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Erythroid function and development is intimately linked to macrophages. The primary 
function of erythrocytes is oxygen delivery, which is mediated by iron-containing hemo-
globin. The major source of this iron is a recycling pathway where macrophages scav-
enge old and damaged erythrocytes to release iron contained within the heme moiety. 
Macrophages also promote erythropoiesis by providing a supportive niche in the bone 
marrow as an integral component of “erythorblastic islands.” Importantly, inflammation 
leads to alterations in iron handling by macrophages with significant impact on iron 
homeostasis and erythropoiesis. The importance of macrophages in erythropoiesis and 
iron homeostasis is well established and has been extensively reviewed. However, this 
developmental relationship is not one way, and erythrocytes can also regulate mac-
rophage development and function. Erythrocyte-derived heme can induce the devel-
opment of iron-recycling macrophages from monocytes, engage pattern recognition 
receptors to activate macrophages, and act as ligand for specific nuclear receptors 
to modulate macrophage function. Here, we discuss the role of heme as a signaling 
molecule impacting macrophage homeostasis. We will review these actions of heme 
within the framework of our current understanding of the role of micro-environmental 
factors in macrophage development and function.

Keywords: heme, iron-recycling macrophage, erythrophagocytosis, SpiC, Bach1

MACROPHAGe DiveRSiTY

Macrophages are prominent cells of the innate immune system characterized by their high phagocytic 
capacity and the ability to process antigens. While best known for their roles in controlling immune 
responses, they are functionally very versatile with roles in wound repair, tissue morphogenesis, 
and tissue homeostasis (1, 2). Almost every tissue in the body harbors resident macrophage popula-
tion that performs tissue-specific homeostatic function (2). Examples include surfactant recycling 
by alveolar macrophages in the lung and iron recycling by splenic red pulp macrophages (RPM). 
The functional distinction between tissue-resident macrophages is reflected in their distinct gene-
expression profile and dependence on specific transcription factors. As examples, RPM development 
is dependent on the transcription factor SpiC, Kuffer cells on transcription factor Id3, peritoneal 
macrophages on transcription factor Gata6, alveolar macrophages on transcription factor PPAR-γ, 
and splenic marginal zone macrophages on transcription factor Lxrα (3–7). An important question 
is how divergent tissue-resident macrophages are generated from a common precursor. Recent work 
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suggests a prominent role of the tissue microenvironment in this 
process. For instance, high levels of heme in the red pulp area of 
spleen were found to induce the expression of the transcription 
factor SpiC, which promoted the development of monocytes into 
RPM (8). Likewise, local retinoic acid levels were found to control 
the development and localization of peritoneal macrophages (6). 
An additional line of evidence comes from the finding that tissue 
macrophages can be reprogramed when transplanted into a new 
tissue microenvironment (9). Therefore, local microenviron-
ment-associated factors play key role in generating phenotypic 
and functional diversity of tissue-resident macrophages.

Monocytes were considered to be the primary source of tis-
sue-resident macrophages. However, definitive studies in recent 
years have changed this paradigm, and we now recognize two 
distinct precursors of tissue macrophages: circulating mono-
cytes and embryonic precursors that seed various tissue before 
birth and are maintained by local proliferation (10). Embryonic 
precursors of tissue macrophages develop independent of 
hematopoietic stem cells, either from the yolk sac during early 
stages of embryogenesis or from fetal monocyte-like cells in 
later stages. In adults, circulating monocytes can differentiate 
into tissue macrophages, especially during inflammation or tis-
sue injury. Monocytes have a limited lifespan of a few days in the 
circulation and are continuously replenished from hematopoi-
etic stem cells in the bone marrow (11, 12). The implication of 
the dual origin (embryonic vs. adult monocyte) on macrophage 
function is currently not clear. Recent studies suggest that the 
relative distribution of embryonic and monocyte-derived 
macrophages in tissue undergoes significant changes with age 
and pathological conditions. In both instances, the contribu-
tion of monocyte-derived macrophages appears to increase 
(13). Tissue inflammation lead to recruitment of circulating 
monocytes that differentiate locally into macrophages or closely 
related antigen-presenting cells known as dendritic cells (DCs) 
depending on local micro-environmental factors that are not 
well understood (14).

Macrophage function can also be categorized into pro-
inflammatory as embodied by the “M1-polarized” macrophage 
and anti-inflammatory as represented by the “M2-polarized” 
macrophage (15). These polarization states represent the two 
extremes of a functional spectrum from an anti-inflammatory 
phenotype that support tissue repair and homeostasis to an 
inflammatory phenotype that induces and support immune 
responses (16, 17). Tissue macrophages generally have features 
of M2, while M1 macrophages are generated in inflammatory 
and infectious settings. Functional polarization of macrophages 
is driven by various activation signals including cytokines, which 
has been extensively reviewed elsewhere (15). Notably, the 
activation state of a macrophage can impact how it will respond 
to tissue-associated factors. As an example, high levels of heme 
induce the iron exporter ferroportin (SLC40A1) in macrophages 
to help recycle iron (18, 19). However, macrophages can strongly 
downregulate ferroportin if they sense the presence of bacterial 
pathogens in the environment in an attempt to sequester iron 
from extracellular pathogens (18, 20, 21). Therefore, macrophages 
integrate diverse cues from its environment to formulate a 
context-appropriate response.

In summary, local microenvironment-associated factors have 
significant impact on macrophage differentiation and function. 
Additionally, the activation state of the macrophage influences 
how it will respond to such microenvironment-associated 
factors.

iROn-ReCYCLinG MACROPHAGeS

Heme comprises of a protoporphyrin IX ring with an iron atom 
in the center (22). The capacity of the iron to undergo reversible 
change in oxidation status is central to heme’s ability to catalyze 
diverse reactions such as delivery of oxygen to tissue, electron 
transfer, and oxidation reactions (23). The specific function of 
heme depends on the protein to which it is attached as a pros-
thetic group. There are many distinct types of hemoproteins 
performing various functions. However, the vast majority of 
the heme in vertebrates is sequestered within hemoglobin and 
myoglobin in erythrocytes and muscle cells, respectively, which 
can be released upon damage to these cells (24). Macrophages 
are the primary cells responsible for the uptake and disposal of 
heme, which is important for three main reasons: (1) prevent-
ing heme and iron-mediated cellular toxicity, (2) recycling iron 
to sustain erythropoiesis, and (3) preventing pathogen’s access 
to iron during infection (Figure 1) (25, 26). Each erythrocyte 
contains approximately 1.2  ×  109 heme moieties associated 
with hemoglobin, and approximately 200 billion erythrocytes 
reach senescence each day (26). Hemoglobin released from 
senescent or damaged erythrocytes can be readily oxidized 
releasing the prosthetic heme group. Free heme can catalyze 
oxidation of proteins, generate lipid peroxides, and damage 
DNA through oxidative stress (27). Iron released from heme 
can also generate harmful free radicals via Fenton chemistry 
(28). Therefore, without a proper disposal mechanism there 
is a considerable threat from the large amount of heme that 
can be released from erythrocytes. Alterations in membranes 
of senescent and damaged erythrocytes are detected by spe-
cialized erythrophagocytic macrophages in the spleen, liver, 
and bone marrow, which remove these erythrocytes before 
they undergo hemolysis (Figure 1) (29–31). Cell-free hemo-
globin and heme binds to carrier proteins haptoglobin and 
hemopexin, respectively (31). Hemoglobin–haptoglobin and 
heme–hemopexin complexes are taken up by macrophages via 
cognate receptors CD163 and CD91, respectively (Figure  1) 
(32,  33). Therefore, macrophages prevent heme-mediated 
toxicity by phagocytosing old erythrocytes before they rupture 
as well as by taking up heme and hemoglobin that is already 
released from erythrocytes.

Heme is metabolized inside macrophages by the sequential 
activity of Heme oxygenase (HO) and biliverdin reductase (BVR). 
HO has two isoforms: the inducible HO-1 and the constitutively 
expressed HO-2 (34). HO-1 levels increase upon heme accumu-
lation in macrophage and catalyze the breakdown of heme into 
biliverdin. BVR then converts biliverdin to bilirubin, which is 
exported out of the cells to be incorporated into bile acid in the 
liver (26, 31, 34). Iron is released upon degradation of heme to 
bilirubin. This iron can be either stored inside the macrophages 
in combination with ferritin or exported out of the cells via the 
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FiGuRe 1 | Heme: linking erythropoiesis and macrophage function. Abbreviations: RBC, red blood cells; ROS, reactive oxygen species; FPN, ferroportin 
(Slc40A1); HO-1, heme oxygenase-1. Heme is taken up by macrophages by several distinct pathways. Heme-induced HO-1 leads to heme degradation. Inside 
macrophages, heme triggers multiple distinct pathways that impacts macrophage function and differentiation. In the context of iron homeostasis, heme-induced 
functional changes can be divided into three groups: iron recycling at the steady state, iron-sequestration during infection and inflammation, and preventing heme 
toxicity to maintain tissue homeostasis.
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iron exporter ferroportin (26, 31). The decision to store or release 
iron depends upon various factors such as iron requirements 
of the host and the presence or absence of inflammation and 
infection. At the steady state, the vast majority (>90%) of the 
body’s iron requirement is provided by this macrophage-based 
recycling machinery (Figure  1). Inflammation and infection 
with extracellular pathogens leads to a much greater propensity 
to store, rather than release, iron inside macrophages (35). 
One underlying mechanism is the release of hepcidin from 
hepatocytes in response to inflammation, which leads to inter-
nalization and degradation of ferroportin (36). Indeed, such 
infectious settings promote iron accumulation by macrophages 
leading to a systemic reduction of circulating iron. This is a 
form of evolutionarily conserved immune response aimed at 
limiting pathogen’s access to critical nutrients (35). Therefore, 
iron recycling by macrophages is carefully regulated to strike a 
balance between iron requirements of the host, avoiding del-
eterious effects of heme/iron, and preventing pathogen access 
to iron.

HeMe-MeDiATeD ReGuLATiOn OF  
iROn-ReCYCLinG MACROPHAGeS

Iron recycling by macrophages is a highly specialized function, 
which involves several closely coordinated steps from heme 
acquisition and heme degradation to iron storage and release. As 
the first element in this metabolic cascade, heme regulates many 
of the subsequent steps in this pathway. Heme can physically 
bind the transcriptional factor Bach1 (BTB and CNC homology 
1) via a dipeptide motif of cysteine and proline, which inhibits 
its functions (37). Bach1 and the closely related Bach2 belong to 
the basic leucine zipper family of transcription factors, which 
control gene expression by forming heterodimers with small Maf 
proteins (38). Bach–Maf heterodimers bind to Maf recognition 
elements (MARE) in the genome to suppress target genes such 
as HO1, ferroportin, and ferritin (38). Direct binding of heme to 
Bach1 inhibits Bach1 activity by (1) altering its DNA binding, (2) 
promoting its nuclear export, and (3) inducing polyubiquitina-
tion and degradation of Bach1 protein (39–42). In the absence 
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of Bach1, Maf binds to transcription factor Nrf2. Nrf2–Maf 
heterodimers also bind MARE sequences, but leads to target 
gene activation (38, 43). Therefore, heme levels inside a cell can 
control the relative abundance of “activating” Nrf2-Maf and 
“repressive” Bach1–Maf heterodimers. This is a key mechanism 
by which high levels of environmental heme induce the expres-
sion of HO1 (44). Induced HO1 reduces heme levels, which then 
decreases the rate of Bach1 degradation. This “feedback loop” 
ensures that Bach1, HO1, and Fpn levels are carefully titrated 
against heme level.

Bach1 appears to serve as an important transcriptional sensor 
of heme. Its targets include genes involved in heme degradation 
(for example: HO1, ferritin, and ferroportin), redox homeostasis 
(for example: GCLC and GCLM) as well as cell-cycle and apop-
tosis related (for example: CALM1, BCL2L11, and SQSTM1) 
(38). One notable target is the transcription factor SpiC, which 
is highly expressed by iron-recycling macrophages in the spleen 
(RPM) and is required for their development (3). SpiC is a 
member of the Spi subfamily of Ets transcription factor, which is 
also expressed in B cells (45, 46). High levels of heme in splenic 
red pulp were found to induce degradation of Bach1 protein in 
monocytes. This occurred via direct interaction of heme and 
Bach1 protein leading to proteasome-dependent degradation of 
Bach1, which de-repressed SpiC to promote the development of 
RPM from monocytes (8). This pathway is particularly important 
during hemolysis and conditions leading to erythrocyte damage, 
which requires greater number of RPM (8). Hemolysis may be 
associated with sterile conditions (such as sickle cell anemia) or 
infectious diseases (such as a traumatic wound or malaria), which 
are associated with distinct iron-recycling requirements. While in 
the sterile setting it is safe to “turn on” the RPM transcriptional 
program aimed at releasing the heme-associated iron back into 
the circulation, in infectious setting iron is usually sequestered 
inside the macrophages. Currently, it is unclear whether and how 
pathogenic stimuli with or without heme influences SpiC expres-
sion in macrophages. Finally, SpiC induction is one of the many 
consequences of Bach1 inhibition, and Bach1 inhibition itself is 
one of the many consequences of increased heme levels. The full 
repertoire heme’s impact on macrophage development remains 
to be elucidated.

HeMe-MeDiATeD ReGuLATiOn OF 
MACROPHAGe ACTivATiOn

Heme can influence macrophage function directly or indirectly in 
a number of ways. Direct mechanisms include heme’s activity as 
a prosthetic group in hemoproteins, inhibition of Bach transcrip-
tion factors, binding to nuclear receptors such as RevErb, interac-
tions with toll-like receptor 4 (TLR4), and direct binding to DNA 
in the nucleus. Indirect actions are more diverse and include 
heme’s ability to induce ROS and generate metabolites such as 
iron, carbon monoxide, bilirubin, and biliverdin. The source of 
heme for the aforementioned activities can be cell intrinsic (all 
cells can produce heme) or exogenous. Here, we will restrict 
our discussion to the direct actions of cell-exogenous heme on 
macrophages.

The role of heme in inducing iron-recycling macrophages 
via Bach1 degradation is discussed above. This pathway ensures 
safe disposal and recycling of heme. Excess heme in circulation 
or tissue may also indicate damage to erythrocytes or muscle, 
which contains the majority of heme in the body. In this context, 
heme may act as an alarmin, which are endogenous factors 
released upon tissue damage to activate immune system (24). 
Heme has been shown to activate TLR4 to induce TNF produc-
tion in macrophages (47). TLRs are evolutionarily conserved 
transmembrane receptors that recognize structurally conserved 
molecular motifs associated with pathogens (48). TLR4 
engagement by prototypical agonist LPS activates two distinct 
downstream pathways: MyD88 dependent and TRIF dependent. 
Heme appears to selectively activate MyD88-dependent pathway 
and induces a different repertoire of cytokines when compared to 
LPS, underscoring their distinct mode of action through TLR4 
(47). Notably, heme showed synergistic effects with lower doses 
of LPS on the production of inflammatory cytokines such as 
TNF and IL6 (49). This synergism required the activity of spleen 
tyrosine kinase and was also observed with activation of TLR2, 
TLR3, and TLR9 (49). This synergy may be particularly relevant 
to infectious diseases associated with hemolysis, such as malaria, 
where heme may help control infection by “boosting” TLR sign-
aling when pathogen levels (hence TLR agonist levels) are low. 
Heme has also been reported to promote IL1-β processing by 
NLRP3 inflammasome component further supporting its role as 
an alarmin (50).

Macrophage activation via heme is also relevant in certain 
non-infectious diseases. Recent work has shown that heme 
released upon hemolysis in sickle cell disease leads to the induc-
tion of a pro-inflammatory “M1” polarization in macrophages, 
which was found to be dependent on TLR4 activity and ROS pro-
duction (51). Importantly, exogenous administration of the heme 
scavenger hemopexin was found to counteract the induction of 
this inflammatory phenotype in macrophages of a mouse model 
of sickle cell disease. Heme is also a natural ligand for nuclear 
receptors RevErbα and RevErbβ (52–54). Heme binding to 
RevErbα has been shown to repress IL10 transcription in human 
monocytes and macrophages (55). IL10 has anti-inflammatory 
role and its suppression by heme RevErbα was suggested to 
maintain a pro-inflammatory “M1” phenotype in macrophages. 
Notably, genetic cis regulatory elements near IL10 locus promot-
ing this action of RevErbα were present in humans but not mice 
(55). More global transcriptional analysis suggested that RevErbα 
and RevErbβ generally suppress enhancer-directed transcription 
in macrophages but the relevance of this in the context of heme 
activity in macrophage remains to be fully elucidated (56).

COnCLuDinG ReMARKS

Nature has delegated macrophages the task of handling heme, 
which is aimed at avoiding tissue toxicity, defending against 
pathogens, and recycling iron to support ongoing erythropoiesis. 
These diverse physiological requirements involve distinct but 
overlapping functional modules in macrophages (Figure 1). The 
core functional module is the ability to “sense” and “degrade” 
heme. Other functional modules are context dependent. As 
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an example, iron released upon heme degradation is exported 
outside the cell via Fpn at the steady state. During inflammation, 
however, Fpn is downregulated leading to an accumulation of iron 
inside macrophages. Indeed, macrophages excel at homeostatic 
functions by integrating myriad extracellular signals to formulate 
an appropriate physiological response.

An exciting and relatively new finding is the ability of “free” 
heme to act as a signaling molecule for monocyte differen-
tiation via activation of the transcription factor SpiC. During 
inflammation or injury circulating monocytes can enter tissue 
to differentiate into wound-healing and anti-inflammatory 
macrophages or pro-inflammatory and immune-stimulatory 
DCs (57). Therefore, the ability of heme to influence the differ-
entiation of a monocyte into DCs vs. macrophage has important 
implications on immunity and tissue homeostasis, which remains 
to be fully explored. In this context, it will also be important to 
uncover factors and pathways that control the movement of heme 
within distinct cellular compartments after its uptake. Several 
heme transporters have been described: Flvcr regulating heme 
export from cytoplasm, HRG-1 regulating heme transport from 
lysosome into cytoplasm, and Mrp5 regulating heme export 

from cytoplasm (58–61). Future research will likely provide new 
insights into pathways controlling such chaperoned movement of 
heme between and within cells.

Recent work has led to a gradual shift in our perception of 
free heme: from a mere product of erythrocyte degradation to an 
active signaling molecule. As future work reveals additional facets 
of heme activity, the number of ways in which erythrocyte-derived 
heme can influence macrophage development and function will 
grow. This may also open up new opportunities to therapeutically 
modulate macrophage function in various diseases.
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