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Inflammasomes are multiprotein complexes that critically control different aspects of innate 
and adaptive immunity. Among them we could highlight the release of  pro-inflammatory 
cytokines that induce and maintain the inflammatory response. Usually, inflammasomes 
result from oligomerization of a nucleotide-binding domain-like receptor (NLR) after 
sensing different pathogenic or endogenous sterile dangerous signals; however, other 
proteins such as absent in melanoma 2, retinoic acid-inducible gene I, or pyrin could 
also form inflammasome platforms. Inflammasome oligomerization leads to caspase-1 
activation and the processing and release of the pro-inflammatory cytokines, such as 
interleukin (IL)-1β and IL-18. Mutations in different inflammasomes are causative for 
multiple periodic hereditary syndromes or autoinflammatory diseases, characterized by 
acute systemic inflammatory flares not associated with infections, tumors, or autoim-
munity. This review focuses on germline mutations that have been described in cryopy-
rin-associated periodic syndrome (CAPS) for NLRP3 or in familial Mediterranean fever 
(FMF) and pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND) for 
MEFV. Besides the implication of inflammasomes in autoinflammatory syndromes, these 
molecular platforms are involved in the pathophysiology of different illnesses, including 
chronic inflammatory diseases, degenerative processes, fibrosis, or metabolic diseases. 
Therefore, drug development targeting inflammasome activation is a promising field in 
expansion.

Keywords: inflammation, NLRP3, pyrin, extracellular ATP, P2X7 receptor, cryopyrin-associated periodic syndrome, 
familial Mediterranean fever

DANGeR SiGNALS, iNFLAMMASOMeS, AND THe 
PHYSiOLOGiCAL SiGNiFiCANCe OF THe  
iNFLAMMATORY ReSPONSe

Inflammation is the response of the innate immune system to a noxious stimulus, including infec-
tions or tissue damage (1, 2). Characterization of inflammasomes represents a considerable advance 
in the understanding of the inflammatory molecular events that occur in response to infections, and 
importantly, to tissue damage in the absence of pathogens. Furthermore, inflammasome activation 
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has also been attributed to changes on physiological homeostatic 
parameters, such as changes in extracellular osmolarity (3, 4), 
and virtually, any perturbation in homeostasis could generate a 
local or systemic inflammatory response (1, 2). Tissue damage 
and alteration of the homeostatic parameters induce the release 
of danger signals from the cells that activate the inflammasome 
in innate immune cells (5). Danger signals are usually referred as 
danger or damage-associated molecular patterns (DAMPs). The 
dual use of the term “danger” or “damage” in the acronym DAMP 
denotes that danger signals are not only released after damaging 
conditions but also in response to dangerous situations, such as 
during cellular environment alterations. In homeostasis, cells in 
tissues are in a physiological “basal” state maintained by nutri-
ents, oxygen, growth factors, and adherence to other cells and 
the extracellular matrix. Changes in environmental parameters 
(temperature, osmolarity, oxygen, or pH) induce a cellular stress 
response and the subsequent release of DAMPs. Stress is then 
recognized by tissue-resident macrophages, activating different 
signaling pathways, including inflammasomes, and inducing 
an inflammatory response aimed to restore tissue functionality 
during noxious conditions. This inflammatory response was 
termed para-inflammation by Medzhitov (1). Deregulation of 
para-inflammation is intimately related with immunity and 
involved in the pathogenesis of immune-mediated diseases, 
being the base for the chronic low-level inflammation associ-
ated, for example, to type 2 diabetes (6). If homeostasis imbal-
ance continues or is complicated with infection, cells become 
necrotic inducing an acute inflammatory response that will 
damage the tissue (7).

Damage-associated molecular patterns are intracellular com-
ponents released to the extracellular milieu in response to cell 
stress or necrosis that activates different inflammatory pathways, 
such as inflammasomes. Inflammasomes are multimeric complex 
of innate immune receptors, activating caspase-1 and proteolytic 
mechanisms involved in pro-inflammatory cytokines [interleu-
kin (IL)-1β and IL-18] (8). During cell stress, plasma membrane 
becomes permeable to ions, such as K+, or to intracellular 
metabolites, such as the nucleotide adenosine triphosphate (ATP) 
or uric acid (1). One of the best characterized DAMP is ATP, since 
in physiological homeostatic conditions, ectonucleotidases main-
tain low extracellular ATP concentration, but during necrosis or 
inflammatory conditions, a high extracellular ATP concentra-
tion is reached, and the purinergic P2X7 receptor is activated in 
macrophages (9–12). P2X7 receptor is a potent activator of the 
inflammasome in macrophages and other innate immune cells 
(9). Leakage of cellular proteins with intracellular functions is 
another example of DAMPs; the release of these proteins usu-
ally follows secretory pathways independent of the endoplasmic 
reticulum (ER) and Golgi apparatus. Activation of caspase-1 
by inflammasomes controls the release of these intracellular 
proteins by activating different unconventional release pathways, 
including a particular type of cell death called pyroptosis (1, 13, 
14). Caspase-1 ultimately controls the release of inflammasome 
particles, a signal produced to amplify the release of DAMPs by 
activating caspase-1 in neighbor cells (11, 15). The high mobil-
ity group box 1 (HMGB1) nuclear protein is another example 
of DAMP released upon caspase-1 activation. HMGB1 presents 

histone-binding properties in the nucleus, and in the extracellular 
milieu, HMGB1 engages the advanced glycation end-product-
specific receptor in conjunction with toll-like receptors (TLR) 
to induce an inflammatory response (16). In conclusion, innate 
immunity mechanisms converge in producing an inflammatory 
response as a consequence of infection, tissue damage, or loss of 
homeostasis.

iNFLAMMASOMe SeNSOR PROTeiNS

The nucleotide-binding domain-like receptor (NLR) family forms 
the main group of proteins considered as inflammasome sensors. 
These proteins contain a pyrin domain (PYD) or a caspase activa-
tion and recruitment domain (CARD). The presence of one of 
these domains in the sensor protein is required to assemble the 
inflammasome. Additionally, other proteins with some of these 
structural domains can also form functional inflammasomes, 
like absent in melanoma 2 (AIM2) protein, interferon-inducible 
protein 16 (IFI-16), retinoic acid-inducible gene I (RIG-I), and 
pyrin (17) (Figure 1).

There are different inflammasome sensors dedicated to rec-
ognize the presence of cytosolic nucleic acids. AIM2 presents 
an N-terminal PYD and a C-terminal hematopoietic interferon 
(IFN)-inducible nuclear protein with 200-amino acid repeat 
(HIN-200) domain. AIM2 is critical to respond against the infec-
tion of different pathogens by forming an inflammasome after 
recognition of double-stranded DNA (dsDNA) in the cytoplasm 
by the HIN-200 domain (18–20). Interestingly, other nucleic 
acid sensor protein called IFI-16 has two C-terminal HIN-200 
domains and one N-terminal PYD. Upon detection of dsDNA, 
IFI-16 triggers the IFN response as a component of the signaling 
pathway (21) and can also induce the assembly of inflammasome 
with ulterior caspase-1 activation (22). RIG-I is also a sensor 
for viral RNA that contains two CARD domains and is able to 
assemble an inflammasome (23). However, it should be noted 
that additional studies are required to demonstrate that IFI-16 
and RIG-I can form an inflammasome.

The structure of the sensor protein family NLR presents a cen-
tral nucleotide-binding domain (NBD), and most of them have 
a C-terminal leucine-rich repeat (LRR) domain. The N-terminal 
protein domain is used to classify this group of proteins in NLRP 
if it contains a PYD domain or NLRC if it contains a CARD 
domain (24). Interestingly, the capacity for assembling inflam-
masome is a feature that has not been described for all members 
of the NLR family. These sensor proteins are also involved in 
other aspects of innate immune response by regulating diverse 
non-inflammasome pathways. Indeed, NLRP12 can play a role as 
a negative regulator of NF-κB signaling (25) or modulating IL-4 
production in T cells (26), and NLRP6 is a negative regulator of 
mucosal immunity in the gut (27, 28).

The first sensor protein identified to form inflammasome 
was NLRP1 (29). Interestingly, human NLRP1 contains two 
additional protein domains compared to the canonical domains 
of the NLR family, such as a function-to-bind domain and a 
C-terminal CARD. These domains seem to play a critical role to 
assemble functional inflammasomes, as proteolytic cleavage of 
their N-terminal by pathogen components of Bacillus anthracis 
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FiGuRe 1 | inflammasome sensors and activators. A wide variety of pathogenic ligands and intracellular mediators are involved in inflammasome assembly. 
NLRP1b responds to proteolytic cleavage on their N-terminal induced by lethal toxin of Bacillus anthracis. NLRP3 is a general sensor of cellular damage that 
responds to intracellular harm induced by pathogenic or sterile insults. NLRC4 recognizes bacterial proteins via NLR family-apoptosis inhibitory proteins (NAIPs) and 
can assemble inflammasomes with or without recruiting ASC, similar to NLRP1b. Absent in melanoma 2 (AIM2) and interferon-inducible protein 16 (IFI-16) sense 
dsDNA through their HIN-200 domains; meanwhile, RIG-1 activates caspase-1 through an inflammasome assembly after it detects ssRNA. Pyrin inflammasome is 
induced by bacterial toxins that modify RhoA GTPase. DAMPs, danger-associated molecular patterns; PAMPs, pathogen-associated molecular patterns; ssRNA, 
single strand RNA, dsDNA, double strand DNA.
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is required for their activation (30, 31). Furthermore, the pres-
ence of a CARD domain in the C-terminal allows the direct 
interaction and activation of caspase-1 without the presence of 
any other adaptor proteins like the apoptosis speck-like protein 
with a CARD domain (ASC), even though ASC incorporation to 
the platform enhances the processing of IL-1β (32), and in human 
THP-1 monocyte cell line, ASC is required for NLRP1 activation 
(33). In contrast, mouse NLRP1a could form an inflammasome 
independent of ASC (34).

A genetic study of families with vitiligo with or without 
other autoimmune diseases has revealed a link between these 
autoimmune disorders and the presence of polymorphisms in 
NLRP1 gene (35). Recently, a novel gain-of-function mutation 
in NLRP1 gene that predisposes to inflammasome activation has 
been associated with NLRP1-associated autoinflammation with 
arthritis and dyskeratosis autoinflammatory syndrome (36). This 
syndrome is characterized by diffuse skin dyskeratosis, autoin-
flammation, autoimmunity, arthritis, and elevated transitional 
B-cells (36) (Table 1). Furthermore, NLRP1 mutations have been 
implicated in non-fever inflammasome-related disorders, in par-
ticular with two overlapping skin disorders: multiple self-healing 
palmoplantar carcinoma and familial keratosis lichenoides 
chronica, demonstrating that NLRP1 has an important role 
controlling skin inflammation (33).

The most prominent member of NLR family in the study 
of hereditary autoinflammatory syndromes is NLRP3. Indeed, 

gain-of-function mutations on NLRP3 gene have been identified 
in patients with cryopyrin-associated periodic syndromes (CAPS, 
see below) (59, 60) (Table 1). NLRP3 contains the three canonical 
domains described in the NLRP family: PYD, NBD, and LRR, and 
it is able to assemble a functional inflammasome in response to a 
wide variety of triggers, suggesting that it could be a global sensor 
of cellular damage and different pathogens (5).

Besides NLRP3, formation of active inflammasomes triggered 
by a bacterial infection has only been described in vitro for other 
two members of NLRP family: NLRP7 (61) and NLRP12 (62). 
Interestingly, NLRP12 displays a sequence similar to NLRP3, 
and it is predominantly expressed in myeloid-monocytic cells 
(63). In some cases, genetic studies of symptomatic patients with 
CAPS-like syndrome without mutations in NLRP3 revealed the 
presence of mutations in NLRP12 gene (56, 57). In vitro study 
of these NLRP12 variants has shown an increase in the activity 
of caspase-1 and the secretion of IL-1β, suggesting the potential 
role of NLRP12 mutations in CAPS-like syndrome-associated 
inflammation (Table 1) (58, 64).

NLRC4 is another well-known member of the NLR family 
assembling functional inflammasomes in response to pathogens. 
NLRC4 is a component of a detection system for bacterial proteins 
such as flagellin and several components of the type III secretion 
system (65, 66). As a member of the NLRC subgroup, NLRC4 
contains a C-terminal CARD besides of NBD and LRR domains, 
but unlike other NLR sensor proteins, NLRC4 requires of sensors 
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TAbLe 1 | Molecular and clinical features of autoinflammatory diseases associated with mutations in inflammasome sensor proteins.

Disease Disease symptoms Clinical treatment inflammasome 
sensor

Gene Mutations 
detected 

(references)

Mouse model 
(references)

CAPS Systemic activation Anakinraa NLRP3 NLRP3 (37–40) (41–45)
Urticarial rash Rilonacepta

CNS: deafness, cephalea, meningitis Canakinumaba

Musculoskeletal
Amyloidosis

FMF Periodic fever Colchicinea Pyrin MEFV (39, 46–48) (49, 50)
Serositis/arthritis Anakinra
Myalgia Canakinumab
Erysipeloid rash
Amyloidosis

PAAND Fever Anakinrab Pyrin MEFV (51) –
Neutrophilic dermatosis
Myalgia/myositis

AIFEC Early onset recurrent macrophage activation syndrome Dexamethasoneb NLRC4 NLRC4 (52–54) (55)
High levels interleukin (IL)-18 Cyclosporineb

IL-18-binding proteinc

CAPS-like 
syndrome

Cold triggered NSAIDSb NLRP12 NLRP12 (56–58) –
Arthralgia–myalgia Anti-IL-1b

Fever
Urticarial rash

NAIAD Recurrent fever Acitretinb NLRP1 NLRP1 (36) –
Dyskeratosis Anti-IL-1b

Arthritis
Metaphyseal abnormalities

FKLC Symmetric hyperkeratotic lichenoid papules UVB phototherapyb NLRP1 NLRP1 (33) –

MSPC Multiple recurrent keratoacanthoma Surgeryb NLRP1 NLRP1 (33) –
Palmar-plantar-eye
Risk of squamous cell carcinoma

AIFEC, autoinflammation with infantile enterocolitis; CAPS, cryopyrin-associated periodic syndromes; FKLC, familial keratosis lichenoides chronica; FMF, familial Mediterranean fever; 
MSCP, multiple self-healing palmoplantar carcinoma; NAIAD, NLRP1-associated autoinflammation with arthritis and dyskeratosis; PAAND, pyrin-associated autoinflammation with 
neutrophilic dermatosis.
aApproved clinical treatment.
bClinical treatment approach.
cEmergency compassionate-use Investigational New Drug authorization.
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co-receptors, termed NLR family-apoptosis inhibitory proteins 
(NAIPs), that recognize the pathogen proteins in the cytoplasm 
and oligomerize NLRC4 (67, 68). Similar to NLRP1, NLRC4 
could interact directly with pro-caspase-1 through their CARD 
domain generating an inflammasome with a less efficient state 
of activation, and the association with the adaptor protein ASC 
is important to amplify the activation of caspase-1 (69). Gain-of-
function mutations in NLRC4 gene are associated with early onset 
autoinflammation with enterocolitis or recurrent macrophage 
activation syndrome depending on the mutation (Table 1) (52, 
54). These patients are characterized by mutations in the NBD 
region of NLRC4 and benefits from recombinant human IL-18-
binding protein therapy (53). The autoinflammatory-associated 
NLRC4 mutation H443P is able to constitutively activate cas-
pase-8 and induce apoptosis via interaction with the component 
of the 26S proteasome Suppressor of Gal 1 and with ubiquitinated 
cellular proteins (70).

All inflammasome sensor proteins are activated in response 
to different pathogen and danger signals, suggesting that each 
activator triggers the formation of its own particular inflam-
masome complex. Interestingly, a recent work describes the 
recruitment of two sensor proteins (NLRC4 and NLRP3) to 
the same inflammasome complex as a result of the recogni-
tion of different danger signals from the same pathogenic  
infection (71).

Pyrin is another important inflammasome-forming protein 
(72). This protein contains an N-terminal PYD domain that is 
responsible for their interaction with ASC and later activation of 
caspase-1, a central coiled-coil domain and a C-terminal B30.2/
SPRY domain that is not present in the mouse orthologous pro-
tein. The pyrin-inflammasome assembly could be triggered after 
sensing the activity of bacterial toxins from different species that 
covalently modify switch-I region of Rho family proteins (73). In 
addition, mutations in the gene that codify pyrin, MEFV gene, are 
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found in symptomatic patients with hereditary autoinflammatory 
disorders (see below and Table 1) (46).

iNFLAMMASOMe ADAPTOR AND 
eFFeCTOR PROTeiN ASSeMbLY

Inflammasome sensor proteins are involved in the recognition 
of particular danger stimulus and then initiate the assembly of 
inflammasome multimeric complex; in most inflammasomes, the 
interaction with an adaptor protein is required to enhance the 
activation of caspase-1. The protein ASC (also known as Pycard) 
is the ubiquitous adaptor for inflammasomes, and its interaction 
with the active inflammasome sensor protein induces a prion-like 
oligomerization process essential for the final structural confor-
mation of the inflammasome. ASC is composed by two death-fold 
domains, a N-terminus PYD and a C-terminus CARD (74, 75). 
For those inflammasome sensor proteins associated with autoin-
flammatory disorders, i.e., NLRP3 or pyrin, their PYD domain 
is responsible for ASC recruitment via PYD–PYD homotypic 
interactions inducing the formation of filamentous structures that 
assemble into a large protein aggregate (76). Caspase-1 activation 
occurs within this aggregate, and interestingly, the same process 
of polymerization for ASC and pro-caspase-1 has been shown 
independent of the inflammasome sensor protein activated (77).

Recent works have provided additional information about 
the interactions between the components of the inflammasome, 
suggesting an initial self-nucleation of the sensor protein (NLRP3 
or AIM2) promoting the assembly of helical ASC filaments via 
PYD homotypic interaction (78, 79). These ASC filaments, gen-
erated after multiple PYD interactions, expose CARD domains 
in the outer part of the filament and consolidate the inflamma-
some aggregation with an appropriated cross-linking between 
filaments via CARD–CARD interactions (80). The multiple 
oligomerization of pro-caspase-1 with the ASC filaments also 
occurs via CARD–CARD interactions and amplifies the danger 
signal started by the sensor protein (81).

NLRP3 iNFLAMMASOMe  
ACTivATiON PATHwAYS

The activation of NLRP3 inflammasome appears in response to 
infection and is amplified by danger signals triggered during the 
infection, or by tissue injury or alterations in tissue homeostasis 
without infection. As it was described before, the majority of 
inflammasome sensor proteins are able to recognize different 
pathogen-associated molecules (bacterial proteins, toxins, and 
nucleic acids) and therefore activate inflammasome assembly 
in response to a microbial or viral infection. NLRP3 sensor is 
particularly able to oligomerize in response to a wide variety of 
stimuli that include pathogen molecules such as bacterial cell wall 
components or pore-forming toxins (nigericin and maitotoxin), 
endogenous danger signals like extracellular ATP, amyloid-β 
aggregates, uric acid crystals, or metabolic dysfunction, and 
pollutant particles as silica, asbestos, or alum (5, 82). The direct 
interaction between this broad range of activators and NLRP3 
seems unlikely, and therefore it is suggested that NLRP3 is able 

to sense the cellular stress associated with the exposition to these 
agents. The precise molecular mechanism involved in the NLRP3 
inflammasome activation remains elusive although recent stud-
ies begin to uncover the molecules and the cellular machinery 
responsible for this process (17, 83, 84).

Maintenance of ion gradients between different cellular 
compartments and between the cytosol and the extracellular 
environment is a feature of all living cells. Any alteration of 
this homeostasis will induce molecular mechanisms to respond 
and adapt to this aggression. Significant decrease of intracel-
lular K+ is indeed detected during NLRP3 activation after the 
treatment with microbial pore-forming toxins or after P2X7 
receptor engagement by extracellular ATP (85), where the 
hemichannel pannexin-1 plays a critical role (86). Interestingly, 
decrease of intracellular K+ is also detected during the NLRP3 
inflammasome activation along with other sterile inductors as 
the decrease of osmolarity (3) or metabolic lipids (87), sug-
gesting that intracellular K+ concentrations could be one of the 
common mechanisms involved in the activation of the NLRP3 
inflammasome; however, its mechanism of function is not well 
understood (88–90).

In addition to the decrease of intracellular K+, a mobilization 
of Ca+2 in the cytosol is also detected in most of the stimulus that 
activates NLRP3. The ER is the main reservoir for intracellular 
Ca+2, and its mobilization as a consequence of the activation 
of inositol trisphosphate receptor has been observed during 
NLRP3 activation induced with different stimuli. The activa-
tion of P2X7 receptor also induces an influx of Ca+2 from the 
extracellular space; however, in this cellular context, the block-
age of extracellular Ca+2 influx does not inhibit NLRP3 inflam-
masome, and artificial mobilization of Ca+2 is not sufficient 
to trigger the NLRP3 inflammasome activation in absence of 
K+ depletion (12, 14, 91). Cell swelling after hypotonic shock 
activates transient receptor potential cation channels (TRPM7 
and TRPV2) involved in the modulation of intracellular Ca+2 
that is crucial for the transforming growth factor beta-activated 
kinase 1 activation. These molecular events are required in 
combination with K+ efflux for NLRP3 inflammasome assembly 
(3). In addition, several works show evidences that extracel-
lular Ca+2 can trigger mechanisms that activate inflammasome 
through G protein-coupled receptors (92, 93). The activation of 
these receptors leads to the mobilization of intracellular Ca+2 
via phospholipase C activation with a concomitant reduction of 
cyclic AMP (cAMP) (92). The effect of this reduction in cAMP 
will be discussed later in the context of the negative regulation 
mechanisms of NLRP3. Interestingly, elevated concentrations 
of extracellular Ca+2 have been detected at infection sites or in 
ischemic injury, suggesting that extracellular Ca+2 would play a 
role as a DAMP (93).

Alteration of lysosomal function after phagocytosis of 
molecular crystals has been described as an additional activation 
process of NLRP3 inflammasome, possibly as a consequence of 
the activity of released lysosomal proteases altering the integrity 
of cellular organelles (94). Furthermore, other cellular stress asso-
ciated with the intracellular ionic mobilization, as the induction 
of ER stress, is able to activate NLRP3 inflammasome in a K+ 
efflux-dependent manner. In this process, the endoribonuclease 
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inositol-requiring enzyme 1α, an unfolded protein sensor 
expressed in ER, is required to activate the NLRP3 inflammasome 
(95, 96). Taken together, these data show that changes in intracel-
lular ion concentration play a key role in the activation of NLRP3 
inflammasome, although their precise molecular mechanism 
remains unclear.

Besides ion fluxes, changes in the cellular oxidative state is a 
common process detected during NLRP3 inflammasome activa-
tion, being mitochondrial damage one of the main source of reac-
tive oxygen species (ROS) (97). Interestingly, several works link 
mitochondrial ROS production with changes in the intracellular 
concentration of K+ and Ca+2, which would induce depolarization 
of the mitochondrial membrane (91, 98). Mitochondrial ROS 
production has also been described as a novel NLRP3 activation 
mechanism involving a decrease of NADH levels after disruption 
of the glycolytic flux (82). Mitochondria have also been suggested 
as a cellular platform to assemble the NLRP3 inflammasome. The 
activation of NLRP3 induces its relocation from the ER to the 
proximity of the mitochondria in the perinuclear environment 
(97, 99). This recruitment requires the reorganization of the 
microtubule system (100). Moreover, the mitochondria may also 
release other molecules implicated in the activation of NLRP3 
inflammasome as cardiolipin (101) or oxidized mitochondrial 
DNA (102, 103), and it has been shown that mitochondrial 
antiviral-signaling protein interacts with the PYD of NLRP3, 
being essential for their activation after the stimulation with 
ATP or nigericin but not with crystals (99). All these data point 
out the essential role of mitochondria in NLRP3 inflammasome 
activation.

Finally, caspase-4, and its mouse orthologous caspase-11, acti-
vates NLRP3 after recognition of cytosolic LPS (104, 105). This 
signaling is known as the non-canonical NLRP3 inflammasome 
activation pathway, and although the mechanism of caspase-
4-inducing NLRP3 activation is not known, it is also dependent 
on the decrease of intracellular K+ (106–108).

ReGuLATORY MeCHANiSMS  
OF NLRP3 iNFLAMMASOMe

Several proteins have been described as positive or negative 
regulators of the NLRP3 inflammasome assembly (Figure  2). 
Guanylate-binding protein 5 binds via its GTPase domain to the 
PYD of NLRP3 during inflammasome activation by most of the 
stimuli except crystalline agents. This interaction promotes the 
oligomerization of NLRP3 with ASC (109). Furthermore, several 
works have described that, during ATP stimulation, NLRP3 
deubiquitination mediated by the Lys63-specific deubiquitinase 
BRCC3 is an early process essential for inflammasome activation 
(110–112).

Recent works have revealed a new NLRP3 inflammasome 
regulatory molecule, the never-in-mitosis A-related kinase 7 
(NEK7), a serine, and threonine kinase required for mitosis 
progression (113). This protein interacts with the LRR domain of 
NLRP3 upstream of NLRP3 inflammasome assembly independ-
ent of their kinase activity (114). This interaction is required 
for NLRP3 inflammasome oligomerization and introduces a 

new component of inflammasome regulation, the restriction of 
NLRP3 inflammasome formation to cells in interphase (115). 
Moreover, the absence of NEK7 in cellular models harboring 
frequent CAPS-associated mutations in NLRP3 reduces their 
ability to activate caspase-1, while the association between NEK7 
and mutant NLRP3 is stronger (114, 115). Further investigation 
is required to elucidate the role of NEK7 in the auto-activation of 
NLRP3 inflammasome in autoinflammatory syndromes.

Maintenance of low NLRP3 protein levels avoids the auto-
assembly of NLRP3 inflammasome in the absence of a danger 
stimulus; therefore, transcriptional regulation of NLRP3 is an 
additional control mechanism to avoid unexpected inflamma-
some activation. Transcriptional regulation of NLRP3 requires 
NF-κB activation by TLR or IL-1 receptor type I (IL-1RI) signal-
ing to increase NLRP3 protein concentration to certain level that 
can be activated after sensing a triggering stimulus (116, 117). 
Furthermore, the amount of NLRP3 mRNA is tightly regulated 
in myeloid cells through the microRNA miR-223, although this 
miRNA is not regulated by pro-inflammatory signals (118). In 
addition, under unstimulated conditions, NLRP3 is inhibited 
by posttranslational modifications with ubiquitin chains that 
also target NLRP3 for its degradation through proteasome or 
autophagy as will be described later (112). Other mechanism 
involved in the inhibition of the NLRP3 activity is the post-
translational modification of NLRP3 generated by the activation 
of inducible nitric oxide synthase. The increase of nitric oxide 
leads to the S-nitrosylation of NLRP3 impairing the assembly of 
the inflammasome, and this mechanism is suggested as a protec-
tive mechanism (119, 120). Therefore, the control of functional 
NLRP3 concentration within the cell is crucial for the activation 
of the inflammasome.

In addition to these negative regulatory mechanisms, two 
families of proteins containing CARD (COPs) or PYD (POPs) 
that could sequester either sensor proteins or effector proteins 
through PYD–PYD and CARD–CARD interactions have been 
described (121). In the absence of mutations, pyrin is also 
suggested to be a key regulator for the degradation of several 
inflammasome components (caspase-1, NLRP1, and NLRP3), 
preventing an excessive release of pro-inflammatory cytokines 
(122, 123). However, a recent work shows that the absence 
of pyrin in a mouse model leads to an increase in the release 
of IL-1β without affecting different inflammasome assembly 
(124). Therefore, the role of pyrin as an inflammasome inhibitor 
remains to be determined, and different domains among human 
and mouse pyrin proteins should be taken into account.

Cellular damage implicated in the activation of the NLRP3 
inflammasome also activates autophagy, a mechanism involved 
in the clearance of intracellular pathogens and damaged orga-
nelles (102, 125). Autophagy is a negative mechanism to control 
the induction of the inflammatory response given its involve-
ment in the degradation of damaged mitochondria, including 
molecular NLRP3 inflammasome inductors as mitochondrial 
DNA or ROS (102, 126, 127), the clearance of ASC specks (125), 
and pro-IL-1β (128). Ubiquitinated NLRP3 could be directed to 
the autophagosome for degradation by a complex with cAMP 
that recruits the E3 ubiquitin ligase MARCH7 (129, 130). This 
molecular mechanism can be triggered by activators of the 
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adenylate cyclase as the neurotransmitter dopamine (130). 
Furthermore, an alternative negative regulatory mechanism has 
been described for NLRP3 inflammasome involving cAMP. The 
increase of cAMP induced by prostaglandin E2 signaling via 
prostaglandin E2 receptor 4 activates protein kinase A that phos-
phorylates NLRP3 in their NBD domain reducing its ATPase 
activity and oligomerization (131). Interestingly, this negative 
regulation could be disrupted by certain CAPS-associated muta-
tions in the NBD of NLRP3 (114).

PYRiN iNFLAMMASOMe ACTivATiON 
PATHwAYS AND ReGuLATORY 
MeCHANiSMS

Recent data begin to unveil the mechanism involved in pyrin-
inflammasome activation, as well as a protective mechanism 
concerned in blocking pyrin-inflammasome assembly. The 
inactivation of the RhoA GTPase by bacterial modification 
induces the activation of the pyrin inflammasome (73), 
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suppressing a protective mechanism that avoids pyrin inflam-
masome activation through their downstream phosphoryla-
tion by serine/threonine-protein kinase N1 and N2 (132). This 
mechanism requires the phosphorylation of certain amino 
acids of pyrin (S208 and S242 in human) allowing their binding 
to regulatory protein 14-3-3 and blocking the formation of the 
pyrin inflammasome (51, 132). Pyrin inflammasome activation 
through bacterial toxins is detected in human and mice, indi-
cating that the C-terminal B30.2/SPRY domain, present only in 
human, is not required for their activation (133). Interestingly, 
this domain harbors most of the mutations detected in familial 
Mediterranean fever (FMF) patients, although some muta-
tions affect one of the serine, in other domain of the protein, 
described as a key amino acid in the protective mechanism 
against the uncontrolled activation of pyrin inflammasome 
(see below). The inhibition of microtubule polymerization by 
colchicine abolishes pyrin inflammasome assembly induced 
by bacterial toxins, without affecting pyrin dephosphoryla-
tion (133, 134). However, this control of pyrin inflammasome 
activation leaded by microtubules is not effective in FMF 
patients that harbor mutations in B30.2/SPRY domain (133), 
suggesting that these mutations may force a protein conforma-
tion that aids the assembly of pyrin inflammasome after their 
dephosphorylation.

iNFLAMMASOMe-ASSOCiATeD 
SeCReTOMe

The formation of inflammasome leads to the activation of 
caspase-1, and this protease triggers a broad number of cel-
lular events as a consequence of its catalytic activity, including 
the release of cytosolic proteins associated with a specific type 
of cell death termed pyroptosis. Specifically, the analysis of the 
secretome associated with caspase-1 has revealed the key role of 
this protease in the unconventional secretion of multiple essential 
molecules involved in the inflammatory process. From them, the 
cytokine IL-1β is one of the most prominent and critical products 
of inflammasome activation, since it is a key regulator of the 
inflammatory response and is the most important current target 
of therapeutic treatments for autoinflammatory syndromes. The 
synthesis of IL-1β mRNA and the production of the inactive pre-
cursor form of IL-1β are strongly induced by microbial products 
such as LPS signaling via TLR or by IL-1 itself signaling through 
the IL-1RI (135). Caspase-1 is able to process the inactive pre-
cursor form of IL-1β to its mature bioactive form and induce its 
release. Similarly, caspase-1 is also responsible to the maturation 
of the inactive IL-18 precursor, another IL-1 family cytokine, to 
its bioactive form (136).

Both IL-1β and IL-18 are the canonical cytokines signaling 
downstream inflammasome activation, but beyond these cas-
pase-1 substrates, caspase-1 also controls the unconventional 
release of other cytosolic proteins (FGF-2, thioredoxin, and 
annexins), lysosomal proteins (cathepsins and cystatins), or 
nuclear proteins (HMBG1, IL-1α) that are not direct substrates 
of the protease (13, 14). In addition, caspase-1 also controls the 
release of large complex protein aggregates as ASC inflammasome 

oligomers that are now able to spread caspase-1 activation to 
adjacent cells and maintain inflammasome signaling (11, 15).

Unconventional protein release induced by caspase-1 has 
been widely studied for IL-1β, a cytokine that does not follow 
the conventional route of protein secretion through ER or Golgi. 
Different mechanisms of unconventional secretion have been 
explored to explain this process including the release through 
exocytosis of secretory lysosomes (137) or extracellular vesicles 
released after NLRP3 inflammasomes activation (138, 139). 
Caspase-1-induced pyroptosis is associated with an increase in 
plasma membrane permeation that may help a passive release 
of IL-1β (140). The destabilization of cell membrane integrity 
during pyroptosis is induced by the cleavage of the cytosolic 
substrate gasdermin D by caspase-1 or caspase-4; gasdermin D 
N-terminus integrates into the plasma membrane forming pores 
(141–143). The application of membrane stabilizing agents, as the 
complex polyphenol punicalagin, prevents the execution phase of 
pyroptosis and release of mature IL-1β from macrophages after 
NLRP3 inflammasome activation, suggesting that loss of plasma 
membrane is involved in this secretion in parallel with cell death 
(144). Interestingly, the stabilization of the plasma membrane 
by punicalagin inhibits the release of IL-1β in neutrophils in the 
absence of cell death (144). Therefore, the secretion of bioactive 
form of IL-1β requires membrane permeation and may occur in 
secreting cells as neutrophils where NLRP3 inflammasome does 
not induce pyroptosis (145, 146). Initially, these mechanisms are 
not mutually exclusive and may participate in the secretion of 
IL-1β depending on the intensity of the stimulus and cell type. 
The release of other caspase-1-dependent secretome proteins is 
less studied, and the involvement of pyroptotic cell death in this 
process is not known, neither its contribution to the pathophysi-
ology of autoinflammatory syndromes.

iMPLiCATiONS OF NLRP3 
iNFLAMMASOMe iN CAPS

Cryopyrin-associated periodic syndromes are rare hereditary 
autosomal-dominant autoinflammatory diseases with an esti-
mated prevalence of 1–3 cases per million of inhabitants (147, 
148). They include familial cold urticaria syndrome (FCAS) (59), 
Muckle–Wells syndrome (MWS) (149), and chronic infantile 
neurological cutaneous and articular (CINCA) syndrome also 
known as neonatal onset multisystemic inflammatory disease 
(NOMID) (150). All three syndromes were independently 
described and latterly found to be caused by gain-of-function 
mutations in the NLRP3 gene, located in the short arm of chro-
mosome 1 (1q44) (37, 38). Mutant NLRP3 drives a constitutive 
hyperactivity of inflammasome, activation of caspase-1, and an 
excessive unregulated release of IL-1β, although systemic circu-
lating levels of IL-1β during inflammatory flares are in most cases 
undetectable (11, 147).

Clinical features of CAPS are related to systemic effects of 
IL-1β-inducing fever, malaise, fatigue, and chronic pain along 
with a blood serum rise of acute-phase reactants, such as 
C-reactive protein and serum amyloid A. CINCA/NOMID is 
characterized for an almost continuous early onset inflammatory 
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state with fever and non-pruritic migratory urticaria-like rash; 
central nervous system symptoms and arthropathy are common. 
MWS shows a moderate phenotype with latter onset of fever, 
rash, arthralgia, conjunctivitis, uveitis, sensorineural deafness, 
and potentially life-threatening amyloidosis. FCAS is a milder 
familial condition characterized by febrile urticarial rash with 
headache, arthralgia, and sometimes conjunctivitis but no 
central nervous system symptoms and is typically triggered by 
cold exposure. FCAS, MWS, and CINCA/NOMID are consid-
ered a clinical continuum than distinct diseases as intermediate 
phenotypes occur; being FCAS the mildest and CINCA/NOMID 
the most severe forms (151). Neurologic manifestations in CAPS 
are common including headache, sensorineural hearing loss, 
myalgia, chronic aseptic meningitis, increased intracranial pres-
sure, cerebral atrophy, seizures, and mental retardation (152). 
Musculoskeletal symptoms in CAPS are also very frequent; up 
to 86% may have any musculoskeletal manifestation during fol-
low up, 30% at onset. In a large cohort, these included arthralgia 
in 86% and arthritis in 58%; joint destruction and typical 
knee deformities appeared rarely (9% and 2%, respectively). 
Tendinopathies occurred in 21.5%, tender points in 16.5%, and 
myalgia in 33% of patients (153).

To date, a total of 177 variants of NLRP3 gene have been 
included in infevers database (39), most of them located in 
exons 3 or 4 and intron 4. Among them, the most frequent is 
R260W (40, 148) and are associated with a milder phenotype 
along with A439V. The variants, T348M and D303N, and low 
frequency mutations are associated with a severe phenotype; 
E311K accounts for a high rate of hearing loss. On the other hand, 
Q703K or V198M variants have little clinical significance and are 
considered a functional polymorphism and a low penetrance 
variant, respectively. Clinically affected patients with no germline 
mutations could have an NLRP3 somatic mosaicism (154–156). 
The highly heterogeneous phenotypes within identical genotypes 
show the need for advancing the underlying understanding of the 
pathophysiological mechanisms.

The relevance of NLRP3 mutations as key players in the induc-
tion of these autoinflammatory syndromes has been explored in 
animal models. Specifically, the development of knock-in mouse 
strains harboring some of the frequent mutations detected in 
CAPS syndrome has demonstrated the pivotal role of IL-1β 
and the innate immunity in the pathogenesis of this syndrome; 
meanwhile, the adaptive immune system seems not to be 
involved (41). These animal models exhibit an autoinflammatory 
disease similar to that in humans associated with an inflamma-
some hyperactivation and unregulated release of IL-1β (41–43). 
Humanized mice expressing CAPS-associated mutation D305N 
present an increased sensitivity to endotoxin and develop pro-
gressive and debilitating arthritis (44). Furthermore, the study 
of these knock-in animal models has revealed the critical role of 
microbiota as inducer of disease, and myeloid and mast cells as 
cellular sources of IL-1β in the development of the skin inflam-
mation (42). In addition, the study of these CAPS-like animals 
has revealed the key role of IL-18 in the early tissue inflammation 
and suggests the presence of other players beyond IL-1β and 
IL-18 that are involved in inflammatory activities associated 
with the pyroptosis and possible by the caspase-1-associated 

secretome (45). A recent study with blood monocytes from 
patients affected by CAPS detected a high level of cellular stress 
including elevated levels of ROS compared with healthy subjects 
(157). Interestingly, associated with this oxidative stress, there is 
a reduction in the production of the anti-inflammatory cytokine, 
IL-1 receptor antagonist (IL-1Ra) (158), as well as a decrease in 
the threshold of inflammasome activation of CAPS monocytes 
(159). The exposure of this monocyte to inflammatory stimuli 
such as LPS induces an increase in the release of ATP that pro-
duces an increase in the secretion of IL-1β, IL-18, and IL-1α 
(159). These data collectively suggest the involvement of genetic 
and environmental factors beyond a single mutation that needs 
to be explored to obtain a more accurate clinical picture of this 
disease.

THe PYRiN iNFLAMMASOMe  
AND iMPLiCATiONS iN FMF AND  
PYRiN-ASSOCiATeD 
AuTOiNFLAMMATiON wiTH 
NeuTROPHiLiC DeRMATOSiS (PAAND)

The inflammasome sensor protein pyrin is primarily expressed in 
myeloid cells, and wild-type pyrin negatively modulates NLRP3 
inflammasome-dependent IL-1β release (160). However, muta-
tions in the MEFV gene (that codify for pyrin) are associated 
with two clinically different autoinflammatory syndromes: FMF 
and PAAND (51); in both diseases, mutated pyrin associates with 
high serum IL-1β levels during febrile episodes.

Familial Mediterranean fever is the most common inherited 
monogenic autoinflammatory disease worldwide and is caused by 
loss-of-function mutations in MEFV gene, mostly affecting east-
ern Mediterranean population (161). Classically considered an 
autosomal recessive condition, it is actually discussed if it should 
be considered an autosomal-dominant disease with variable pen-
etrance, since heterozygosis mutations are associated with clinical 
autoinflammatory FMF manifestations (162). Nevertheless, 
homozygosis is associated with severe FMF phenotypes.

Familial Mediterranean fever patients typically show recur-
rent self-limited acute febrile attacks of 1–3  days of duration, 
accompanied by inflammation of serosa and/or synovial linings 
(90% abdominal pain, 40% arthritis, and 30% thoracic pain), 
myalgia (40%), and erysipeloid type rash (20%). Onset before the 
age of 18 is common and has been associated with higher rates 
of arthritis, arthralgia, myalgia, and erysipeloid-like rash (163). 
Pleuritis, pericarditis, scrotal pain, aseptic meningitis, thrombo-
sis, and vasculitis may appear during flares, but FMF can also be 
associated with many other disorders in a non-canonical manner 
(164). The most severe complication of FMF is amyloidosis as 
a result of chronically uncontrolled inflammation that occurs in 
undiagnosed or untreated patients; it is more likely to occur in 
patients with recurrent arthritis (165). Renal amyloidosis seldom 
occurs as the first clinical manifestation of FMF, and these indi-
viduals are referred as phenotype II patients (166). Homozygosis 
in serum amyloid A gene 1 (alpha/alpha) and male sex have 
shown influence on the risk of developing amyloidosis in FMF 
patients (167, 168).
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Over 300 MEFV gene variants have been described (39), but 
only 14 occur frequently in FMF (E148Q, E167D, T267I, P369S, 
F479L, I591T, M680I, I692del, M694I, M694V, K695R, V726A, 
A744S, and R761H). The majority of pathogenic mutations are 
located in exon 10, being M694V the most frequent MEFV muta-
tion encountered in FMF patients; its presence in homozygosis 
or compound heterozygosis is related to severe phenotype. In 
exon 2, E148Q is the most frequent MEFV variant in asympto-
matic carriers and in some population subsets, it may even be a 
benign polymorphism (47); it is present in FMF patients with a 
mild phenotype (48). Diagnosis of FMF is sometimes elusive and 
is made under clinical basis. Validated diagnostic criteria include 
typical clinical manifestations, family history, and response to 
colchicine therapy (169). Genetic testing leads to higher rates 
of diagnosis (170, 171), supporting but not excluding clinical 
diagnosis (172). Inconsistency among similar phenotypes may 
be explained by major histocompatibility class I chain-related 
gene A alleles, as shown in a study on homozygous M694V 
population (173).

Pyrin-associated autoinflammation with neutrophilic der-
matosis is an inherited autosomal-dominant autoinflammatory 
disease characterized by childhood onset. This autoinflam-
matory syndrome is characterized by recurrent episodes of 
neutrophilic dermatosis, fever, elevated acute-phase reactants, 
arthralgia, and myalgia or myositis (51). PAAND is caused 
by a loss in guard mechanism of pyrin due to S242R muta-
tion that leads to a non-phosphorylated pyrin in S242 (51). 
Dephosphorylated pyrin loses interaction with the protein 
14-3-3 and thus forming a constitutive active inflammasome 
by recruiting ASC (51). Mutations and clinics of PAAND are 
distinct from FMF because of a clearly dominant inheritance 
pattern and for its longer fever episodes (lasting weeks), more 
prominent cutaneous features, and absence of serositis or amy-
loidosis (51). Currently, it is not fully understood how muta-
tions in two regions of the same protein can induce different 
diseases. FMF-related mutations have recently been found to 
induce a pyrin-inflammasome that could be dephosphorylated 
by RhoA GTPase and not inhibited by colchicine, questioning 
the critical dependency on microtubules for ASC aggrega-
tion and inflammasome activation (133). PAAND-associated 
mutations in MEFV gene are associated with a reduction in 
the binding of pyrin to microtubules, decreasing the threshold 
to assemble pyrin inflammasome. It is not known if PAAND 
syndrome-associated pyrin inflammasome is dependent on 
microtubules, although the use of colchicine has shown partial 
clinical benefit in this patient (51). Cutaneous manifestations 
of PAAND resemble other autosomal-dominant monogenic 
autoinflammatory disease called pyogenic arthritis, pyoderma 
gangrenosum, and acne (PAPA) syndrome, in which arthritis is 
the distinct and prominent feature. PAPA is caused by mutations 
at proline–serine–threonine phosphatase-interacting protein 
1 gene (174). This protein is a cytoskeleton-associated adap-
tor protein that interestingly binds pyrin and regulates IL-1β 
production (175). The generation of knock-in mice with FMF-
associated pyrin mutation (harboring a human C-terminal 
B30.2/SPRY domain that is absent in mouse Mefv gene) has 
shown data supporting the activation of a pyrin-inflammasome 

and an increase of IL-1β in this animal model independent of 
NLRP3 (49). Furthermore, autoinflammation in this animal 
model is dependent on the ASC-caspase-1 axis and IL-1β, 
whereas IL-1α and caspase-8 are dispensable for the inflam-
mation observed in this FMF model (50).

CuRReNT THeRAPeuTiCS TARGeTiNG 
THe iNFLAMMASOMe PATHwAY

Inflammasomes are main drivers of autoinflammatory diseases as 
well as important regulators of innate immunity and inflamma-
tion. Although specific drugs that directly interfere with inflam-
masome activation are under development, current treatments 
used in clinic target upstream regulation process, in the case of 
colchicine, or downstream IL-1 signaling (176).

Colchicine is the classical mainstay treatment for FMF (177), 
decreasing attack frequency, improving quality of life, and pre-
venting amyloidosis (178, 179). Clinical response to colchicine 
is considered a supportive diagnostic criterion for FMF, but 
it shows no benefit in CAPS patients. Colchicine is known to 
directly recover activity of the GTPase RhoA and therefore 
suppresses pyrin oligomerization but is also able to interfere 
with neutrophil migration and adhesion by downregulating 
the expression and distribution of selectins on neutrophils 
and endothelial cells (180). Interestingly, pyrin associates with 
microtubules and colocalizes with actin filaments (181). Thus, 
colchicine treatment may also prevent cytoskeletal changes 
that favor pyrin inflammasome assembly. However, recent data 
have shown that microtubule polymerization is not a require-
ment for pyrin inflammasome activation in FMF patients in 
contrast with wild-type pyrin carriers, providing a new concept 
for understanding the molecular mechanisms present in the 
activation of pyrin inflammasome (133). Nevertheless, some 
FMF patients are resistant to colchicine, and in this subset of 
patients, IL-1 blocking agents have shown efficacy (182–184). 
Anakinra therapy was also effective in a patient diagnosed with 
PAAND (51).

As exposed above, IL-1β is one of the main products of inflam-
masome and caspase-1 activation and exerts its inflammatory 
action by binding to the IL-1RI (185), this binding is antagonized 
by the IL-1Ra, a protein that binds IL-1RI without agonistic activ-
ity preventing IL-1β binding and signaling (185).

Therapies blocking IL-1 are available for the treatment of 
CAPS and other autoinflammatory syndromes (i.e., colchicine-
unresponsive FMF patients). Anakinra is the recombinant form 
of IL-1Ra and was the first anti-IL1 agent clinically available. Due 
to its short half-life, it has to be administered by subcutaneous 
injection daily, and side effects are common at the site of injec-
tion; also liver enzymes need to be monitored regularly. There 
is a strong evidence of the effectiveness of anakinra for CAPS 
treatment (186, 187), with improvement of clinical features like 
hearing loss or amyloidosis with quick relapse of symptoms after 
withdrawal, demonstrating the requisite of daily injections in 
persistent and severe phenotypes. Despite its effectiveness, sore 
daily injections of anakinra are sometimes unpopular among 
patients, and in selected cases with mild phenotypes are possible 
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to use it on demand basis during inflammatory attacks as in other 
autoinflammatory diseases (188, 189).

Other anti-IL-1 agents have been developed with a better 
pharmacokinetic profile and are actually approved for the 
treatment of CAPS. Canakinumab is a humanized monoclonal 
antibody against IL-1β administered intravenously or subcutane-
ously at a dose of 2–4 mg/kg every 8 weeks, and it is licensed for 
treatment of CAPS patients over 4 years of age. It has shown a very 
rapid and sustained response with little side effects, mainly infec-
tions, with stabilization of the majority of sequelae and potential 
improvement in clinical manifestations such as sensory-neural 
hearing loss (190). Abnormal bone formation in CAPS patients 
is unaffected by IL-1 blockage (191), revealing that other path-
ways downstream NLRP3 inflammasome play important roles 
in the clinical manifestations. Canakinumab up-titration may 
be needed and is actually encouraged in partial responders and 
severe phenotypes, rising the dose and shortening administration 
up to 8 mg/kg every 4 weeks (192).

Rilonacept is an engineered IL-1 trap that neutralizes circulat-
ing IL-1β and IL-1α, and it is administered subcutaneously with a 
load dose of 320 mg followed by 160 mg weekly (185). After initial 
pilot study and phase III studies, rilonacept was the first drug 
approved for treatment of CAPS, including FCAS and MWS in 
children of 12 years and older, due to its safety and effectiveness 
(193, 194). Benefits were obtained within hours of its adminis-
tration with maximal effect within day 6 and 10, with mild or 
moderate adverse reactions.

Caspase-1 activation precedes IL-1β release after inflamma-
some activation; therefore, there have been advances in generat-
ing specific and clinical relevant caspase-1 inhibitors. The most 
developed caspase-1 inhibitor for therapeutic use is VX-765, an 
orally available pro-drug that is rapidly hydrolyzed by plasma and 
liver esterase into a potent and selective inhibitor of caspase-1 
(195). In fact, VX-765 was able to reduce the release of IL-1β and 
IL-18 in monocytes of patients with FCAS treated with LPS (196). 
However, its clinical use is still under investigation.

The standard goal to treat autoinflammatory syndromes, 
specially CAPS patients, will be to directly target NLRP3 inflam-
masome using small compounds, in this respect a compound 
developed by Pfizer (CP-456773 or CRID3, recently renamed 
as MCC950) has been proved to block IL-1β release in CAPS 
monocytes after LPS treatment, being able to reduce clinical 
symptoms in an animal model of CAPS (197, 198). Furthermore, 
this compound has been recently found to reduce inflammation 
in animal models of renal, dermal, and pulmonary inflammation 

(199, 200). Therefore, CP-456773 represents a promising drug for 
the treatment of autoinflammatory syndromes.

CONCLuSiON

Mutations in genes coding for inflammasome sensor proteins, 
such as NLRP3 or pyrin, accomplish for the development of dif-
ferent autoinflammatory diseases by uncontrolled activation of 
caspase-1 and the aberrant release of pro-inflammatory cytokines. 
In physiological conditions, the inflammasome pathway is acti-
vated in response to dangerous situations provoked by infections, 
tissue injury, or cellular stress, being the inflammasome formed 
by the sensor NLRP3 the most promiscuous inflammasome 
pathway activated in many different situations. Furthermore, 
non-mutated NLRP3 activation has been involved in different 
autoinflammatory syndromes, and, for example, patients with 
mutations in PLCG2 (autoinflammation and phospholipase 
Cγ2-associated antibody deficiency and immune dysregulation, 
APLAID syndrome) present an aberrant cytosolic Ca+2 signal-
ing leading to NLRP3 activation, or patients with mutations in 
the deubiquitinase OTULIN (otulipenia) result in aberrant IL-1 
production by NLRP3 activation (201, 202). NLRP3 has also been 
implicated as a key inflammasome sensor protein in different 
chronic diseases; in these circumstances, different endogenous 
danger signals activate NLRP3 and could contribute to the inflam-
matory response in metabolic and degenerative diseases, such 
as gout, type 2 diabetes, obesity atherosclerosis, or Alzheimer’s 
disease (6, 203, 204). Therefore, inflammasome is central in 
autoinflammatory diseases, and increasing our understanding on 
NLRP3 and pyrin activation may lead to development of more 
potent novel therapies for the treatment of not only autoinflam-
matory syndromes but also for chronic inflammatory, metabolic, 
and degenerative diseases.
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