 
IL-15-STAT5-mediated NK-cell cytotoxicity to prevent autoim-
munity. A detailed understanding of the mechanisms governing 
the repression of NK-cell overshoots is of utmost therapeutic 
importance. Cancer therapies aim at increasing the potential of 
killers while avoiding self-destruction.

THe GOOD: STAT4: YOU BeTTeR HAve 
MORe

STAT4 is a prerequisite for IL-12-mediated cytotoxicity and IFN-γ 
production in murine and human NK-cells (83, 84). Additionally, 
STAT4 has been described to induce T-bet and IL-10 in NK-cells 
and to be involved in the generation of memory NK-cells after 
MCMV infection (83, 85, 86). Direct binding of STAT4 to the 
perforin promoter has been reported in human NK-cells (87). 
Besides its potent activation by IL-12 stimulation, high basal 
levels of STAT4 protein expression have been detected in murine 
and human NK-cells (61). In contrast to other immune cells, IL-2 
treatment activates STAT4 in NK-cells and enhances responses 
to IL-12 by upregulating of the IL12R (38, 84). It is attractive to 
speculate that the constitutively high expression levels of STAT4 
represent a “ready-to-go” repertoire that enables NK-cells to 
immediately react on cytokine exposure. This hypothesis is sup-
ported by the fact that NK-cells represent the first line of defense 
against pathogens—their rapid and efficient activation being a 
prerequisite. In line, tolerogenic NK-cells have been reported in 
the context of liver transplantation, where immunosuppression 
subsequently decreased STAT4 levels and resulting in hypore-
sponsive NK-cells (88).

Although IL-12 possesses the potential to also activate STAT1 
and STAT3, STAT4 appears to be crucial in mediating IL-12-
induced signaling and IFN-γ production. The role of IL-12-
induced STAT1 and STAT3 activation for IFN-γ production is 

currently unclear. It may represent an evolutionary backup to 
induce a second wave of IFN-γ response. On the other hand, 
STAT1 and STAT3 may act as feedback loop and prevent succes-
sive production. In fact, binding of several STAT molecules to the 
IFN-γ promoter has been reported (71, 89).

THe GOOD: STAT5: TeACHeS nK-CeLLS 
HOw TO DRive

STAT5 transmits signals downstream of IL-2 and IL-15, and 
its expression is indispensable for the survival of peripheral 
NK-cells (90). STAT5 exists of two homologs, STAT5A and 
STAT5B, that share more than 90% sequence identity and arose 
by gene duplication (91). There is evidence that the loss of 
STAT5B, but not STAT5A reduces NK-cell numbers and impairs 
cytolytic responses (92). This is mirrored in patients harboring 
Stat5b deficiencies and suffering from NK-cell lymphopenia, 
recurrent bacterial and viral infections, several clinical patholo-
gies, and high morbidity (67, 93). While the deletion of STAT5B 
only reduces NK-cell numbers to 50%, the targeted deletion of 
STAT5A and STAT5B in NK-cells induces apoptosis and leads to 
a complete loss of peripheral NK-cells (90). These data indicate 
that both STAT5 isoforms are involved in NK-cell maturation 
and survival (90). Survival of STAT5-deficient NK-cells can be 
rescued by the enhanced expression of the anti-apoptotic gene 
Bcl-2 and allows studying the role of STAT5 for other NK-cell 
functions. STAT5 is not only regulating NK-cell survival, 
proliferation, and cytotoxicity but also drives cell maturation 
(94) by driving the expression of transcription factors involved 
in NK-cell maturation and survival (94). Besides allowing 
NK-cell maturation and cytotoxicity, STAT5 suppresses the 
tumor-promoting potential of NK-cells (94). Similar to myeloid 
cells, NK-cells have the potential to support tumor growth 
by secreting VEGF-A (94, 95). VEGF-A expression and thus 
tumor promotion is suppressed by STAT5 with STAT5B being 
the relevant isoform (94). There is accumulating evidence for 
the existence of VEGF-A secreting tumor infiltrating NK-cells 
in patients suffering from small lung cell cancer, breast, and 
colon tumors (96, 97). These tumor-promoting NK-cells are 
immature (CD56bright), and their presence has been correlated 
to poor disease prognosis in several studies (98–100). Therefore, 
it is attractive to speculate that IL-2- and IL-15-mediated STAT5 
activation in cancer patients does not only activate NK-cell 
cytotoxicity but also reverts pro-angiogenic effects. Decidual 
NK-cells have been the first NK-cells reported to produce 
VEGF to promote trophoblast invasion and remodeling of spiral 
arteries (101–103). Uterine NK-cells are poorly cytotoxic with 
a particular cytokine profile (101). It remains to be elucidated 
whether STAT5 is also involved in VEGF-A production in the 
decidua. A suppressive cytokine milieu such as TGF-β in the 
uterus or hypoxic conditions might dampen STAT5 signaling 
and represent a prerequisite for VEGF-A transcription. Evolution 
brought two types of NK-cells into light: besides being effective 
killers NK-cells have acquired to adapt to immunosuppressive 
cytokines and to switch to a tolerogenic but pro-angiogenic 
behavior.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 1 | The role of STATs for nK cell homeostasis and function.

5

Gotthardt and Sexl JAK–STAT in NK Cells

Frontiers in Immunology | www.frontiersin.org January 2017 | Volume 7 | Article 694

THe BAD: STAT6: STiLL SOMe MiSSinG 
BRiCKS

Activation of STAT6 has been reported to drive IL-5 and IL-13 
production in cultured NK-cells and to limit cytotoxic responses 
(104). In line, studies with Stat6−/− mice showed increased viral 
resistance and higher cytolytic activity of NK-cells in the absence 
of STAT6 (105). However, a positive correlation of STAT6 
expression and IFN-γ production was reported after costimulat-
ing murine NK-cells with IL-4 and IL-2 (106). Further studies 
need to explore whether a STAT6 blockade would be a potential 
therapeutic option to enhance responses in human NK-cells.

COnCLUSiOn

The JAK–STAT pathway is evolutionary highly conserved; thus, 
the human situation nicely matches the findings in experimental 
animal models. In that line, many insights that we gained from 
murine NK-cells can be translated to human NK-cells. Figure 1 
summarizes our current knowledge on the role of STATs in 
NK-cell functions. In general, STAT1, STAT4, and STAT5 stimu-
late NK-cell maturation and cytotoxicity, whereas STAT3 and 
STAT6 negatively impact on NK-cell activity. It is attractive to 
speculate that the suppressive role of STAT3 and STAT6 is impor-
tant to prevent NK-cell overshoots and autoimmunity. STAT5 is 
the only STAT family member that is indispensable for NK-cells 
since it governs survival and growth in addition to cytotoxicity 
and maturation. It may thus be seen as NK-cell master regulator.

As shown for macrophages NK-cells not only inhibit but 
also promote tumor formation, e.g., by producing VEGF-A. So 
far, STAT5 has been shown to prevent NK-cell-mediated tumor 
promotion by suppressing VEGF-A. However, it is unclear if and 
how other family members contribute to the switch from tumor 
suppression to tumor progression. Another layer of complexity is 
added by the fact that STATs rarely act alone but are embedded 
in a network of signaling events depending on the microenvi-
ronment and stimuli present. Signal integration is required to 
determine outcomes; at its lowest level integration of activity 
arising from various STAT family members is needed as even a 
single cytokine can activate multiple STATs (listed in Table 1). 
Some cytokines activate STAT family members with opposing 
functions such as IL-12 or type I IFNs. Further research will have 

to link NK activity and biological outcomes to cytokine-induced 
STAT activation and their synergic and/or antagonistic roles. The 
evolving field of systems biology may be of help to address these 
issues and/or to even predict the complex biologically and medi-
cally relevant questions in vivo at high pace to optimize current 
cancer therapies.
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