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Inflammation is a protective response that eliminates harmful stimuli and restores tissue 
homeostasis, whereas the failure to resolve inflammation leads to the development of 
malignancies. Immune cells in the tumor inflammatory microenvironment endow cancer 
cells with their specific hallmarks, including mutations, metabolic reprograming, angio-
genesis, invasion, and metastasis. Targeting the inflammatory microenvironment with 
anti-inflammatory drugs (e.g., aspirin) or by enhancing antitumor immunity (e.g., chimeric 
antigen receptor T cell therapy) has been extensively investigated and has achieved 
promising results in many cancers. Recently, a novel approach promoting antitumor 
immunity via a dual anti-inflammatory and pro-resolving strategy was proposed based 
on the discovery of potent, endogenous, specialized pro-resolving mediators, including 
lipoxins, resolvins, protectins, and maresins. In this review, we describe the updated 
principal cellular and molecular mechanisms of inflammation resolution and cancer 
immunity and discuss the pro-resolution strategy in cancer treatment and prevention.
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iNTRODUCTiON

Inflammation is the protective immune response of a vascular organism that aids in the removal 
of internal and external harmful stimuli and the maintenance of tissue homeostasis (1). Acute 
inflammation seeks to repair injured tissues and eliminate unwanted elements. The ideal outcome of 
acute inflammation is complete and timely resolution with a return to homeostasis, which is actively 
programed by specialized pro-resolving mediators (SPM), including lipoxins (LXs), resolvins (Rvs), 
protectins, and maresins (MaRs) (1). SPM potently inhibit neutrophil infiltration and promote 
macrophage efferocytosis of apoptotic neutrophils in the inflammatory loci (2). However, persistent 
inflammation leads to chronic inflammation, which is categorized as either delayed-resolving or 
non-resolving (Figure 1). The symptoms and signs of chronic inflammation are not as serious as 
those of acute inflammation, but chronic inflammation is typically more risky since it can cause 
further damage (e.g., fibrosis, necrosis, organ dysfunction, and gene mutation) and an enormous 
proportion of refractory diseases [e.g., Alzheimer’s disease (AD) (3) and cancer (4)].

As early as the 1860s, Virchow indicated a link between cancer and inflammation by observing 
inflammatory cells in biopsied tumor tissues (4). Inflammatory stimuli, such as chronic infections, 
inhaled pollutants, smoking, and obesity (5), may result in DNA damage, somatic mutations, and 
tumorigenesis (6, 7). In the tumor microenvironment (TME), inflammatory cells are educated to 
accelerate cancer progression, metastasis, and immune responses against radiotherapy, chemo-
therapy, and immunotherapy (8). Therefore, targeting the inflammatory microenvironment is a 
reasonable direction for cancer treatment.
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FiGURe 1 | Mechanisms of acute and chronic inflammation. Within a few hours of stimulation (injury, trauma, stress, or infection), the release of pro-
inflammatory lipids (e.g., prostaglandin (PG), leukotriene (LT), involved in vasodilation), chemokines (e.g., C-C motif chemokine ligand 2 (CCL2), C-X-C motif ligand 8 
(CXCL8), involved in chemotaxis and adhesion), and cytokines [e.g., Tumor necrosis factor-α (TNF-α), interleukin (IL)-6] elicits the recruitment of neutrophils. Other 
immune cells [i.e., natural killer (NK) cells, macrophages, dendritic cells (DCs), B cells, and T cells] also participate in the process. NK cells kill microbes via 
complement-dependent cytotoxicity. Macrophages directly phagocytize organisms and apoptotic neutrophils, while B cells are converted to plasma cells to kill 
organisms via secreted antibodies, which are referred to as antibody-dependent cell-mediated cytotoxicity. Macrophages, B cells and DCs activate T cells via 
antigen cross presentation (AP). Homeostasis will be restored if inflammation is resolved completely, while non-resolution leads to chronic inflammation, which is 
characterized by persistent tissue infiltration by immune cells (e.g., macrophages, lymphocytes). In the extracellular zone, lymphocytes and macrophages release 
factors that result in the deposition of extracellular collagen and an excessive inflammatory response.
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Indeed, anti-inflammatory drugs have exhibited efficacy by 
improving both prognosis and survival of patients (9, 10) and in 
cancer prevention (11). Enhancing tumor immunity by blocking 
inhibitory checkpoints or using chimeric antigen receptor T cell 
(CAR-T) immunotherapy has also shown promising efficacy in 
specific cancer types. However, the side effects of these therapies, 
such as coagulopathy and the “cytokine storm,” have hindered 
their full application to cancer therapy. Consequently, a better 
endogenous mechanism for improving the tumor inflammatory 
microenvironment is urgently needed.

Specialized pro-resolving mediator-driven inflammation 
resolution is an active process, which results in catabasis and 
homeostasis. To date, endogenous SPM have been applied in mul-
tiple models of cancer and achieved promising outcomes (12–15). 
In the present review, we highlight the role of inflammation in 
cancer development (e.g., tumor immunoediting) and suggest 
the immunomodulatory potential of SPM for cancer treatment in 
light of a brand-new strategy to remodel the TME by promoting 
inflammation resolution.

CANCeR-PROMOTiNG iNFLAMMATiON

It has been well established that pathogen-induced inflam-
mation is a high-risk factor for cancer. For instance, persistent 
Helicobacter pylori infection is highly associated with gastric 
adenocarcinoma and lymphoma (16), human papilloma virus 

infection increases the risk of cervical cancer (17), hepatitis B 
and C virus infections increase the incidence of hepatocellular 
carcinoma (HCC) (18), and infection with Epstein–Barr virus is 
closely related to nasopharyngeal carcinoma (19). These causative 
agents lead to persistent infections associated with low levels of 
chronic inflammation. In addition, some autoimmune diseases 
also correlate with cancer development. Crohn’s disease and 
ulcerative colitis, also known as inflammatory bowel diseases, 
are highly associated with an increased risk of colorectal cancer 
(CRC) (20). Long-term exposure to irritants or obesity also 
induces tumor-promoting inflammation (21–23). Senescence-
associated inflammation is postulated to be another promoter 
of most solid malignances (18). Moreover, cancer therapy (e.g., 
chemotherapy and radiotherapy)-induced inflammation can 
enhance antigen cross presentation and initiation of the antitu-
mor immune response, whereas these therapies can also initiate 
inflammation by causing massive necrosis of malignant cells and 
pericarcinous tissue followed by tumor recurrence and resistance 
to therapy (18).

Tumor initiation and progression are finely immunoedited 
(24). Tumor immunoediting is divided into three phases 
(Figure  2): elimination, equilibrium, and escape (25). During 
the elimination phase, tumor cells with potent immunogenicity 
are removed by the immune system before they become clini-
cally detectable. Activated NK cells and macrophages produce 
interferon (IFN)-γ and interleukin (IL)-12, which eliminate 
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FiGURe 2 | Tumor immunoediting. Normal cells are transformed into malignant cells by mutations, genomic instability, and epigenetic modification, during which 
innate and adaptive immunity regulate the tumor microenvironment. In the elimination phase, both innate and adaptive immunity synergistically detect and eliminate 
early tumor cells. Next, rare tumor cells that are not eliminated in the elimination phase can enter the equilibrium phase, where their outgrowth and elimination are 
controlled. Finally, the remaining tumor cell variants with weak immunogenicity escape from immune surveillance to form a clinically apparent neoplasm.
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tumor cells by initiating cytotoxic responses, such as perforin, 
TNF-α and reactive oxygen species (ROS) (25). Antigen-
presenting cells [such as DCs, macrophages, and B cells] take 
up and cross-present tumor antigens to T cells and activate T 
cells via co-stimulatory molecules (26). Therefore, antitumor 
inflammatory mediators (IM) predominantly participate in 
the elimination phase compared to pro-tumor IM. When a 
balance between pro-tumor and antitumor IM is established, 
tumors progress into the equilibrium stage. During this phase, 
variants that survived the elimination phase undergo various 
mutations but exhibit a weak-immunogenic phenotype (e.g., 
loss of antigenic tumor peptides and major histocompatibility 
complex components). Notably, some antitumor cytokines, 
such as TNF-α, become pro-tumorigenic. This phase may last 
for several years until new immune-resistant variants emerge, 
which are more likely to escape immunosurveillance (25). In this 

scenario, the IM balance is skewed toward pro-tumor IM since 
immunity fails to limit tumor outgrowth. The immune-resistant 
variants ultimately result in the formation of a clinically detect-
able solid tumor (25). In the tumor escape phase, pro-tumor 
immune cells, including myeloid-derived suppressor cells 
(MDSCs), tumor-associated dendritic cells (TADCs), tumor-
associated macrophages (TAMs), Th17, and regulatory T cells 
(Tregs), along with cancer cells and cancer stem cells, induce 
immunosuppression via secretion of a variety of immunosup-
pressive cytokines and molecules. Furthermore, T cells express 
inhibitory checkpoint receptors, such as programed cell death 
protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 
4 (CTLA-4), which are activated by ligands expressed on pro-
tumor immune cells (27). Altogether, these immunosuppressive 
mechanisms synergistically neutralize antitumor immunity and 
accelerate tumor progression.
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The typical underlying mechanisms through which inflam-
mation promotes cancer include (1) mutations: DNA damage/
mutation, genomic instability, epigenetic dysregulation, and 
DNA repair deficiency (28–30). DNA damage in turn promotes 
inflammation, generating a vicious cycle that synergistically initi-
ates carcinogenesis (28); (2) angiogenesis: angiogenesis is crucial 
for solid tumor growth and invasion (6). Inflammatory cytokines, 
such as TNF-α and IL-1, activate chemokine receptor-4/
chemokine (C-X-C motif) ligand 12 (CXCR4/CXCL12) signal-
ing, which upregulates vascular endothelial growth factor (VEGF) 
expression via the phosphatidylinositol 3-kinase/protein kinase B 
(PI3K/Akt) pathway. In addition to cytokines and chemokines, 
cyclooxygenases (COX)-2 and a portion of its metabolites are also 
engaged in vascular formation (31); (3) metastasis and invasion: 
inflammation also contributes to hypoxia, which further pro-
motes angiogenesis, glycolysis, and invasion (31). Inflammatory 
cytokines secreted by immunosuppressive cells contribute to the 
progression of cancer. For example, MDSCs promote epithelial-
to-mesenchymal transition (EMT) by secreting transforming 
growth factor β (TGF-β), epidermal growth factor (EGF), and 
hepatocyte growth factor (HGF) pathways (32) and shift M1 mac-
rophages into TAMs (an M2 phenotype) (33). TAMs lose tumori-
cidal activity and contribute to immune suppression through the 
upregulation of inflammatory meditators [e.g., IL-10, TGF-β, and 
C–C motif chemokine ligand 22 (CCL22)], which promote T cell 
anergy and Treg recruitment (34). For further details, please refer 
to these current reviews that focus on inflammation in cancer 
development and progression (18, 29, 31).

ANTiCANCeR STRATeGieS TARGeTiNG 
THe iNFLAMMATORY 
MiCROeNviRONMeNT

Antagonizing inflammation
To date, several anti-inflammatory drugs have been used for 
prophylaxis and have shown efficacy in decreasing cancer mor-
bidity (35), counteracting chemoresistance, suppressing tumor 
progression, and improving survival (10). Anti-inflammatory 
drugs are classified as non-steroidal anti-inflammatory drugs 
(NSAIDs) (e.g., aspirin), steroidal anti-inflammatory drugs (e.g., 
dexamethasone), or statins. In addition to its well-documented 
effects in CRC prevention (11), aspirin also reduces the incidence 
of several types of solid tumors, including melanoma (36), pros-
tate cancer (37), and breast cancer (38). Mechanistically, aspirin 
inhibits the production of PGE2, a COX-metabolite derived from 
arachidonic acid (AA), which facilitates tumor growth through 
the enhancement of immune evasion (39). Aspirin was also 
adopted as a novel adjuvant to reverse chemoradiotherapy resist-
ance (10, 40).

Steroids, such as dexamethasone and prednisolone, are widely 
used as monotherapies or combined with other therapeutic 
agents in various types of cancer. For instance, dexamethasone 
improves myeloma sensitivity to Venetoclax (a specific inhibitor 
of B-cell lymphoma-2) (41). In colon cancer, dexamethasone 
suppresses TGF-β1-induced migration via inhibition of AKT 
and extracellular signal-regulated kinase (ERK) phosphorylation 

(42). Dexamethasone is also used for the treatment of castration-
refractory prostate cancer (43). The efficacy of statins has also 
been reported in a variety of cancers, such as HCC, CRC, and 
acute myelocytic leukemia (44).

Despite the multiple benefits of NSAIDs and steroids in can-
cer treatment, they have various adverse side effects, including 
gastrointestinal bleeding, liver and kidney dysfunction, Cushing’s 
syndrome, and osteoporosis (45–48). Some severe side effects of 
statins, such as necrotizing myopathy, increased risk of type 2 
diabetes, and acute memory impairment, have also been reported 
(49–51). These negative side effects have restricted the full appli-
cation of anti-inflammatory drugs to cancer therapy.

enhancing Antitumor immunity
The development of cancer immunotherapy was a major mile-
stone in current cancer treatments and ranked first on the list of 
the top 10 breakthroughs of 2013 in the journal Science. Recent 
developments in cancer immunotherapy include vaccines, 
cytokines, checkpoint-blocking antibodies, and immune cell 
adoptive transfer therapies. Typical cancer vaccines include cancer 
antigen vaccines, DC vaccines, and nucleic acid vaccines, among 
others. The melanoma-associated antigen 3 vaccine Stimuvax 
(targeting Mucin 1) has entered phase III clinical trials (52). Viral 
vector-infected or peptide-based DCs have been widely used to 
treat prostate cancer, glioma, melanoma, and CRC (52). Other 
adoptive cell transfer therapies, including cytokine-induced killer 
cells (53), tumor-infiltrating lymphocytes (54), gamma delta T 
cells (γδ T cells) (55), and NKT cells (56), are also being used to 
enhance clinical antitumor immunity.

Cytokines, such as IL-2, IL-18, IL-21, and granulocyte 
colony-stimulating factor (G-CSF), are also common adjuvants 
for cancer therapy. However, combination therapies have shown 
better curative effects. A recent phase III clinical trial in advanced 
melanoma demonstrated a significantly improved prognosis by 
combining a high-dose of IL-2 with a peptide vaccine (gp100) 
(57). In patients with non-Hodgkin’s lymphoma, combined 
treatment with recombinant human (rh)IL-18 and rituximab 
appeared to increase the overall objective response rate by 26.3% 
(58). A multicenter phase II study of patients with metastatic 
melanoma showed that IL-21 has antitumor activity (59). The 
combination of G-CSF and paclitaxel/carboplatin was validated 
for the treatment of patients with recurrent platinum-resistant 
ovarian carcinoma or recurrent or advanced endometrial or 
cervical carcinoma (60).

TNFerade is a genetically engineered adenovector with a 
radiation-inducible promoter that specifically delivers the human 
TNF-α gene to cancer cells. Phase I trials in patients with various 
tumor types (e.g., liver, breast, CRC, melanoma, sarcomas) con-
firmed that the combination of TNFerade and radiation was more 
effective than TNFerade or radiation alone (61). The phase I trial 
of TNFerade plus chemoradiotherapy also improved survival in 
patients with advanced resectable esophageal cancer (62).

Immune-checkpoint blockade is a revolutionary approach 
to cancer immunotherapy. Overexpression of programed 
death-ligand 1 (PD-L1) in tumor cells is correlated with poor 
prognosis, and immunotherapies with anti-PD-1/PD-L1 and 
anti-CTLA-4 antibodies have shown promising results in a 
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variety of cancers (63, 64). Thus far, four antibodies have been 
licensed: (1) ipilimumab, an antibody against CTLA-4, has 
been licensed for unresectable or metastatic melanoma; (2) two 
mAbs against PD-1, pembrolizumab and nivolumab, have been 
approved for unresectable metastatic melanoma and advanced 
metastatic non-small-cell lung carcinoma. Nivolumab has also 
been approved for advanced (metastatic) renal cell carcinoma; (3) 
atezolizumab, a PD-L1-blocking mAb, has been used in metastatic 
or advanced urothelial carcinoma with platinum chemotherapy 
resistance (63). However, only a few cancers, such as lymphoma 
and melanoma, are sensitive to these antibodies because of the 
heterogeneity of cancers.

Recently, CAR-T immunotherapy, an emerging immuno-
therapeutic strategy, has achieved unprecedented success in 
cancer treatment. In CAR-T immunotherapy, T cells are modi-
fied to express specific receptors for the various types of cancer. 
Therefore, these T cells gain the ability to recognize and eliminate 
cancer cells after reinfusion into patients. A recent study showed 
that CAR-T cell therapy could mediate valid anti-leukemic 
activity in patients with acute lymphoblastic leukemia with 
chemotherapy-resistant B precursors and also exhibited feasibil-
ity and invertible toxicity (65). CAR-T therapy is also designed to 
treat chronic lymphocytic leukemia or B cell lymphomas, breast 
carcinoma, and glioblastoma (66, 67). However, CAR-T therapy 
is not widely used because it can induce the life-threatening 
cytokine release syndrome (CRS) (68) and has low efficacy 
against solid tumors.

Owing to the limitations of the abovementioned anti-
inflammatory drugs and antitumor immunotherapies, it is urgent 
and essential to develop a novel, safe potent approach to conquer 
inflammation, and synergize the effects of immunotherapy in the 
treatment of cancer.

THe POTeNTiAL ROLe OF 
iNFLAMMATiON ReSOLUTiON iN 
ReMODeLiNG THe TMe

Failure to Resolve inflammation Can 
Result in Cancer
Whether inflammation is a friend or a foe of cancer has always 
been controversial (5). As mentioned earlier, a failure of resolu-
tion promotes tumorigenesis, progression, and metastasis. TME 
is a complex environment including tumor cells, immune cells, 
fibroblasts, blood vessels, and the extracellular matrix (69, 70). It 
is widely accepted that TME reprograms immune cells into pro-
tumor phenotypes with distinct metabolic and biological func-
tions, which are required for the establishment and maintenance 
of tumors (8).

For instance, MDSCs are immature and immunosuppressive 
cells that also promote EMT via the TGF-β, EGF, and HGF 
pathways (32). The immunosuppressive properties of MDSCs are 
mediated by the following mechanisms: (1) l-arginine depriva-
tion via upregulation of arginases; (2) ROS and reactive nitrogen 
species (RNS) generation; (3) restricting lymphocyte trafficking 
and viability; (4) promoting activation and expansion of Tregs; 
(5) shifting M1 macrophages to TAMs by producing IL-10; (6) 

inhibiting DC maturation and antigen presentation (33); (7) 
secreting MMPs, which facilitate tumor cell invasion in vitro and 
in vivo (71); and (8) regulating miRNAs in cancer cells, leading to 
enhanced stemness and metastasis potential (72).

Macrophages in the TME lose tumoricidal activity and 
contribute to immunosuppression through the upregulation of 
IL-10, TGF-β, and CCL22, which promote T cell anergy and 
Treg recruitment (34). During tumor initiation, TAMs exhibit 
activated glycolysis and inhibited oxidative phosphorylation 
(OXPHOSP). RNS, ROS, IL-β, and TNF-α are generated to drive 
genetic instability and promote cancer-related inflammation. 
Intriguingly, at the later stages of tumor progression, the energy 
metabolism of TAMs is skewed toward OXPHOSP by adenosine 
5′-monophosphate (AMP)-activated protein kinase (AMPK) 
activation, lactate accumulation, IL-4 (from Th2 cells), and pyru-
vate kinase isozyme M2 activation (73). These metabolic changes 
drive the immunosuppressive phenotype in TAMs, which allows 
tumors to evade detection by the immune system.

In addition, nutrient exhaustion activates AMPK in TADCs, 
which promotes OXPHOSP, suppresses glycolysis and contrib-
utes to the immunosuppressive phenotype of DCs (74). TADCs 
elevate the numbers of Tregs and MDSCs in breast cancer, which 
in turn enhance bone metastasis by lowering the levels of CD8+ 
T cells (75). Recruitment of Tregs is also responsible for CD8+ 
T cell apoptosis and bone metastasis in breast cancer. Moreover, 
immune cell-derived TNF increases the infiltration of Tregs and 
MDSCs, which have been shown to enhance lung metastasis in a 
melanoma model (76). Recently, in experimental animal models 
of breast cancer, neutrophils have been identified as the main ele-
ment and driver of metastatic formation within the premetastatic 
lung microenvironment, and neutrophil-derived LTs selectively 
expand the subpool of cancer cells with high tumorigenic poten-
tial in distant tissues (77). T cells carry out the bulk of immune 
surveillance; however, effector T cell activity is suppressed in the 
TME. The TME induces the loss of mitochondrial biogenesis in 
T cells, which drives metabolic insufficiency and dysfunction in 
tumor-infiltrating T cells (78). Moreover, the unresolved chronic 
inflammation aggregates low hydrogen ion concentration (pH) 
and hypoxia, accelerates extracellular acidosis, and further 
reprograms the metabolism of immune cells in the TME, which 
synergistically abrogates the efficacy of anticancer immunity (79). 
This evidence indicates a tight interaction between immune cells, 
and the TME that reprograms the plasticity of immune cells, 
suggesting that the failure of inflammation to resolve (chronic 
inflammation) can result in cancer.

inflammation Resolution and SPM
Conventionally, inflammation is divided into two stages: initiation 
and resolution. The transition from resolution to homeostasis is 
an active process in acute inflammation orchestrated by SPM that 
possess versatile anti-inflammatory and pro-resolving properties 
(Figure 3) (1).

SPM are biosynthesized temporally from ω-3 and ω-6 poly 
unsaturated fatty acids (PUFAs), such as AA, eicosapentaenoic 
acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic 
acid (DHA), via the catabolism of lipoxygenases (LOX, e.g., 5-LOX 
and 12-LOX) and COX. LXs derived from AA were discovered 
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FiGURe 3 | inflammation resolution. Top image: innate and adaptive immunity in inflammation. During the initiation of inflammation, tissue edema is followed by 
polymorphonuclear neutrophil (PMN) influx and then a return to baseline, accompanied by the recruitment of monocytes and macrophages for resolution. 
Sequentially, effector T and B cells transform to memory T and B cells, which is essential for the secondary immune response. However, if resolution is not achieved, 
then the outcome is sustained inflammation (chronic inflammation). Bottom image: specialized pro-resolving mediators in the acute inflammatory response. PGE2 
leads to vasodilation, and LTB4 stimulates PMN influx to the inflammatory loci. Subsequently, lipid mediator (LM) class switching converts pro-inflammatory signals to 
pro-resolving signals and triggers resolution. Lipoxins and resolvins restrict excessive PMN influx to the injury site, enhance efferocytosis, and stimulate pro-resolving 
signals and adaptive immunity.
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by Serhan et al. (80). Later, LX epimers and aspirin-triggered LX 
(ATL) were identified (81). Omega-3 PUFAs, which are abundant 
in fish oils, can alter the expression of inflammatory genes and 
decrease the production of cytokines and the expression of adhe-
sion molecules (82). The three major types of Rvs are series-D, 
Dp, and E-series. Specifically, RvD and RvDp are derived from 
DHA and DPA, respectively, RvE is generated from EPA and pro-
tectins and MaRs are derived from DHA. The protective actions 
of SPM have been demonstrated in acute inflammation [e.g., 
sepsis (83), lung injury (84), and ischemia reperfusion injury 
(85)] and chronic inflammation [e.g., asthma (86) and AD (87)]. 
The synthesis of SPM and their biofunctions in inflammation are 
summarized in Figure 4.

At the cellular level, the resolution of inflammation is 
characterized by the cessation of neutrophil infiltration and 
efferocytosis (macrophage clearance of apoptotic neutrophils). 
SPM restrict excessive PMN influx to the injury site and induce 
M1 macrophages to switch to the M2 phenotype, which confers 
improved phagocytosis abilities. Recent evidence has added a 
third phase of inflammation, termed post-resolution. During 
post-resolution, proliferation of memory T and B cells is increased. 
In this scenario, timely resolution of acute inflammation activates 
the priming and proliferation of T and B cells in the lymphatic 

tissues (88). Recent studies have reported that SPM regulate 
adaptive immunity in vitro. RvD1, RvD2, and MaR1 reduce the 
production of inflammatory cytokines (e.g., TNF-α and IFN-γ) 
in Th1 and Th17 cells while increasing the number of Tregs (89); 
LXA4 decreases memory but not naive B cell antibody production 
via an formyl peptide receptor 2 (FPR2/ALX)-dependent mecha-
nism (90). These findings suggest that inflammation resolution 
links innate and adaptive immunity and that SPM play a role in 
both innate and acquired immunity.

Anticancer Actions of SPM
Owing to the potent bioactivities of SPM in inflammation resolu-
tion and the correlation between inflammation and cancer, the 
roles of SPM in cancer have also attracted attention and investiga-
tion (Figure 4). The mechanisms are as follows:

 (1) Directly targeting tumor cells: LXA4 shares structural 
similarities with estrogen 17-estradiol (E2) and possesses 
antiestrogenic ability via regulating estrogen receptors, 
indicating the therapeutic potential of LX in estrogen-
associated diseases, such as endometrial cancer (91). LXA4 
can significantly inhibit the proliferation and migration of 
lipopolysaccharide-stimulated HeLa cells via the nuclear 
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FiGURe 4 | Specialized pro-resolving mediators (SPM) in inflammation and cancer. The biosynthetic pathways of SPM and their biofunctions in 
inflammation and anticancer immunity.
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factor-κB pathway. These effects can be abrogated by inhibit-
ing its receptor, FPR2/ALX (92). In lung cancer, both RvD1 
and RvD2 suppress TGF-β1-induced EMT by reducing the 
expression of zinc finger E-box binding homeobox 1 to 
prevent tumor metastasis (93). RvD1 induces high caspase-3 
activity in pancreatic ductal adenocarcinoma cells (PDAC) 
in vitro (94).

 (2) Targeting the TME: LXA4 and its analog dramatically inhibit 
the proliferation, invasion, and angiogenesis of hepatocarci-
noma via remodeling the TME (13, 95); LXA4 is decreased 
in papilloma, and administration of LXA4 accelerates papil-
loma regression in mice (14); ATL treatment reduces the 
proliferation of lymphangioleiomyoma cells by inhibiting 
COX-2 (96). In human Kaposi’s sarcoma cells, LXA4 and 
ATL decrease phosphorylation of the VEGF receptor, ephrin 
family receptor tyrosine kinases, and pro-inflammatory 
mediators, including PGE2, LT B4, IL-6, and IL-8, to exert 
dramatic antiangiogenic actions (97). In murine xenograft 
tumor models injected with hepatocarcinoma, melanoma 
or colorectal carcinoma cells, LXA4 is able to suppress 
tumor growth by targeting IL-10-producing regulatory B 
cells (Bregs) via dephosphorylation of signal transducer 
and activator of transcription 3 and ERK. Since Bregs can 
cause CD8+ T cell dysfunction in the TME (12), these results 

suggest that LXs may reverse the CD8+ T cell response and 
improve antitumor immunity. Moreover, LX analogs inhibit 
VEGF-induced endothelial permeability by stabilizing the 
VE-cadherin/β-catenin-dependent adherens junctions to 
protect patients from tumor extravasation across endothe-
lial barriers (15). An interesting recent finding revealed that 
LXs selectively switch M2 TAMs to an M1 phenotype, which 
triggers tumor cell apoptosis and blunts tumor progression 
(98). RvD1 protects NK cells against deactivation and 
increases NK cell cytocidal function in PDAC (94).

 (3) Targeting precancerous lesions: LXA4 analogs block intes-
tinal pro-inflammatory gene expression and inhibit the 
severity of colitis in a mouse model (99). An LXA4 isomer 
(10S, 17S-DiHDoHE) exerts an inhibitory effect on neutro-
phil infiltration and reduces pro-inflammatory cytokines, 
including TNF-α, IL-1β, and IL-6, thereby inhibiting the 
severity of colitis in mice (100). RvE1 increases survival 
and promotes resolution in a murine model of colitis 
(101). MaR1-induced attenuation of murine colitis was 
also recently observed in both dextran sulfate sodium and 
trinitro-benzene-sulfonic acid models (102). Furthermore, 
extensive clinical data have addressed the therapeutic role of 
omega-3 in various cancer types (e.g., breast cancer, CRC, 
leukemia, gastric cancer, pancreatic cancer, esophageal 
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cancer, prostate cancer, lung cancer, head and neck cancer) 
and cancer cachexia (103). These trials suggest that SPM are 
the main mechanisms driving the antineoplastic effects of 
omega-3.

Together, the bioactions and mechanisms of SPM play 
important roles in attenuating tumor-promoting inflammation, 
which represents a synergistic principle that incorporates anti-
inflammatory properties and enhances antitumor immunity. This 
new series of lipid mediators has created a potential new direction 
for cancer research.

CONCLUSiON AND PROSPeCTS

Tumor growth is closely connected to inflammation, and the 
crosstalk between the two processes is context dependent. 
Inflammatory cell plasticity in the TME can promote or inhibit 
cancer. Cancer immunology and immunotherapy targeting the 
inflammatory microenvironment is an exciting field because it is 
at the brink of mainstream clinical practice and shows promising 
benefits. However, there are several substantial issues that need 
to be resolved. Therapy-induced inflammation often endows 
residual cancer cells with resistance to subsequent courses of 
treatment (e.g., chemotherapy resistance and radiotherapy resist-
ance) (18). Moreover, the efficacy of immunotherapy depends 
on cancer types or populations. For example, CAR-T therapy 
is more effective in hematological neoplasms (65) than in solid 
tumors and may even lead to the development of life-threatening 
CRS (104). Although blockade of PD-1 elicits significant clinical 
benefits in patients with melanoma, some patients are innately 
resistant to anti-PD-1 therapy because of individual genomic and 
transcriptomic features (105). Aspirin restores the susceptibility 
of pancreatic cancer to gemcitabine (10) and reduces the risk of 
mortality in patients treated with radical prostatectomy or radia-
tion for prostate cancer (106). Aspirin also acts synergistically 
with anti-PD-1 in tumor models (39). This evidence indicates 
that anti-inflammatory drugs may serve as useful adjuvants to 
conventional and immune-based therapies.

Presently, both cancer researchers and doctors have an 
important social responsibility to combat the increased incidence 
of tumors. The rapid development of oncology basic research, 
clinical diagnosis, and treatment provides more opportunities 
to overcome cancer yet also supplies more rigorous challenges. 
Targeting the TME is the current research focus; however, our 

ancestors have already provided us with some philosophical hints 
as to where we should focus our efforts.

In the primitive society of China, the Great Flood 
occurred and led to great misery in the people for many 
times. A superman by the name of Gun, who commiser-
ated with his suffering people, tried to control the flood 
by blocking and damming. However, he failed. After 
his death, his son, Yu, carried on his father’s unfulfilled 
task, fighting against the Great Flood. For thirteen 
arduous years, he devoted himself conscientiously to 
his work. Drawing a lesson from his father’s failure, 
he used the methods of channeling and dredging and 
finally succeeded in subduing the Great Flood. In honor 
of his work, Emperor Shun asked him to take over the 
throne. Yu the Great is the personification of wisdom, 
perseverance and selfless devotion and, as such, he is a 
popular figure in artistic creations.

Controlling the cancer inflammatory microenvironment 
may be similar to controlling the Great Flood: the best strategy 
is not blocking but dredging. Thus, promoting endogenous pro-
resolution factors may be a more safe and potent method for 
controlling the TME. However, the current evidence for the use 
of endogenous SPM in animal models with cancer is sparse, and 
the use of SPM in patients with cancer has not yet been inves-
tigated. Based on the versatile pro-resolving properties of SPM 
and the key roles of inflammation resolution in innate and adap-
tive immunity, we speculate that SPM may pave the way for the 
development of novel monotherapies or combination therapies 
that may provide a breakthrough in anticancer interventions.
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