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For over 60 years, hematopoietic stem cell transplantation has been the major curative 
therapy for several hematological and genetic disorders, but its efficacy is limited by 
the secondary disease called graft versus host disease (GvHD). Huge advances have 
been made in successful transplantation in order to improve patient quality of life, and 
yet, complete success is hard to achieve. This review assimilates recent updates on 
pathophysiology of GvHD, prophylaxis and treatment of GvHD-related complications, 
and advances in the potential treatment of GvHD.
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iNTRODUCTiON TO GRAFT veRSUS HOST DiSeASe (GvHD)

Graft versus host disease is the most recognized complication post-hematopoietic stem cell trans-
plantation (HSCT) and was first observed in 1956 in a murine model. Barnes and Loutit dem-
onstrated that when irradiated mice were infused with allogenic marrow and spleen cells, mice 
recovered from radiation injury and aplasia but they developed diarrhea, weight loss, skin changes, 
and liver abnormalities, and subsequently died due to “secondary disease” (1). This phenomenon 
was recognized as GvHD. A decade later, in 1966, Billingham postulated three crucial requirements 
for the development of GvHD:

(i) the transplanted graft must contain immunologically competent cells,
(ii) the recipient must be incapable of rejecting or eliminating transplanted cells,
(iii) the recipient must express tissue antigens that are not present in the transplant donor, thus the 

recipient antigens are recognized as foreign by donor cells (2).

Today, we know that the immunocompetent cells are T lymphocytes that are present in the stem 
cell inoculum and are required to mount an effective immune response (3). A normal immune 
system is able to reject T cells from a foreign donor. However, when recipient’s immune system 
is compromised through the use of various immune-ablative agents (chemotherapy and/or radio-
therapy), the recipient is incapable of rejecting the transplanted cells. We now know that the tissue 
antigens that differ in donor and recipient are major and minor human leukocyte antigens (HLA), 
and their expression on cell surfaces is crucial for the activation of allogenic T cells and initiation of 
GvHD (4). Previously, it was believed that acute GvHD occurs within day 100 after transplantation 
and chronic GvHD (cGvHD) occurs beyond day 100 and that the most affected organs at the onset 
of GvHD are skin (81%), gastrointestinal tract (54%), and liver (50%) (4). Now, it is clear that acute 
GvHD can occur after day 100 as late acute GvHD (e.g., after cessation of immunosuppression or 
after donor lymphocyte infusion) or cause overlap syndrome of both acute GvHD and cGvHD (5).
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PATHOPHYSiOLOGY OF ACUTe GvHD: 
A THRee-STeP MODeL eXPLAiNiNG 
THe CURReNT STRATeGieS OF 
PROPHYLAXiS AND TReATMeNT

Acute GvHD has been attributed to three stages. Initially, there is 
tissue damage due to conditioning that in turn activates the host 
antigen-presenting cells (APCs). Secondly, APCs activate donor 
T cells, also known as an afferent phase. Finally, in efferent phase, 
cellular and inflammatory factors work together to damage the 
target organs.

Conditioning-Mediated Tissue Damage
Conditioning is crucial to eradicate underlying disease and to 
support engraftment of donor cells without rejection by recipi-
ent (6). Prior to donor cell infusion, patient’s tissues have been 
profoundly damaged due to underlying disease itself, treatment 
for the disease, infections, and the conditioning regimen (7, 8). 
As a consequence, damaged host tissue releases danger signals, 
which include pro-inflammatory cytokines such as tumor necro-
sis factor (TNF) and interleukin-1 (IL-1) (9), that activate host 
APCs, ultimately activating donor T cells present in the stem cell 
inoculum (10, 11). Conditioning-mediated damage to the gastro-
intestinal (GI) tract remains the main concern as GI tract allows 
systemic translocation of microbial products like lipopolysac-
charide (LPS) and other pathogen associated molecular patterns 
that greatly amplify host APC activation (8), leading to amplified 
T-cell activation. Conditioning-related damage also explains why 
the concept of reduced intensity or even non-myeloablative con-
ditioning has contributed to less toxicity, less severe GvHD, and 
reduced treatment-related mortality. Some studies showed that 
delaying the transfer of donor cells after conditioning decreased 
the risk of GvHD (9, 12).

Donor T Cell Activation  
(the Afferent Phase)
Graft versus host disease occurs when donor T cells activate 
and respond to HLA differences on recipient’s tissue (13). 
Experimental models have proved that the host APCs are neces-
sary and sufficient to activate donor T cells and initiate GvHD 
(11, 14). Donor T cells can recognize alloantigen either on host 
APC, known as direct antigen presentation (15), or on donor 
APCs, known as indirect presentation (16). T-cell responses 
depend on the disparity between the donor and the recipient 
with regard to HLA (13). CD4+ T cells respond to the variations 
in MHC class II molecule (HLA-DR, -DQ, and -DP), and CD8+ 
T cells respond to the variations in MHC class I molecule (HLA-
A, -B, and -C) (17). Transplants carried out in the HLA-matched 
sibling or identical twin setting can still give rise to GvHD due 
to differences in minor HLA (18). The first to be described were 
HA-1 (19) and HA2 (20), and the subsequent clinical impact of 
minor histocompatibility antigens including H-Y antigens (21, 
22) of female-to-male transplants has recently been reviewed 
(23, 24). Minor HLAs are T-cell epitopes, which are originally 
derived from polymorphic or normal tissue proteins. These 
antigenic peptides can be presented on HLA Class I or Class II 

molecules, and to date over 50 minor HLA antigens have been 
identified (24). Minor HLA antigens have been associated with 
GvHD and graft versus leukemia (GvL) effects due to their tissue 
distribution. Minor HLA antigens restricted to the hematopoi-
etic system may be able to enhance GvL responses while more 
broadly expressed minor HLA antigens contribute to both GvHD 
and GvL (25). As well as cytotoxic T-cell responses of allogeneic 
H-Y antibodies have shown to predict cGvHD and non-relapse 
mortality (26, 27).

T-cell activation is in the focus of current immunosuppres-
sive strategies used for prophylaxis and treatment. Calcineurin 
inhibitors, mycophenolate, and mToR inhibitors interfere 
with different signals of T-cell activation (28, 29). The broader 
strategy is T-cell depletion, which is currently applied by 
in  vivo approaches such as the use of antithymocyte globulin 
pretransplant (30). Cytotoxic approaches more or less selectively 
eliminate activated T cells if applied posttransplant; the old 
approach of methotrexate prophylaxis but also the more recent 
approach of using posttransplant cyclophosphamide engages 
this principle (31).

Target Cell Apoptosis (the efferent Phase)
In this phase, both innate and adaptive immune cells work 
synergistically to exacerbate the T cell-induced inflammation. 
Cellular mediators, such as cytotoxic T lymphocytes (CTLs) 
and natural killer (NK) cells, utilize the Fas/Fas ligand (FasL) 
pathway and perforin/granzyme pathway to lyse the target 
cells (32, 33). Furthermore, inflammatory cytokines synergize 
with CTLs, resulting in further tissue injury and possible target 
organ dysfunction (13). In addition, microbial products like LPS, 
released during conditioning, leak through a damaged intestinal 
mucosa and skin and stimulate mononuclear cells (monocytes/
macrophages) to secret inflammatory cytokines leading to ampli-
fication and propagation of a cytokine storm (13). This leads to 
destruction of epithelial cells, mostly in the GI tract.

The broad activity of corticosteroids including induction 
of T-cell apoptosis, suppression of macrophage activation, and 
cytokine release explains why these old drugs are still the treatment 
of choice for first-line treatment of both acute GvHD and cGvHD. 
Cytokine inhibitors like TNF blocking agents were thought to be 
more specific but did not result in increased response rates (34). 
For almost all second-line strategies in steroid-refractory acute 
GvHD low response rates associated with high treatment-related 
mortality have been reported that the urgent need for further 
improvement (35).

In the last 10 years, the concept of GvHD pathophysiology has 
been largely extended, and a more differentiated view has been 
adapted.

Firstly, the mechanism of conditioning-related damage has 
further been specified. It is now clear that the tissue damage 
results in release of several danger signals such as uric acid and 
the metabolites of adenosine triphosphate pathway and its recep-
tor has been shown to be involved in activation of GvHD (36).

Secondly, the concept of LPS-triggered inflammation has 
been substituted by multiple microbiota derived signals and 
differential activation of toll-like receptors (TLRs) and NOD-
like receptors (NLRs). NOD2/CARD15 has been shown to be 
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FiGURe 1 | initiation of graft versus host disease. Conditioning regimen 
leads to destruction of epithelial cells and their integrity. Damaged epithelia 
secrete uric acid and adenosine triphosphate (ATP) that result in production 
of pro-inflammatory cytokines. Pathogen recognition receptors, such as 
toll-like receptors (TLRs), NOD-like receptors (NLRs), and P2XRs, are 
activated by pathogen associated molecular patterns (PAMPs) and danger 
associated molecular patterns (DAMPs). These signals ultimately activate 
antigen-presenting cells (APCs) that lead to donor T-cell activation. Adopted 
and modified from Ref. (37).
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involved in triggering the inflammation both in mice (37, 38) 
and men (39). More recently, it became clear that the microbiota 
of epithelial tissues is the major player influencing epithelial 
integrity and local immune tolerance by commensal bacteria 
and millions of metabolites are produced to maintain epithelial 
homeostasis (40, 41).

Finally, and in context with the concept of microbiota as 
important players, the importance of regulatory immune cells 
that balance immune reactions is recognized. Regulatory T cells 
(Tregs) expressing the transcription factor Foxp3 occur as natural, 
thymus derived T cells and are able to prevent alloreaction (42). 
On epithelial surfaces, induced peripheral Tregs try to dampen 
acute inflammation (43). Foxp3 positive T cells act in cooperation 
with numerous newly identified regulatory populations, such as 
invariant natural killer T cells (44), myeloid-derived suppressor 
cells (MDSCs), and a whole new set of innate immune cells such 
as innate lymphoid cells (45). Figure  1 represents the GvHD 
initiation phase. Figure 2 summarizes the complete pathophysi-
ology of aGvHD.

IN VITRO MODeLiNG OF GvHD TO Give 
iNSiGHT iNTO THe PATHOPHYSiOLOGY

The skin explant model has long been established as a tool for 
studying the immunobiology of GvHD (Figure  3) and more 
recently has been used to investigate the specificity of antiviral 
T cells in graft versus host (GvH) reactions (34–36), the role of 
Tregs, and mechanisms of apoptosis (46, 47).

The skin explant model has also been used to assess the safety 
of ex vivo expanded Treg cells as well as their capacity to prevent 
GvH reactions (48). Activated and expanded polyclonal Treg, 
at any cell concentration, did not induce any significant GvH 
reactions.

Over recent years, significant advances in the understanding 
of the benefits of Tregs in hematopoietic stem cell transplantation 
have resulted in the completion of early stage clinical trials as well 
as the initiation of trials in solid organ transplantation (49–52). 
These early stage HSCT trials have provided promising results 
showing a reduction in the incidence of GvHD without adversely 
effecting relapse, transplant-related mortality, and engraftment. 
Using the skin explant model, it has been possible to investigate 
the cellular and molecular mechanisms by which Tregs are likely 
to be preventing GvHD following HSCT.

We have shown that for Treg to suppress GvH reactions they 
need to be present during the priming of alloreactive T cells (48). 
Polyclonal Treg cells were expanded ex vivo and added into the 
skin explant model at either the priming or the effector stage. 
The later addition of Treg, during the effector phase, impaired 
their suppressive capacity. This suggests that Treg may be more 
effective when given early, as prophylaxis, rather than as a treat-
ment. This study also demonstrated that in humans an effector 
to Treg ratio of 4:1 was sufficient to modulate GvH reactions, 
whereas previous studies in mice had suggested a 1:1 ratio was 
necessary. This study has therefore provided preclinical evidence 
to support the safety and feasibility of ex vivo expanded Treg 
as a novel therapeutic and provides information on the optimal 
timing and dose of Treg to prevent GvH reactions.

Further work using the skin explant model has been able 
to elucidate some of the mechanisms by which Tregs are able 
to prevent GvHR. The presence of Treg during the priming of 
alloreactive T cells reduced their cytotoxic capacity (48). Further 
investigations showed that Treg also impaired the ability of 
alloreactive T cells to migrate into the target tissues (53). The 
presence of Treg during priming resulted in a reduction in IFNγ 
production by CD8+ cytotoxic T cells, as well as a reducing 
expression of skin homing molecules CXCR3 and CLA. This 
paired with a reduction in levels of the chemokines CXCL10 
and CXCL11 in the skin resulted in a significant reduction in the 
number of cytotoxic T cells present in the skin and decreased the 
GvH severity. We have since demonstrated that Tregs are able to 
modulate GvH reactions through impairment of dendritic cells 
at a transcriptional level, arresting them in a semi-mature status 
and leaving them functionally impaired (54).

The skin explant model has also been used to investigate the 
involvement of epithelial Fas in the pathophysiology of GvHD 
(55). Animal models have previously shown the critical role 
for Fas/FasL in GvHD (56). Ruffin et al. showed that there was 
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FiGURe 2 | Pathophysiology of acute graft versus host disease. Conditioning regimen cause profound damage to the host tissues leading to release of 
inflammatory cytokines like tumor necrosis factor and interleukin-1. These cytokines activate host antigen-presenting cells (APCs) in phase I. In addition, loss of 
microbial diversity and metabolites thereof leads to loss of epithelial and immune homeostasis. Host APCs activate mature donor T cells present in stem cell 
inoculum in phase II. T cells subsequently proliferate and differentiate into Th1 and Th17 type, which are involved in activation of CD4 cytotoxic T lymphocyte 
(CTL), CD8 CTL, and natural killer cells that mediate tissue damage. In phase III, effector T cells together with pro-inflammatory cytokines attack the epithelial cells 
of skin, liver, lung, and gastrointestinal tract. This damage is further supported by the lipopolysaccharide (LPS) that has leaked through damaged intestinal mucosa, 
which then recruits myeloid cells to further produce pro-inflammatory cytokines and thus enhance the cytokine storm. Adopted and modified from Ref. (13).
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a significant increase in Fas expressing cells in GvHR positive 
experiments and that Fas-mediated apoptosis was involved in the 
induction of GvHR, as blocking Fas-mediated apoptosis reduced 
the severity of GvHR. They also showed that levels of Fas in the 
serum of patients who received myeloablative conditioning were 
increased, possibly due to the higher toxicity. This supports the 
potential use of Fas as a therapeutic target.

iDeNTiFiCATiON OF BiOMARKeRS

As well as investigating the safety of cellular therapies and 
immunology of GvHD, the skin explant model has been used 
in recent years to identify biomarkers. Within our group, we 
used the skin explant model to validate a number of biomarkers, 
which had been identified in the serum of HSCT patients (57). 
BAFF and IL-33 levels were elevated pretransplant in patients 

who then went on to develop aGvHD and therefore could have 
the potential to act as predictive biomarkers. We also found that 
CXCL10 and CXCL11 were suitable as diagnostic markers of 
GvHD. Training and validation cohorts were used to highlight 
the association of these potential biomarkers to GvHD. Then 
the skin explant model was used to confirm their association 
with GvH reactions. Immunohistochemistry was carried out on 
sections from the skin explant, and increased staining for BAFF, 
IL-33, CXCL10, and CXCL11 was seen in skin explants with 
a higher grade GVHR. This was further confirmed in clinical 
biopsies demonstrating increased levels of protein, measured 
with immunohistochemistry and gene expression for BAFF, 
CXCL10, and CXCL11. In this study, the skin explant proved 
to be a useful tool in validating a panel of biomarkers, which 
had been identified in patient samples. The skin explant is not 
exclusive to the human setting. Recently, Zinöcker et  al. have 
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FiGURe 3 | Skin explant grades i–iv. The outcome of the skin explant 
assay is histopathological damage ranging from grade I GvHR (with 
minimal vacuolization in the epidermis) to grade II GvHR (with vacuolization 
and dyskeratotic bodies) to grade III GvHR (with sub epidermal cleft 
formation) and finally to grade IV GvHR (with separation of the dermis from 
the epidermis).
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described the use of a rat skin explant model for investigating 
the pathophysiology of GvHD (58) as well as gene expression 
profiling (59).

Harris et al. (60) have recently reviewed the use of biomarkers 
in predicting acute GvHD, which include genomic factors as 
well as plasma proteins. One of the first studies demonstrated 
that a panel of tumor necrosis factor receptor type 1 (TNFR1) 
interleukin-2 receptor alpha, IL-8, and hepatocyte growth factor 
(HGF) had prognostic as well as diagnostic value in predicting 
acute GvHD (61). Other markers in the skin such as elafin (61) 
and plasma biomarkers of the lower GI tract and liver acute 
GvHD have been validated in subsequent studies, and the most 
significant of these was regenerating islet-derived 3 alpha (Reg3a) 
(62, 63). These studies led to the use of the biomarkers TNFR1, 
ILRα, IL-8, HGF, Reg3α, and elafin for measuring responsiveness 
to GvHD therapy. The panel was able to predict 28-day post-
therapy non-response and 180-day mortality in a cohort of 112 
patients (64).

In addition an algorithm using concentrations of three bio-
markers TNFR1, soluble IL-33 receptor (ST2), and Reg3α, Levine 
and colleagues (65) were able to calculate the probability of non-
relapse mortality caused by non-responsive GvHD and divide 
the patients into distinct groups to predict response to GvHD 
therapy. The researchers subsequently developed the Mount 
Sinai Acute GvHD International Consortium, which consists of 
a group of 10 transplant centers in the United States and Europe 
who collaborate on the use of this scoring system to test new 
treatments for acute GvHD.

PATHOPHYSiOLOGY OF cGvHD

Although the pathophysiology of cGvHD is poorly understood, 
it remains the major cause of late non-relapse death after 

HSCT (66). cGvHD may manifest simultaneously from aGvHD, 
develop after the treatment of aGvHD, or may occur de novo 
(67). Classical cGvHD occurs 100 days after transplantation but 
may also overlap with aGvHD (5, 68).

Acute GvHD is a major risk factor of cGvHD and strategies 
aiming at T-cell depletion at the time of transplantation to prevent 
cGvHD demonstrate that early events impact on the development 
of cGvHD. As immune cells and immune organs, such as thymus, 
bone marrow niche, and spleen, are the primary targets of acute 
GvHD, thymus destruction and deficient selection of donor T 
cells by the thymus are the major factors resulting in allo- and 
autoimmunity associated with cGvHD (69). Due to early damage 
of the B cell niche in the bone marrow, B cell development is 
strongly disturbed resulting in elevated BAFF levels as a predictor 
of cGvHD and insufficient elimination in B cells producing auto- 
and alloantibodies (70). A hallmark of cGvHD is development 
of sclerotic lesions, which can occur in almost every organ (68). 
While previous data favor a concept of defective wound healing 
with increase production of sclerotic cytokines, such as TGFβ and 
PDGF, recent evidence supports a role of specific TH17 subsets in 
this sclerotic process (71).

TARGeT ORGAN DAMAGe DURiNG GvHD

Skin is the principal target organ of GvHD, and the initial 
manifestation in the skin is maculopapular rash, which has the 
potential to spread throughout the body (13). The rash may 
resemble folliculitis or may resemble sunburn. In extreme cases, 
skin may blister and ulcerate (13, 72). Acute cutaneous GvHD 
usually begins with erythematous, rashes on the ears, palms, and 
soles. Martin and coworkers reported results of 740 allogenic 
transplantations and 81% of patients with aGvHD had skin 
involvement (4). Damage to the skin could be defined by vacuolar 
degeneration of the basal cell layer, dyskeratotic keratinocytes, 
and mononuclear cell infiltrates (73). Epithelial damage occurs 
at the tips of rete ridges and hair follicles, regions where selective 
targeted apoptotic rete cells are located (74). A recent study by 
Paczesny et al. reported that elafin could be a potential biomarker 
for diagnosis and prognosis of skin GvHD (75).

Liver is another target organ of GvHD. Hepatic GvHD 
is manifested by abnormal liver function tests and a rise in 
the serum level of bilirubin and alkaline phosphatase. Donor 
lymphocytes attack the bile duct epithelial cells causing endothe-
lialitis, pericholangitis, and apoptotic bile duct destruction (76). 
While liver GvHD affecting bile ducts and resulting in severe 
hyperbilirubinemia occurs less frequently, there is an increasing 
rate of hepatitis like cGvHD as another, but less harmful liver 
lesion (77).

Gastrointestinal tract represents the most severely affected 
organ after conditioning. GI GvHD is characterized by secretory 
and voluminous diarrhea, severe abdominal pain, vomiting, 
and anorexia (13). Snover and colleagues used immunohisto-
chemistry to explain histologic features of the GI tract during 
GvHD (78). Single cell apoptosis was observed along with patchy 
ulcerations and apoptotic bodies in the base of crypts with loss of 
the surface epithelium (13, 78). The base of the intestinal crypts, 
where epithelial stem cells are located, is the most sensitive 
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target for GvHD as it is the site of epithelium regeneration and 
Paneth cells. Recently, Levine and colleagues observed loss of 
the Paneth cells at the onset of GI GvHD (79) suggesting these 
cells as sensitive targets of GvHD. In addition, as stated earlier, 
it was proposed that regenerating islet-derived 3-a (reg3a), 
released from Paneth cells, was a potential plasma biomarker 
for lower GI GvHD (63), Paneth cell damage contributes to loss 
of antimicrobial peptides and accelerates the loss of microbial 
diversity in GvHD, a major risk factor of treatment-related 
mortality (80, 81).

FURTHeR HSCT-ReLATeD 
COMPLiCATiONS

Overview
Although GvHD is the main complication of allogeneic SCT, 
non-relapse-related mortality (NRM) can occur independently 
from the occurrence of GvHD or in patients with minor GvHD. 
Overall, NRM has decreased in the last 10  years as a result of 
several improvements such as reduced intensity conditioning; 
resulting in reduced organ toxicity, improved donor selection and 
matching, and progress in supportive treatment (82).

Major complications include viral and fungal infections, 
which can occur independently from GvHD due to the immu-
nodeficiencies induced by HSCT. GvHD and its treatment 
aggravate and prolong the risk of infectious complications, and 
many patients suffering from severe GvHD die from infectious 
complications. Beyond the period of acute GvHD, cGvHD and 
long-term complications are major causes of NRM and morbid-
ity. Long-term complications include organ toxicities, endocrine 
deficiencies, and most important secondary cancers. HSCT 
patients’ survivors therefore need a long-term follow-up in order 
to allow early detection of complications, and several guidelines 
summarize the current recommendations (83, 84).

A detailed presentation of infectious complications, organ 
toxicities, and long-term complications is beyond the focus of 
this review; we therefore focus on the most relevant targets of 
complications: endothelial cells and pulmonary complications.

endothelial Complications
Endothelial complications occur clinically throughout the dif-
ferent phases of HSCT. In the early weeks after transplantation, 
sinusoidal obstruction syndrome (SOS) formally known as 
veno-occlusive disease (VOD) can result in severe liver dam-
age and eventually multi-organ failure (85, 86). SOS results 
from conditioning-related toxicity in the sinusoids of the liver 
with subsequent occlusions by thrombosis and fibrosis. In the 
period of engraftment, cytokine storm-mediated capillary leak-
age syndrome can occur. With the introduction of calcineurin 
inhibitors (CNI) for prophylaxis of GvHD, which also give rise 
to some endothelial toxicity, transplant associated microangi-
opathy (TAM) has been increasingly observed during acute 
GvHD (87). Manifestations of intestinal TAM can mimic severe 
GvHD and provoke intestinal bleeding but require a different 
treatment regimen. Besides CNI-associated TAM, it can also 
occur as atypical hemolytic uremic syndrome, which results 

from a failure of cleaving von Willebrand Factor (88, 89). In 
long-term patients, cerebro- and cardiovascular complications 
are increased.

While clinical endothelial complications have been well 
known for many years, more recently the pathophysiology of 
endothelial cells in GvHD has been studied. In vitro models 
of endothelial cell cultures reveal that conditioning can induce 
endothelial apoptosis, which is aggravated by LPS-mediated 
inflammation and followed allogeneic cytotoxic T-cell damage 
(90). Murine models have demonstrated the role of endothelial 
neovascularization induced by conditioning leading to GvHD 
(91–93) and infiltrating donor T cells. Recently, Schmid et  al. 
showed for the first time in a murine system that not only 
endothelial venules but also arterial vessels suffer direct endothe-
lial damage during GvHD (94). Detailed studies in patients have 
shown an association of loss of dermal vessels, with CD8+ T cell 
infiltrates, demonstrating allogeneic reactions against endothe-
lial cells (95, 96). More recently, endothelial damage has been 
shown to contribute to steroid resistance and failure to recover 
from GvHD. Loss of protective thrombomodulin was observed 
in biopsies from GvHD patients (97) together with increased 
serum thrombomodulin (98). In addition, genetic SNPs within 
the thrombomodulin gene have been identified as risk factors 
for GvHD (99). Finally, circulating endothelial factors such as 
angiopoietin levels pretransplant and VEGF levels posttransplant 
have been identified as risk factors of GvHD (100), which paves 
the way for infiltrating donor T cells.

Pulmonary Complications
A further central target organ of HSCT-related complications 
is the lung. Early after transplantation, bacterial and fungal 
pneumonia are common, mainly due to Aspergillus predomi-
nation. In the posttransplant period of GvHD and immune 
reconstitution, viral pneumonia caused by CMV, respiratory 
viruses (influenza, parainfluenza, RSV, and metapneumovirus), 
and adenoviruses predominate as well as fungal pneumonia, 
especially in patients with severe immunosuppression (101). In 
addition, further infectious agents such as Toxoplasma gondii 
and Pneumocystis jirovecii causing toxoplasma and pneumocystis 
pneumonia, respectively, can cause pneumonia during the 
period of B cell reconstitution while B cell numbers are absent 
or low. Pneumonias caused by encapsulated bacteria such as 
pneumococci are also observed (102, 103). Early after HSCT, 
peri-engraftment respiratory distress syndrome causes rapid 
deterioration of respiratory functions during leukocyte recovery 
but responds rapidly to high dose corticosteroid treatment. In the 
initial stages of aGvHD, idiopathic pneumonia syndrome (IPS) 
is a serious complication resulting from conditioning-related 
toxicity and LPS-triggered allogeneic reactions. IPS may or may 
not be exacerbated by occult or unknown infections (89) and in 
either case, TNF blocking agents have been shown to be effec-
tive in both experimental models and in patients (86–88). The 
most frequent complication is bronchiolitis obliterans syndrome 
(BOS) characterized by inflammation of the small bronchiole 
with subsequent obstruction and lung destruction (104, 105). 
Early monitoring and intervention with topical corticosteroids, 
azithromycin and possibly systemic immunosuppression is 
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needed to prevent progression to irreversible lung damage, 
which may lead a requirement for lung transplantation (106, 
107). Besides BOS, restrictive changes can be observed such as 
pulmonary fibrosis, bronchiolitis obliterans organizing pneumo-
nia, and pulmonary VOD (108).

Cellular therapy is one approach increasingly used as a second-
line treatment. Tregs (109) and MSCs (110–112) are promising 
cellular products, but phase 3 trials are yet to be conducted.

ReCeNT ADvANCeS AND PeRSPeCTiveS 
iN GvHD

For over 30  years, immunosuppressive drugs have served as 
a central strategy to reduce GvHD. Drugs such as sirolimus, 
tacrolimus, and methotrexate are the mainstay in the treatment 
of GvHD (113). Complete ex vivo T-cell depletion is no longer 
routinely used in HLA-matched transplantation as it also largely 
abolishes GvL effects. A more recent report from Finke and 
colleagues suggested ATG as an in vivo T-cell depletion may be 
more efficacious in lowering the incidence of severe acute GvHD 
in matched and mismatched HSCT from unrelated donors while 
GvL effects seemed less affected (114). Hundred patients were 
enrolled in the study. Comparable outcomes were obtained for 
GvHD patients receiving bone marrow or peripheral blood 
stem cells from matched or one antigen mismatched-unrelated 
donors when ATG was added to the standard prophylaxis (cyclo-
sporine +  methotrexate) (114). The use of ATG may therefore 
contribute to balance GvH versus GvL effect and enable HLA 
mismatch donors to be used as well as fully match-unrelated 
donors, with no difference in outcome. As an alternative, elimina-
tion of alloreactive T cells by posttransplant cyclophosphamide 
may become an option, which is already widely used for GvHD 
prophylaxis following haploidentical transplantation (115). 
Whether this approach can be integrated in the HLA-identical 
setting as a potential alternative to calcineurin inhibitors is under 
current investigation.

Pathogen recognition receptors like NLRs and TLRs are 
known to control adaptive immune responses in inflammatory 
disorders (37), and the research on the role of these receptors 
has resulted in the description of the interaction of the micro-
biota and the immune system in the setting of GvHD. Loss of 
microbiome diversity early after HSCT has been recognized as 
a new risk factor for GvHD and HSCT-related complications 
(116). This observation suggests that restoration of a diverse 
microbiome could be a new approach to induce intestinal and 
systemic tolerance, and pre-/pro- and post-biotic strategies, as 
well as several approaches of fecal microbiota transplantation, 
that are currently being tested in both experimental and clinical 
settings of HSCT (41).

Regulatory T cells have been expanded in vitro and used for 
prophylaxis and treatment of GvHD in experimental and small 

clinical trials (117, 118). Another option is induction of Tregs in 
patients, e.g., by interleukin-2 (IL-2) (119). Induction of Tregs has 
also been postulated as one mechanism explaining the beneficial 
action of extracorporeal photopheresis for treatment of acute 
GvHD and cGvHD (120, 121). Besides Tregs, numerous alterna-
tive candidates for cellular therapy of GvHD exist such as MDSCs 
(122). MSCs are indirect immunoregulatory cells that induce tis-
sue repair and show some promising activity in steroid-refractory 
GvHD (123, 124).

Among pharmacological agents, drugs with anti-inflammatory 
effects of corticosteroids but without numerous side effects are 
urgently needed. Recently, anti-inflammatory JAK2 inhibitors 
have shown promising effects both in GvHD and in rheumatol-
ogy. Proteasome inhibitors and histone deacetylase inhibitors 
originally developed as anticancer drugs now show some promis-
ing activity in dampening T-cell responses (125). In cGvHD, the 
role of aberrant B cells is increasingly recognized, which paves 
the way for anti-B cell strategies like rituximab or new B cell 
development inhibitors like the Bruton’s tyrosine kinase-inhibitor 
ibrutinib (70).

A major issue in the treatment of aGvHD is that most 
approaches are initiated too late, when major changes have 
already severely damaged the target tissue. Therefore, biomarkers 
allowing early identification of patients at high risk are needed. 
A handful of biomarkers have been discovered, which might be 
used to guide treatment in the future (65).

Finally, the practice of stem cell transplantation differs between 
countries, within the same countries and between transplanta-
tion institutes. Approaches aimed at standardization of diagnosis 
and treatment are urgently needed, some of which have been 
addressed by several consensus projects (68, 126).
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