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Bovine herpesvirus-1 (BoHV-1) is the causative agent of bovine infectious rhinotracheitis, 
an important disease worldwide. Although conventional BoHV-1 vaccines, including 
those based on the use of modified live virus and also inactivated vaccines, are currently 
used in many countries, they have several disadvantages. DNA vaccines have emerged 
as an attractive approach since they have the potential to induce both humoral and 
cellular immune response; nevertheless, it is largely known that potency of naked DNA 
vaccines is limited. We demonstrated previously, in the murine model, that the use of 
adjuvants in combination with a DNA vaccine against BoHV-1 is immunologically bene-
ficial. In this study, we evaluate the immune response and protection against challenge 
elicited in bovines, by a DNA vaccine carrying the sequence of secreted version of glyco-
protein D (gD) of BoHV-1 formulated with chemical adjuvants. Bovines were vaccinated 
with formulations containing the sequence of gD alone or in combination with adjuvants 
ESSAI 903110 or Montanide™ 1113101PR. After prime vaccination and two boosters, 
animals were challenged with infectious BoHV-1. Formulations containing adjuvants 
Montanide™ 1113101PR and ESSAI 903110 were both, capable of increasing humoral 
immune response against the virus and diminishing clinical symptoms. Nevertheless, 
only formulations containing adjuvant Montanide™ 1113101PR was capable of improv-
ing cellular immune response and diminishing viral excretion. To our knowledge, it is the 
first time that a BoHV-1 DNA vaccine is combined with adjuvants and tested in cattle. 
These results could be useful to design a vaccine for the control of bovine rhinotracheitis.

Keywords: Dna, vaccine, BohV-1, cattle, adjuvant

inTrODUcTiOn

Bovine herpesvirus-1 (BoHV-1) is the etiological agent of the infectious bovine rhinotracheitis (IBR), 
a cattle disease with important economic consequences worldwide. This virus causes a wide variety 
of clinical manifestations including conjunctivitis and upper respiratory tract infection, reproductive 
tract lesions such as pustular vulvovaginitis/balanoposthitis, infertility, abortion in pregnant cows, 
and systemic infection in the newborn. BoHV-1 has been recognized as an important component 
of the bovine respiratory disease complex. The BoHV-1 virus infections in cattle and buffaloes are 
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mostly mild and non-life threatening, mortality may reach 10% 
(1). However, the infection causes severe economic losses since it 
immunosuppress infected cattle predisposing animals to second-
ary bacterial infections, as bronchitis and pneumonitis, leading to 
high morbidity and mortality (2, 3). Infection also decreases milk 
production and produce weight loss. Since BoHV-1 is included in 
list B of OIE notifiable diseases (1), it imposes restrictions to the 
international livestock trade.

Cattle can recover from an acute uncomplicated IBR infection 
in 5–10 days but they are very harmful to naive herds, because 
BoHV-1 can undergo latency. These animals remain carriers of 
BoHV-1 for the rest of their lives until immunosuppressive treat-
ments or conditions reactivate virus replication, leading to the 
spread of the infection (4, 5).

The virus consists of a nucleoprotein containing the genomic 
double stranded DNA. This center is contained into an icosahedral 
capsid surrounded by a lipid bilayer in which viral glycoproteins 
protrude (6). Viral glycoproteins are involved in several steps of 
viral replication (7–10). Among them, the gD is responsible for 
the penetration of the virus in the host cell with participation 
in the viral adsorption and membrane fusion (11, 12). It has 
cytotoxic epitopes (13, 14) and induces neutralizing antibodies 
(14–16). Several studies have shown the induction of antibody 
response against BoHV-1 in mice and cattle immunized with 
plasmids encoding BoHV-1 glycoprotein D (gD) (17, 18).

Bovine herpesvirus-1 uses several mechanisms to elude the 
host’s immune system. By spreading intracellularly, it can exist 
in the presence of antiviral specific antibodies (19–22). For this 
reason, cytotoxic T-lymphocytes (CTL) are critical for the elimi-
nation of the virus (12, 23).

Although conventional BoHV-1 vaccines, including those 
based on the use of modified live virus and also inactivated 
vaccines are currently used in many countries, they have several 
disadvantages; they may protect individual animals against clini-
cal disease, but they cannot prevent either the efficient transmis-
sion of the virus or the establishment of latency. Additionally, 
live-attenuated vaccines are not entirely safe, because they may 
cause abortion, latency, and they can reactivate (24–27). For these 
reasons, its use is forbidden in some countries such as Argentina. 
Also, the vaccine strains, may downregulate the cell surface 
expression of major histocompatibility complex (MHC) class I 
molecules (28, 29), which compromises the development of CTL 
against not only BoHV-1 but also other viruses and intracellular 
pathogens. On the other hand, inactivated viral vaccines are 
generally poor inducers of cellular immune responses and have a 
relatively short duration of immunity (14).

In this context, DNA vaccines have emerged as an attractive 
approach for BoHV-1. DNA is taken up and expressed by cells 
in the tissue, and the protein is processed and presented by local 
antigen presenting cells (APCs). This has the benefit of intracel-
lular expression of the antigen, which may be targeted to the class 
I MHC for efficient induction of cellular immune responses (30, 
31). Viral surface glycoproteins gB, gC, and gD of BoHV-1 have 
been selected as candidate antigens in DNA immunization (32, 
33). Glicoprotein D, in particular, has shown promising results 
in mice (34) and partial success in calves (17, 32, 33). But, since 
the potency of naked DNA vaccines is limited by their inability 

to amplify and spread in vivo, adjuvant incorporation could be 
a good option to increase the magnitude and direction of the 
immune response. In this regard, other authors have tested CpG 
oligodeoxynucleotides for their ability to enhance immune 
responses against viral antigens (35) and conjugation of tgD 
with a proteasome-dependent degradation signal in order to 
improve presentation via MHC class I (33). Recently, we have 
demonstrated in the murine model that certain adjuvants in 
combination with a DNA vaccine against BoHV-1 are capable 
of improving the humoral and cellular immune response against 
the virus (36).

Montanide-based adjuvants have been used in both veterinary 
and human vaccines. These formulations have been successfully 
commercialized and are now available for animals in a vaccine 
against FMDV. We reported, in the murine model and in a 
preliminary assay in bovines, that adjuvant Montanide 903110 
(Seppic) formulated with a DNA vaccine containing the secreted 
version of gD is capable of inducing a better humoral and cellular 
response than DNA alone (37). Recently, we demonstrated that 
pCIgD vaccine and Montanide 1113101 adjuvant induced an 
increased specific cytotoxic immune response (38).

In the present study, we evaluate the immune response and 
protection against challenge, induced in bovines by a DNA vaccine 
containing the truncated, secreted version of BoHV-1 gD (36), 
in combination with experimental adjuvants Montanide 903110 
and Montanide 1113101PR, a more concentrated version of the 
first one, to extend our previous studies in the murine model and 
to assess the protection capacity of the vaccines formulated with 
these adjuvants in the natural host.

MaTerials anD MeThODs

animals
Bovines 1- to 2-year olds, serologically negative for BoHV-1 
(n = 20) were used. Handling and housing of animals were made 
in accordance with the institutional guide for the care and use of 
experimental animals (Council resolution number 14/07), with 
the approval of the Institutional Committee for Care and Use of 
Experimental Animals, CICUAE-INTA, Argentina. The present 
study did not imply animal sacrifice.

Virus and cells
Bovine herpesvirus-1 strain LA (Los Angeles) was propagated 
in Madin Darby bovine kidney (MDBK) cells grown in Eagle 
Minimal Medium (MEM), supplemented with 10% fetal calf 
serum (FCS).

For in vitro cell stimulation and ELISA, inactivated (15 min 
at 11 cm from two General Electric G875 ultraviolet bulbs) and 
concentrated (ultracentrifugation at 120,000  g for 1  h at 4°C) 
virus was used.

Plasmid construction
Construction of the pCIgD plasmid, which expresses the secreted 
form of BoHV-1 gD, has been previously described (36). pCIgD 
and pCIneo empty plasmid were amplified in transformed 
Escherichia coli DH5α and purified using anion exchange columns 
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(Qiagen Plasmid Purification Mega Kit). They were analyzed on 
the basis of 260/280 absorbance ratios and restriction digests.

adjuvants
Montanide 903110 (named 110) and Montanide™ 1113101PR 
(named 101) were provided by Seppic Inc., France. Toxicological 
tests (Berlin test, Oral LD 50, IP LD 50, ocular irritation test, der-
mal irritation test, pyrogenicity) concluded the non-toxicity and 
favorable tolerance of these adjuvants. Montanide™ adjuvants 
and their components were included as authorized substances 
in the annex of the European Council Regulation no. 470/2009 
(previously 2377/90/EC) needing no further MRL studies. On 
the other hand, no side effects were seen in the site of inocula-
tion after vaccination of the animals. Montanide 903110 is a 
not-crosslinked charged polymer of high molecular weight 
dispersed in water. Montanide™ 1113101PR is the same polymer 
as Montanide 903110, but it has double concentration of immu-
nostimulating complexes. They are designed to improve DNA 
binding capacity and transfection efficiency (Benarous, personal 
communication).

Vaccine Formulations
Adjuvants were combined with 500  μg/dose DNA vaccine 
(pCIgD) following Seppic’s indications (ratio 24% adjuvant 
and 76% DNA). Additionally, pCIgD without adjuvants was 
also evaluated and pCIneo (500 μg/dose) was used as negative 
control. Vaccines were named: pCIgD-110, pCIgD-101, pCIgD, 
or pCIneo.

The integrity of DNA was corroborated in each vaccine 
before use.

immunization
Bovines were vaccinated intradermically (id) in the back of the 
ear with 1.5 ml of each vaccine (distributed in five sites). Cattle 
(n = 5/group) were vaccinated with (I) pCIgD-101, (II) pCIgD-
110, (III) pCIgD, or (IV) pCIneo. The same dose was used for 
a booster at day 20 and 33. At 38 days post vaccination (dpv), 
the cellular immune response was studied. Serum samples were 
taken at days 0, 15, 33, 44, and 56 dpv [12 days post-challenge 
(dpc)]. Animals were challenged at 44 dpv.

Measurement of anti-BohV-1 and anti-gD 
antibodies by elisa
Immulon 1 plates (for BoHV-1 ELISA) or Immulon 2HB (for gD 
ELISA) (Dynatech Laboratories) were coated with inactivated 
BoHV-1 (iBoHV-1) or recombinant gD diluted in carbon-
ate–bicarbonate buffer (pH 9.6), overnight (ON) at 4°C. Plates 
were blocked with phosphate-buffered saline (PBS) containing 
0.05% Tween 80 and 1% ovalbumin (PBST-OVA). After wash-
ing, serum samples diluted in PBST-OVA were incubated on 
the plates. Negative and positive control sera were included. A 
rabbit anti-bovine antibody peroxidase labeled (KPL) was added. 
After washing, o-phenylenediamine-H2O2 was used as peroxidase 
substrate. Absorbance was recorded at 492  nm (A492) in a MR 
5000 microplate reader (Labsystems, MN, USA). Cutoff was 
established as the mean A492 of the negative sera +2 SD. Titers 

were expressed as the log10 of the reciprocal of the highest serum 
dilution giving an OD higher than the cutoff.

For isotype detection, the same ELISA described for gD 
was used with modifications: anti-bovine IgG1, IgG2, or IgA 
mouse monoclonal antibodies (provided by Dr. S. Srikumaran, 
University of Nebraska, USA) were used, followed by incuba-
tion with anti-mouse (HRP) conjugated. Cutoff and titers were 
calculated as described before.

Measurement of neutralizing antibodies
Neutralizing antibodies were detected by a microplate virus neu-
tralization assay. Briefly, serum samples (1:12 dilution in DMEM) 
were added to 96-well cell culture plates and incubated at 37°C 
for 1 h with four twofold dilutions of infective BoHV-1 (10 to 
80 TCID50). Sera-virus mixtures were then added to a MDBK 
monolayer and incubated at 37°C for 1 h. Then fresh DMEM 2% 
FCS was added. Plates were incubated for 72 h at 37°C with 5% 
CO2 and cytopathic effect (cpe) was assessed.

Opsonophagocytosis assay
Inactivated BoHV-1 was labeled with FITC (Sigma, St. Louis, 
MO, USA) as described before (39). Opsonophagocytosis of 
FITC-labeled BoHV-1 was analyzed by a previously described 
technique with minor modifications (39). Briefly, serum from 
vaccinated animals was mixed with FITC-labeled iBoHV-1 at 
37°C for 30  min. Bovine macrophages cell line (BoMac), were 
then incubated for 30  min at 37°C in CO2 incubator with the 
opsonized FITC-iBoHV-1 (moi 10). Extracellular fluorescence 
was quenched with a 0.2-mg/ml solution of Trypan Blue. Flow 
cytometry was performed in a BD FacsCalibur and analyzed 
with CellQuest software (BD Biosciences, San José, CA, USA). 
Opsonophagocytosis indexes were calculated as: % of marked 
cells in each animal/mean % of marked cells in pCIneo group.

immunofluorescence assay
Monolayers of MBDK cells were grown in chamber and infected 
for 24 h with reference strain BoHV-1 LA. Sera from vaccinated 
and unvaccinated bovines was added (30–50 μl of 1:5 dilution) at 
37°C for 45 min. After two washes with PBS, anti-bovine FITC-
conjugated antibody (HyClon) was added in 1:100 dilution in 
Evan’s blue for 45 min at 37°C.

After two washes with PBS, monolayers were seen in a fluo-
rescence microscope.

alDcs stimulation
Afferent lymph dendritic cells (ALDCs) were obtained by can-
nulation of pseudo afferent lymph vessels and characterized as 
previously described (40). Dendritic cells were incubated with 
culture medium (mock) or with 1  μl/ml of vaccines pCIneo, 
pCIgD, pCIgD-110, or pCIgD-101. After 24  h incubation, a 
direct surface staining was performed using monoclonal anti-
body DEC205-FITC (SEROTEC, UK), and an indirect surface 
staining was performed using monoclonal antibodies anti CD40 
and MHCII (SEROTEC, UK), and anti-mouse IgG PE conjugated 
(Jackson laboratories, USA). Cells were fixed with 0.2% para-
formaldehyde and acquired using FACScalibur cytometer and 
CellQuest software (BD).
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PBMcs isolation
Blood samples were collected by venipuncture in syringes 
containing preservative-free heparin. PBMCs were isolated by 
centrifugation on Ficoll-Paque™ PLUS (density 1.077 g/ml; GE 
Healthcare Bio-Sciences AB) as described elsewhere (23). Cells 
were counted using Tripan blue.

BohV-1-specific PBMcs Proliferation
PBMC suspensions obtained from each animal were labeled 
with carboxyfluorescein diacetate succinimidyl ester (CFSE 
3 µM) for 15 min at 37°C. Cells were washed and resuspended 
in RPMI 1640 complete medium (RPMI 1640 10% FBS, 10 mM 
HEPES, 100  U/ml penicillin, 100  mg/ml streptomycin, and 
50 mM 2-mercaptoethanol). CFSE-labeled PMBC were added to 
a 96-well plate (U-bottom) containing iBoHV-1, concanavalin A 
(ConA) (Sigma-Aldrich, St. Louis, MO, USA), or medium as a 
positive or negative proliferation control, respectively. Cells were 
maintained at 37°C in 5% CO2 atmosphere. After 5 days incuba-
tion, cells were fixed with 0.2% paraformaldehyde. Cell prolif-
eration was analyzed by flow cytometry, using a FACSCalibur 
(Becton Dickinson, San Jose, CA, USA) and CellQuest software 
(Becton Dickinson). Proliferation indexes were calculated as 
[% proliferating cells stimulated with virus/% proliferating cells 
without stimuli]. The cutoff was established as 2.5 according to 
bibliographic data (41, 42).

iFnγ Measurement
PBMCs were incubated in 96-well plates (U-bottom) with 
iBoHV-1, medium, or ConA for 72 h at 37°C 5% CO2. Culture 
supernatants were collected, and IFNγ was measured using a 
sandwich ELISA. Briefly, Immulon II plates were coated ON at 
4°C with a monoclonal anti-IFNγ antibody (donated by Dr. L. 
Babiuk) in carbonate–bicarbonate buffer, pH 9.6. Plates were 
blocked with PBST–0.1% bovine serum albumin (PBST–BSA). 
Dilutions of samples and recombinant IFNγ standard (Serotec, 
UK) were added and incubated for 1  h at room temperature 
(RT). Plates were washed and incubated with rabbit polyclonal 
anti-IFNγ antibodies (produced in our lab). After 1 h incubation 
at RT, biotin-conjugated antibody anti-rabbit IgG was added. 
After 1 h incubation at RT, HRP-conjugated streptavidin (KPL, 
USA) was added. O-phenylenediamine-H2O2 was used as per-
oxidase substrate. The OD was determined at 492 nm. Cytokine 
concentrations (picograms per milliliter) were determined by 
interpolation in the standard curve.

challenge assay
At 44 dpv, animals were challenged with BoHV-1 virus LA strain 
(3 × 106 TCID50/ml) by aerosol exposition as described previously 
(41, 43).

At 0, 4, 5, 6, 7, 8, and 11 dpc, calves were clinically examined 
and rectal temperature was recorded. Clinical score after viral 
challenge was established according to: Grade 0  =  normal; 
grade 1  =  slight rhinitis with serous mucus with or without 
mild serous conjunctivitis; grade 2  =  moderate/heavy rhinitis 
with fibrinous serous mucus with or without moderate serous 
conjunctivitis; grade 3 = fibrinopurulent mucus with moderate 

or severe conjunctivitis; grade 4 = rhinotracheitis with or without 
conjunctivitis (41).

Nasal swabs were obtained at 0, 4, 5, 6, 7, 8, and 11  dpc. 
by inserting tampons into each nostril and dipping them in 
MEM containing 5,000  IU/ml penicillin, 2,500  µg/ml strep-
tomycin, and 10 µg/ml amphotericin B. For virus titration in 
nasal swabs, samples were serially diluted and inoculated onto 
MDBK cell monolayers, which were inspected for cpe. Virus 
titration was performed by the end point dilution method of 
Reed and Muench (44).

statistical analysis
InfoStat program was used. ANOVA test and Dunn post ANOVA 
test were performed to assess if differences were significant 
(Control group = pCIgD for antibody titers, isotypes, prolifera-
tion, IFNγ secretion). Bonferroni post ANOVA test was used for 
viral shedding.

resUlTs

Vaccines induce specific antibodies 
against gD and BohV-1
Analysis of sera by ELISA anti-gD (Figure  1A) showed that 
at 15 and 34  dpv, immunization with pCIgD, pCIgD-110, or 
pCIgD-101 induced specific gD antibodies. At 44 dpv, antibody 
levels in pCIgD-101 group were significantly higher (p < 0.01) 
than those in pCIgD and pCIgD-110 groups. Also, sera of cattle 
vaccinated with pCIgD, pCIgD-101, or pCIgD-110 were able to 
recognize the gD in the context of whole virus as detected by 
BoHV-1 ELISA (Figure  1B) and immunofluorescence assay 
(Figure  1C), although no significant differences were seen 
between vaccinated groups. After challenge (56 dpv), all animals 
seroconverted (Figures  1A,B). Neutralizing capacity of sera 
from groups pCIgD-101 and pCIgD-110, at 44 dpv, were slightly 
increased although differences were significant regarding pCIgD 
group (Figure 1D) and were capable of opsonizing the virus since 
BoMac cells incorporated significantly more FITC-virus when 
the virus was incubated with sera from cattle vaccinated with 
these vaccines (Figure 1E).

As shown in Figure  1F, at 44  dpv, pCIgD-101 group has 
significant higher levels of IgG1 isotype antibodies than pCIgD. 
IgG2 did not present significant differences among groups.

Since it is reported that antibodies in nasal mucosa can 
confer protection against respiratory virus infections, we studied 
antibodies in nasal swabs. Immunization with all formulations 
containing gD, at 44 dpv, induced similar titers of IgG1. IgA anti 
BoHV-1 was increased only in group pCIgD-110 (Figure 1G).

Vaccines pcigD-101 and pcigD-110 
induce Dendritic cells activation In Vitro
Dendritic cells are key initiators of antiviral responses (45) 
and play an important role in modulation of adaptive immune 
response (46). So, we studied the action of vaccines on afferent 
lymph dendritic cells (ALDCs). ALDCs were incubated in vitro 
with vaccines pCineo, pCIgD, pCIgD-101, and pCIgD-110. 
MHCII molecules were significantly upregulated (p < 0.05) after 
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FigUre 1 | continued 
antibody against bovine herpesvirus (BohV-1) elicited by vaccines. (a) Antibody titers measured by ELISA using recombinant gD as antigen. (B) Antibody 
titers measured by ELISA using inactivated BoHV-1 as antigen. Dotted line represents the challenge day. Each point represents the mean titer ± SEM of the group 
for each date. Arrows indicate the date at which booster vaccination was performed. The cutoff was calculated as the mean level of antibodies at 0 days post 
vaccination (dpv) +2 SD. (c) Microscopy analysis of cells infected with BoHV-1 and incubated with sera from vaccinated and unvaccinated animals. One 
representative serum from each group is shown. (D) Each point represents the TCID50 neutralized using a 1:12 dilution of each serum at 44 dpv. The dotted line 
represents the cutoff point calculated as the mean level of antibodies in pCIneo group +2 SD. Solid line represents the mean TICD50 neutralized in each group 
(e) Opsonizing capacity of sera (from 44 dpv) measured by flow cytometry as % of BoMac cells incorporating FITC-virus after incubation with sera from vaccinated 
animals. Opsonizing index was calculated as: % FITC-charged cells in each group/mean % of FITC-charged cells in pCIneo group. Each bar represents the mean 
titer + SEM of opsonizing indexes in each group. (F) Isotype profile of antibodies against BoHV-1, measured by ELISA at 44 dpv. Each point represents the OD of 
one animal serum in a 1/50 dilution, solid line represents the mean titer of each group. Black dots represent IgG1 isotype and white dots represent IgG2 isotype. 
(g) Isotype profile of antibodies against BoHV-1, measured by ELISA at 44 dpv. Each bar represents the mean titer + SEM. Black bars represent IgGA isotype and 
white bars represent IgG1 isotype. Significant differences (*p < 0.5 or **p < 0.01) compared to pCI-gD group.
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incubation with pCIgD-101 and pCIgD-110, and CD40 was 
upregulated after incubation with pCIgD-110 (p  <  0.01) com-
pared with pCIneo and pCIgD groups, indicating that these two 
vaccines can activate dendritic cells (Figure 2A).

cellular immune response is improved in 
pcigD-101 group
Since cellular immune response is important to deal with BoHV-1 
infection, we measure specific PBMCs proliferative response and 
IFNγ secretion.

As shown in Figure 2B, there are more animals with a viral 
specific PBMCs proliferative response considered as positive 
(above the cutoff = 2.5) in pCIgD-101 group.

On the other hand, when PBMCs were stimulated in vitro with 
iBoHV1, most animals in this group have levels of IFNγ secretion 
over the cutoff point (Figure 2C).

Taken together, these results indicate that cellular response is 
improved by the addition of adjuvant 101 to the gD vaccine.

clinical score after challenge is 
Diminished in groups pcigD-101 and 
pcigD-110
Bovines were assayed by aerosol challenge with infective virus in 
order to study the protective ability of each vaccine.

Viral challenge was performed by intranasal route and bovines 
were monitored from 4 to 11 dpc.

A clinical score of 2 was considered as mild sickness. Every 
animal in pCIneo and pCIgD groups had a clinical score over 2 
at some point of the assay (except for animal 517 in pCIgD group 
which had slight symptomatology all along the experiment). The 
mean duration of the symptoms was 4.6 and 2.2  days, respec-
tively. Bovines 511, 513 (pCIneo group), and 529 (pCIgD group) 
presented rhinotracheitis and had to be treated with antibiotics. 
On the other hand, animals in groups pCIgD-101 and pCIgD-110 
had lower clinical score than controls and the symptoms last for a 
shorter period: 2 and 1.4 days, respectively.

Despite the fact that differences were not significant, a tendency 
can be noticed that vaccinated cattle had lower symptomatology 
than pCIneo group (Figures 3A,B).

Hyperthermia tended to be lower in pCIgD-101 group than 
in pCIgD-110 and controls groups, although differences were not 

significant (Figure 3C). The exception was animal 539, which had 
high temperatures for 5 days, although its clinical score was low 
all along the experiment. It is worth to point out that, 10 dpc, 
all vaccinated animals present antibody titers about 4 (except in 
pCIneo group whose titers were about 3), indicating the induc-
tion of an anamnestic response (Figure 1B).

Viral excretion is significantly lower in 
pcigD-101 group
Nasal swabs were studied for assessment of viral load in nasal 
secretions (Figures 4A–D).

All the bovines had detectable viremia levels. Nevertheless, the 
titers in group pCIgD-101 were significantly lower (p < 0.05) than 
titers in the rest of the groups at 4, 5, and 6 dpc (Figure 4E).

After the first week post-challenge, viral titers started to 
drop and, by 11 dpc, they became undetectable in all the groups 
(Figure 4).

DiscUssiOn

It is thought that the ideal BoHV-1 vaccine should stimulate 
cellular and humoral arms of the immune system (47). The 
DNA vaccine used in the present report, a plasmid containing 
truncated version of gD glycoprotein plus chemical adjuvants, 
was widely tested in our laboratory using the murine model. 
Its ability to generate a specific humoral and cellular immune 
response against BoHV-1 is well established (36, 37). Also in 
mice, we demonstrated that pCIgD-101 vaccine induces an 
increased specific cytotoxic immune response (37). Nevertheless, 
the immunogenicity of pCIgD plus adjuvants in cattle was 
only tested in a preliminary assay (37) and protection was not 
reviewed. Since challenge is the most important test in order to 
evaluate the efficiency of a BoHV-1 vaccine (18), the present work 
was designed to test two candidate vaccines (pCIgD and 101 or 
110 adjuvant) for protection.

It is reported that after DNA immunization truncated 
proteins can induce a humoral response (48). Accordingly, we 
demonstrated that cattle immunization with pCIgD increased 
the antibody levels in sera and mucosa and slightly increased the 
neutralizing capacity of serum and opsonizing activity, pCIgD-
101 being the vaccine with the overall best humoral response at 
44 dpv.

http://www.frontiersin.org/Immunology/
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FigUre 2 | cellular response elicited. (a) Activation of ALDCs after 24 h 
incubation with culture medium (mock), pCIneo, pCIgD, pCIgD-101, or 
pCIgD-110. Each bar represents the mean fluorescence index for five 
replicates plus SEM. (B) Specific proliferation of PBMCs taken at 44 days 
post vaccination (dpv) of each animal and measured by CFSE loss. Results 
are expressed as proliferation indexes. Proliferation indexes were calculated 
as [% proliferating cells stimulated with inactivated virus/% proliferating cells 
without stimuli]. The dotted line represents the cutoff (2.5). It was established 
according to bibliographic data (23, 42). (c) IFNγ concentrations levels 
measured as picogram per milliliter by ELISA in culture supernatants of 
PBMCs taken at 44 dpv from each animal. Dotted line represents the cutoff; 
it was calculated as the mean level of IFNγ at 0 dpv + 2 SD.
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We detected a significant increase in Class II expression when 
DCs were incubated with pCIgD-101 and pCIgD-110. Increased 
expression of MHC class II leads to enhanced ability of APCs 
to induce T lymphocyte activation and differentiation (49). In 
accordance with this observation, we demonstrated that pCIgD-
101 vaccine is capable of raising viral-specific PBMCs proliferation 
and producing IFNγ secretion in most of the vaccinated animals, 

indicating the induction of cellular immune response in these 
bovines. Also, the presence of IgG1 isotype is generally accepted as 
an indicator of activation of a cellular immune response (50, 51).

Taking together, these increased parameters are suggesting 
that a T cytotoxic response could be induced in these animals, as 
we observed previously in the murine model (37); nevertheless, 
due to the technical complications in measuring cytotoxicity in 
outbred animals, we could not assess the CTL response.

On the other hand, despite ALDCs stimulation induced by 
pCIgD-110, this vaccine do not raise IFNγ secretion and do not 
increase proliferation levels nor IgG1 isotype antibodies in a sig-
nificative way, although in these two last cases, an incrementation 
tendency can be noticed.

The role of adjuvant-induced increased antigen presenta-
tion in development of adaptive immunity has not been clearly 
established. We hypothesize that adjuvant Montanide 1113101 PR 
could be facilitating DNA internalization by recruited APCs at the 
site of injection and thus favor gD presentation. This phenomenon 
was reported by Dupuis and collaborators (52), who described 
that MF59 adjuvant facilitated internalization of gD2 antigen 
from type 2 Herpes Simplex Virus by recruited APCs at the site 
of injection and by increasing phagocytosis in human PBMCs.

In cattle, according to the OIE manual, a vaccine is consid-
ered as protective against BoHV-1 if its capable of reduce the 
symptomatology to mild sickness and decrease the titer of viral 
shedding in 100-fold regarding control calves. Also, the excretion 
period must be reduced in 3 days (53). After challenge, cattle vac-
cinated with pCIgD-101 vaccine, had a lower clinical score and 
lower hyperthermia duration when compared to pCIneo group 
(the positive control for infection after challenge); pCIgD-110 
vaccine was only able to reduce the clinical score. It is worth 
to note that differences in clinical score are only slight when 
compared to pCIgD group. Regarding viral shedding, pCIgD-
101 group had significantly lower viral excretion on days 4, 5, 
and 6 post-challenge, compared with all groups, although only at 
4 dpc this titer reach the protection criteria of 100-fold reduction 
regarding pCIneo group. The excretion period was similar in all 
groups, but the viral titers remained lower for pCIgD-101 vac-
cinated bovines all along the experiment. Taking together, these 
results indicate that protection against viral challenge achieved 
by the incorporation of the adjuvant 101 is only partial, which 
is in accordance with the slight improvements seen in humoral 
and cellular immunity after pCIgD-101 vaccination. On the other 
hand, incorporation of adjuvant 110 reduces the symptoms and 
viral excretion in the same way as gD alone, despite the slight 
improvements regarding gD that it provokes in the humoral 
response. We think that these results are in line with the fact 
that the amount of immunostimulating compounds present in 
adjuvant 110 is diminished regarding adjuvant 101.

Inefficient humoral immune responses have been implicated 
in lack of protection from BoHV-1 challenge (54), taking into 
account that neutralizing ability of sera is positive but low even 
in pCIgD-101 group, we hypothesize that this could be one of the 
causes of poor protection observed after challenge.

Taking into account that symptoms after viral challenge 
were diminished even in groups with low humoral and cellular 
responses, as pCIgD and pCIgD-110 groups, we conclude that 

http://www.frontiersin.org/Immunology/
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FigUre 3 | clinical symptoms after challenge. Each graph represents the clinical symptoms of each animal. A clinical score was established according to the 
presence and severity of mucus and conjunctivitis. Dotted line represents a clinical score of 2, which was considered as mild sickness. Bold numbers indicate the 
mean number of days with clinical score >2 of animals vaccinated with: (a) pCIneo, pCIgD, pCIgD-101, pCIgD-110. (B) Mean number of clinical score ± SEM of 
each group in each time point. (c) Rectal temperatures. Each bar represents the mean number of days + SEM each group of animals kept temperatures  
above 40°C.
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FigUre 4 | Viral excretion after challenge. The viral titers in each animal expressed as Ln of DICT50/ml are shown for groups vaccinated with: (a) pCIneo, 
(B) pCIgD, (c) pCIgD-101, and (D) pCIgD-110. Dotted line and numbers under the group name, represents the mean viral titer of each group during the first week 
after challenge. (e) The Ln mean viral titer of each group is shown. Significant differences (*p < 0.05).
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the partial protection achieved against BoHV-1 in the present 
study involved several mechanisms that can overlap, and when 
one mechanism is missing, the other can work to reduce the 
symptoms. We do not discard the possibility that other mecha-
nisms, independent of those studied here, were operating in the 
observed partial protection.

Despite the fact that inclusion of adjuvant Montanide™ 
EESSAI 1113101PR improved only slightly the protection against 
viral challenge, the present study is useful as a proof of concept to 
demonstrate that both, cellular and humoral arms of the immune 
response, are able of being stimulated by a DNA vaccine carrying 
the truncated version of gD formulated with a chemical adjuvant. 

Changes in DNA dose, the injection system of the vaccine or the 
addition of co-stimulatory molecules such as CD40L, or other 
adjuvants should be introduced, in order to improve immunity 
and to reduce the amount of boosters or increase the time 
between them.

Several studies have demonstrated the adjuvant capacity of 
CD40L, for both humoral and cellular immune response (55–57). 
Regarding other adjuvant molecules, Galectine 8 is an attractive 
option. Galectins are lectins that bound beta-galactosides in 
cellular surface, inducing proliferation and cytokine secretions 
among others functions (58). Galectine 8 have proved to stimu-
late T cell immune response in vivo in the murine model (59).

http://www.frontiersin.org/Immunology/
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These results may contribute to the design of more effective 
vaccines against BoHV-1. To our knowledge, it is the first time 
that a BoHV-1 DNA vaccine is combined with chemical adju-
vants and tested in cattle.
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