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In an effort to develop more effective therapy for tuberculosis (TB), research efforts are 
looking toward host-directed therapy, reprograming the body’s natural defenses to better 
control the infection. While significant progress is being made, the efforts are limited by 
lack of understanding of the pathology and pathogenesis of adult type TB disease. We 
have recently published evidence that the developing lesions in human lungs are focal 
endogenous lipid pneumonia that constitutes a region of local susceptibility in a person 
with strong systemic immunity. Since most such lesions regress spontaneously, the abil-
ity to study them directly with immunohistochemistry provides means to investigate why 
some progress to clinical disease while others asymptomatically regress. Furthermore, this 
should enable us to develop more effective host-directed therapies. Morphoproteomics 
has proven to be an effective means of characterizing protein expression that can be 
used to identify metabolic pathways, which can lead to more effective therapies. The 
purpose of this perspective will argue that using morphoproteomics on human TB lung 
tissue is a particularly promising method to direct selection of host-directed therapeutics.

Keywords: morphoproteomics, tuberculosis, host-directed therapy, mtOr, cOX-2

Progression of pulmonary tuberculosis (TB) in adults is a rare phenomenon in that at least 90% of 
cases regress spontaneously without producing clinical disease. Very little is known of why and how 
infection progresses to clinical disease in some people despite spontaneously regression in most. 
What is known is that TB disease is multifaceted, involving not just the actions of the pathogen 
Mycobacterium tuberculosis (MTB) on the host but also various immune mechanisms in response to 
bacterial antigens. TB disease is a chronic infection in immune competent hosts, displaying different 
pathologies, often simultaneously, in microenvironments in the same infected tissue, mostly in the 
lung (1–3). Protection from and progression to TB disease involves similar immune responses (4–6), 
and ongoing studies are trying to tease apart these differences.

There is no question that host immune responses play crucial roles in disease progression and 
transmission, but currently no therapeutic has been developed to suppress the immune induced 
pathology. Such host-directed therapy is routinely used and invested heavily in research in cancer 
(7–12), autoimmune (13–15), inflammatory (16), and other immune based diseases. Recently, 
immune directed therapy has been proposed and demonstrated to be potentially effective in TB 
disease (17–20). In order for this therapy to be effective, correct identification of critical host immune 
targets is paramount. This paper discusses newly developed means of studying host responses impor-
tant for progression of pulmonary TB disease.

Host-directed therapy targets pathological mechanisms, either by shutting down pathways 
or manipulating immune responses to improve protection against the MTB pathogen. Proper 
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identification of these pathological targets is crucial for the 
effectiveness of any host-directed therapy. Many pathological 
mechanisms of TB overlap with other immune-based diseases, 
providing TB researchers with a vast foundation of commer-
cially available drugs (17) that have demonstrated protective 
responses in TB models. The use of in vitro and in vivo models 
to tease apart mechanistic parameters of diseases may be use-
ful but may not adequately represent the human disease. Thus, 
targets identified through TB models may not be effective in the 
human patient. The best method to select effective targets for 
host-directed therapy for TB disease is by studying the human 
patient.

Mycobacterium tuberculosis is an obligate human pathogen 
since only humans develop cavities able to expel large numbers 
of organisms into the environment to infect new hosts (21–24). 
In order to eliminate TB disease, MTB transmission must be 
stopped by attenuating the caseation pathology. One key 
feature of caseation is that it occurs in localized pulmonary 
sites. Most people retain a high level of immunity in every part 
of their bodies except in localized pulmonary lesions. These 
lesions are areas of localized susceptibility that coexists with 
systemic immunity. Understanding the host mechanisms at 
these localized lesions that lead to susceptibility of MTB infec-
tion is hampered by the lack of access to appropriate clinical 
samples.

Since human tissues have not been available to most investi-
gators since the introduction of antibiotics in the 1950s current 
descriptions of human pulmonary TB are based on animal 
models. While there are many animal models of TB, none of 
them develop pulmonary TB like humans. Consequently, 
some features of the pathology of human pulmonary TB have 
been largely forgotten. Through an extended study of human 
tuberculous tissues and relevant literature, we have formulated a 
corrected understanding of the pathology of human pulmonary 
TB and a new paradigm of its pathogenesis, reviewed extensively 
elsewhere (22, 25). The key finding is that pulmonary TB has 
a prolonged period of asymptomatic infection of alveolar mac-
rophages in particular parts of the lung before the onset of clinical 
disease. This results from a localized susceptibility in parts of a 
lung in an otherwise immune person. A better understanding of 
how and why most of these lesions regress, while others progress 
to clinical disease might suggest ways to make them all regress 
and thereby eliminate TB.

Currently, most clinical samples from TB patients are either 
blood or lung. The former examine responses and mechanisms 
that are systemic, not at the site of infection, and may represent 
secondary effects of the primary response in the lung tissue. 
Alveolar lavages and lung biopsies are limited in the information 
they can provide: lavages are limited to immune responses in the 
alveolar and biopsies samples are too small to incorporate the 
surrounding parenchyma. Our group has taken the approach that 
in order to understand TB pathology we must study lung samples 
taken from untreated or under-treated TB individuals. Successful 
antibiotic treatment is known to significantly alter pathology 
(26–30). As MTB is killed by the antibiotic, the antigens that 
stimulate the host immune responses that generate the lung 
pathology are cleared. We propose that autopsy samples obtained 

from these untreated individuals may be the key to understand-
ing the mechanisms of TB disease pathogenesis, especially the 
caseation process. Correct identification of key factors engaged in 
the caseation process will allow design of therapy directed toward 
controlling and ultimately stopping the pathology and arresting 
transmission of MTB.

There are several methods to identify pathological factors in 
lung tissue of TB patients. Our strategy has always focused on 
protein expression, as RNA expression may not necessarily result 
in changes in protein level due to post translational regulation. 
Additionally, we do not think that global proteomics will be 
useful due to the nature of MTB microenvironments. Within a 
single patient, MTB infection creates microenvironments with 
varying degree of pathology. In our samples, we often observed, 
in a single tissue section, areas of lipid pneumonia, matured 
cavities, developing cavities, fibrosis, caseation, and normal lung 
parenchyma. Each of these microenvironments has a different 
profile of immune responses, thus global proteomics will be 
unable to tease apart the critical targets of caseation. Our group 
proposes that the best method to identify effective targets for 
host-directed therapy is through the use of morphoproteomics, 
analyzing protein expression profile of specific pathological 
microenvironments.

Morphoproteomics is defined “as the identification by 
immunohistochemistry of the molecular circuitry of various 
proteins…by noting their state of activation (translocation 
and phosphorylation) and correlative expressions” (31). The 
method was originally developed for cancer patients, as tumors 
are often heterogeneous and was hypothesized to be more 
responsive to individualized guided therapy (32) as opposed 
to generalized standard protocols. Since this proposed method 
was developed in 2004 by Robert Brown, several publications 
have been peer reviewed and reported as to its effectiveness. A 
search in PubMed has yielded 37 publications. The majority of 
these used morphoproteomics to identify potential targets for 
adjuvant host-directed therapy (33–43) for an extensive list of 
cancers, such as prostate cancer, head and neck squamous cell 
carcinoma, Kaposi’s sarcoma, Hodgkin lymphoma, and others. 
Several publications have also indicated the clinical effec-
tiveness of using morphoproteomics to guide host-directed 
therapy using commercially available drugs, including glio-
blastoma (44), osteosarcoma (45), pediatric brain tumors (46), 
and others. The success of morphoproteomic-guided therapy 
in cancer indicates that this method can be applied to other 
diseases where there is heterogeneous pathology and the host 
response directly causes the disease pathogenesis. Though 
morphoproteomics, we are able to identify cell types and 
characterize pathways in isolated lesions in human lungs. This 
manuscript reports recent findings and suggests future studies 
to investigate this key aspect of TB that takes place only in 
human lungs.

We propose that the heterogeneity of TB disease and the criti-
cal roles that the host response plays in the disease pathogenesis 
strongly indicate that morphoproteomic-guided host-directed 
therapy can be an effective tool to identify drugs with high pos-
sibility of ameliorating TB induced pathology. We believe that 
the future of host-directed therapy is to verify that pathology 
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FiGure 1 | Morphoproteomic analysis of human tB lung sample. Left: stain for phosphorylated mTOR, insulin-like growth factor-1 receptor (IGF-1R), and 
phosphorylated Akt at 400× magnification. Right: sample stained with anti-human cyclooxygenase 2 (COX-2) and visualized at 400×. Programed death-1 (PD-1) 
and programed death-1 ligand (PD-L1) stain, magnification at 200×.
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mechanisms identified in in vitro and/or animal models do occur 
in the human disease but also to demonstrate that the selected 
target(s) will affect critical pathology. From our extensive stud-
ies of human TB pathology, we hypothesize that foamy alveolar 
macrophages (obstructive lipid pneumonia) are the critical 
pathology directly responsible for the development of cavities 
(25). Thus, modulation of these pathologic macrophages may 
affect progression of pathology, the eventual cavitation, and stop 
the transmission process. As an example of how morphoprot-
eomic-guided host-directed therapy can be applied, we decided 
to focus initially on two mechanisms of how MTB controls the 
host macrophage responses to promote its survival: mammalian 
target of rapamycin (mTOR) and cyclooxygenase 2 (COX-2) 
pathways.

Mycobacterium tuberculosis has evolved to escape host cell 
killing by preventing phagosome maturation into an acidic 
vesicle, the phagolysosome. Recent discoveries found that 
activation of autophagy through inhibition of mTOR can 
stimulate a double-membrane autophagosome that is capable 
of killing intracellular MTB (47, 48). The mTOR protein can 
bind other proteins to form two distinct complexes: mTORC1 
(raptor-associated) that is sensitive to rapamycin and mTORC2 
(rictor-associated) that is insensitive to rapamycin. In the con-
text of MTB infection (both mouse and human studies), only 
mTORC1 has shown to be associated with TB disease. Since 
then, several animal studies have investigated the effective-
ness of using rapamycin to inhibit mTOR as adjunct therapy 
(49–51) or for vaccination (52, 53). We completed preliminary 
staining of a clinical lung sample from a female who died sud-
denly at home. Diagnosis of TB disease was done at autopsy. 
No history of TB treatment was noted. Pathological analysis 
demonstrated the presence of foamy macrophages in alveolar 
spaces. We chose to stain for three markers of mTOR signaling 
(Figure 1). Foamy macrophages are heavily positive for expres-
sion of activated, pmTOR, phosphorylated (p) on serine 2448. 
Additionally, pmTOR is also positive in the alveolar walls, but 

to a lesser intensity. The second marker examined is the expres-
sion of insulin-like growth factor-1 receptor (IGF-1R), a strong 
inducer of mTOR via PI3K. Presence of IGF-1R is expressed 
not only in foamy macrophages but also in the surrounding 
parenchyma. The third marker is activated Akt (pAkt, on serine 
473), the putative downstream effector of mTORC2 (54–57). 
We observed minimal presence of pAkt in foamy macrophages, 
suggesting that during MTB infection foamy macrophages 
are overexpressing mTORC1 and little to no activation of 
mTORC2. Activation of mTORC1 causes a negative feedback 
that decreases pAkt (58). This preliminary study suggests that 
foamy macrophages in this MTB-infected lung tissue over 
activate mTORC1, inhibiting autophagy of the infected cell and 
limiting MTB killing.

We also examined a second pathway of macrophage activ-
ity, COX-2. All studies of macrophage cultures suggest that 
MTB infection inhibit COX-2 activation and production of 
prostaglandin E2 (PGE2), leading to necrosis of the MTB-
infected cell and MTB escape and spread of infection (59, 60). 
However, the effect of COX-2 activation in the in vivo lung local 
environment during MTB infection has not been well studied. 
Published reports on the cancer microenvironment often dem-
onstrate that upregulation of COX-2 and PGE2 correlated to an 
increase in the presence and activity of T regulatory cells, which 
directly inhibited activity and function of effector T cells (61). 
Upregulation of T regulatory cells during active MTB infection 
blocks the ability of effector T cells to activate macrophages to 
control MTB infection (62), leading to loss of pathogen contain-
ment, uncontrolled proliferation, pathological inflammation, 
tissue necrosis, and spread of infection. Indeed, in the lungs of 
mice infected with MTB, COX-2 and PGE2 are overexpressed 
(63), suggesting that lung macrophage COX-2 activity may not 
reflect in vitro macrophage cultures studied. In this one MTB-
infected lung sample, foamy macrophages varied in COX-2 
intensity, indicating variability in the amount of COX-2 being 
expressed. Interestingly, COX-2 expression is mainly restricted 
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to the foamy macrophage with nearly no COX-2 positivity in the 
alveolar walls (Figure 1).

In cancer studies, expression of COX-2 is associated with 
increase in T regulatory cells (64). T regulatory cell expansion 
in TB disease is associated with increases in expression of pro-
gramed death-1 ligand (PD-L1) on antigen-presenting cells (65, 
66). The expression of PD-L1 acts directly on programed death-1 
(PD-1)-expressing T cells to inhibit their effector functions 
(67–70). In this MTB-infected lung microenvironment, PD-L1 
is highly expressed in foamy macrophages, surrounded by PD-1-
expressing lymphocytes in the interstitial (Figure 1). This sug-
gests that foamy macrophages in this MTB-infected lung favor T 
effector cell suppression, possibly through macrophage COX-2 
production. The increase in COX-2 in macrophages enhances 
surface expression of PD-L1, which ligates to PD-1, inhibiting 
activity of PD-1-expressing effector T cells. The increase in 
COX-2-producing macrophage may be due to increases in T 
regulatory cells in the MTB microenvironment, as previously 
observed (62). Thus, in this critical MTB microenvironment 
of foamy alveolar macrophages, two suppressor host response 
pathways are active (mTOR and COX-2), allowing TB disease 
progression.

Additional lung samples are currently undergoing the same 
morphoproteomic analysis. At the time of this manuscript 
preparation, four additional human TB lung samples have dem-
onstrated the same pattern of mTOR and COX-2 staining in the 
alveolar macrophage pathological microenvironments (Hwang 
observations). With both mTOR and COX-2 mechanisms are 
potentially highly active in TB lungs, it seems logical to argue 
that designing host-directed therapy that would target both 
pathological pathways should offer the most success. There are 
several FDA-approved drugs that target mTOR and COX-2. 
Using commercially available products will enable clinical testing 
of the proposed therapy once proof-of-concept is established in 
appropriate animal models. We have identified two inhibitors that 
may offer the most effective outcome in reversing MTB-induced 
host pathological responses.

mtOr iNHiBitOr

Metformin is an antidiabetic drug that activates adenosine 
monophosphate-activated kinase. In vitro analysis showed 
that Metformin directly reduced phosphorylation of mTOR 
and p70S6k, increasing apoptosis (71). Diabetic patients co-
infected with MTB on metformin lived longer than those not 
taking metformin. In vivo mouse model studies demonstrated 
a significant decrease in lung bacterial load and pathology 
when treated with metformin (72). We believe metformin 
will inhibit overexpression of pmTOR and the expression of 
mTORC1 leading to decreased presence of foamy macrophages 
and increased autophagy and/or increased MTB-infected cell 
apoptosis, leading to observable decreases in bacterial load and 
lung pathology.

cOX-2 iNHiBitOr

Celecoxib is a non-steroid anti-inflammatory drug that is a 
COX-2 inhibitor. However, celecoxib is capable of blocking 
several other proteins in the COX-2 signaling pathway and antia-
poptotic proteins, such as Bcl-2 and Mcl-1 (73). We believe that 
using celecoxib during MTB disease will enhance apoptosis of 
foamy macrophages and increase effector T cell function, leading 
to decreased bacterial load and lung pathology, as observed by 
decreased clusters of foamy macrophages.

This is only one example of how morphoprotemics can aid 
in selection of host-targeted therapy. While human lung tissues 
have been previously investigated by immunohistochemistry, 
all these studies focused on MTB proteins (usually antigens) 
and/or host immune cell surface/secreted proteins (62, 74–77). 
Morphoproteomics is capable of identifying cell signaling path-
ways that are active in respect to specific pathological microen-
vironments, enabling understanding of the immunometabolism 
mechanisms that may be attractive targets for host-directed ther-
apy (78). The application of routine morphoproteomic analysis 
for TB disease is still in its infancy due to the lack of appropriate 
human TB lung tissue and knowledgeable clinical pathologists. 
We are making progress toward creating a human TB pathology 
consortium that other researchers may access. Enabling research-
ers to verify their findings in the human patient is a must if we are 
to make significant breakthroughs in the future of TB research.

We offer the promise of an alternative strategy to develop-
ing new treatments for TB beyond just searching for effective 
antibiotics or choosing host-directed therapeutic targets from 
in vitro and/or animal models. Our approach is unique in that 
morphoproteomics directly analyzes pathological mechanisms in 
human tissue, allowing selection of targets for therapy that have 
been proven to be correlated with human disease. Additionally, 
morphoproteomics can also be used to tailor host-directed therapy 
to the individual patient, as it has been applied in cancer patients 
(32, 34, 45), if necessary. Since foamy alveolar macrophages are 
the lesion of TB that frequently undergoes spontaneous regres-
sion, we believe that studying it with morphoproteomics will 
identify the most promising targets for clinical testing and offer 
the highest chance of a positive outcome, to reduce or eliminate 
MTB transmission and reduce progression of the disease to the 
cavitary formation.
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