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Interferon lambdas (IFN-λs; IFNL1-4) modulate immunity in the context of infections 
and autoimmune diseases, through a network of induced genes. IFN-λs act by bind-
ing to the heterodimeric IFN-λ receptor (IFNLR), activating a STAT phosphorylation- 
dependent signaling cascade. Thereby hundreds of IFN-stimulated genes are induced, 
which modulate various immune functions via complex forward and feedback loops. 
When compared to the well-characterized IFN-α signaling cascade, three important 
differences have been discovered. First, the IFNLR is not ubiquitously expressed: in 
particular, immune cells show significant variation in the expression levels of and sus-
ceptibilities to IFN-λs. Second, the binding affinities of individual IFN-λs to the IFNLR 
varies greatly and are generally lower compared to the binding affinities of IFN-α to 
its receptor. Finally, genetic variation in the form of a series of single-nucleotide poly-
morphisms (SNPs) linked to genes involved in the IFN-λ signaling cascade has been 
described and associated with the clinical course and treatment outcomes of hepatitis B 
and C virus infection. The clinical impact of IFN-λ signaling and the SNP variations may, 
however, reach far beyond viral hepatitis. Recent publications show important roles for 
IFN-λs in a broad range of viral infections such as human T-cell leukemia type-1 virus, 
rotaviruses, and influenza virus. IFN-λ also potentially modulates the course of bacterial 
colonization and infections as shown for Staphylococcus aureus and Mycobacterium 
tuberculosis. Although the immunological processes involved in controlling viral and 
bacterial infections are distinct, IFN-λs may interfere at various levels: as an innate 
immune cytokine with direct antiviral effects; or as a modulator of IFN-α-induced sig-
naling via the suppressor of cytokine signaling 1 and the ubiquitin-specific peptidase 
18 inhibitory feedback loops. In addition, the modulation of adaptive immune functions 
via macrophage and dendritic cell polarization, and subsequent priming, activation, 
and proliferation of pathogen-specific T- and B-cells may also be important elements 
associated with infectious disease outcomes. This review summarizes the emerging 
details of the IFN-λ immunobiology in the context of the host immune response and 
viral and bacterial infections.
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FiguRe 1 | Type iii iFN signaling pathway. Viral infection is sensed by pattern recognition receptors (PRRs), which induce IFN-λ production via various signaling 
pathways. IFN-λs bind to the heterodimeric IFN-λ receptor (IFNLR), which consists of IL28RA and IL10RB subunits. Upon binding, a JAK–STAT signaling cascade 
induces hundreds of IFN-stimulated genes (ISGs). RLR, RIG-1-like receptor; TLR, toll-like receptors; NF-κB, nuclear factor kappa-light-chain-enhancer of activated 
B cells; IL28RA, interleukin 28 receptor alpha; IL10RB, interleukin 10 receptor beta; JAK1, Janus Kinase 1; TYK2, tyrosine kinase 2; STAT, signal transducer and 
activator of transcription; IRF, interferon regulatory factor; ISRE, interferon-stimulated response element; MX1, interferon-induced GTP-binding protein Mx1; OAS1, 
2′-5′-oligoadenylate synthetase.
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iFN-λ eXPReSSiON AND SigNALiNg 
PATHwAYS

Patients with infectious diseases often show heterogeneous clini-
cal courses with a range of associated morbidities and variable 
mortality. This is dependent on a series of factors covering the 
complex aspects of host–pathogen interactions (1–5). IFNs 
play a crucial role in these interactions—defining the outcome 
of many viral, bacterial, fungal, and parasitic infections (6–16) 
(see Figure 1). In addition, IFNs reduce tumor cell proliferation  
(17, 18) and show important immune regulatory functions in 
autoimmunity (19, 20). These broad effects are explained through 
the induction of hundreds of IFN-stimulated genes (ISGs) (21). 
Three types of IFNs have been described, which can induce 
ISG expression, and add further complexity: type I with mainly 
IFN-αs and -βs (22–26), type II with only IFN-γ (27), and type 
III with IFN-λs (28–31). Although most cells can induce and 
release various types of IFNs, specialized immune cells are the 
main producers during an inflammatory process. The effects 
induced by single or combined IFNs in exposed cells are very 
heterogeneous and range from differential patterns of ISG expres-
sion, regulation of cell proliferation (18), changes in cell surface 
molecules such as HLA DR (32), to the maturation of monocytes 
to dendritic cells (33). The effects depend on the plasticity of 

the various IFNs involved, including the peak concentrations, 
concentration changes over time, binding affinities of IFNs to 
the specific receptors, receptor expression, potentially induced 
feedback mechanisms, and the target cell type itself (34).

Four IFN-λ ligands have been described: IFNL1–4, with each 
family member having antiviral effects on various viruses within 
different cell types (28). IFNL1–3 share high amino acid sequence 
homologies, whereas IFNL4 is more divergent with only 40.8% 
amino acid similarity to IFNL3 (35). The expression of IFN-λs 
is induced in a broad range of cell types by pattern recognition 
receptors including toll-like mediated (36–41), Ku70 (21398614) 
and RIG-1-like (24952503). Type 2 myeloid dendritic cells have 
been described as the main producers of IFN-λ (42–48). In mice, 
commonly used as a model organism for infectious disease and 
immune function, only IFNL2 and IFNL3 are functional, as 
IFNL1 and IFNL4 are present as inactive pseudogenes (49).

After release, IFN-λ binds to its heterodimeric IFN-λ recep-
tor (IFNLR). The IFNLR consists of two subunits: α-subunit 
(IL28RA) and β-subunit (IL10RB) (35, 50–53). Despite high 
sequence homologies, binding affinities of the different IFN-λs 
to the IFNLR1 differ greatly. IFNL1 shows the highest binding 
affinity to IL28RA, and IFNL3 the lowest (54). The dimerization 
of the receptor subunits leads to activation of Janus Kinase 1 and 
tyrosine kinase 2 and phosphorylation of STAT-1 and -2, which 
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induces the subsequent downstream signaling with the induction 
of hundreds of ISGs (31) (see Figure 1). IFN-α and IFN-λ both 
show a complex mechanism of positive and negative feedback 
loops, mainly modulated via the suppressor of cytokine signaling 
1 and the ubiquitin-specific peptidase 18 (31, 55).

iFN-λ ReSPONSiveNeSS TO 
COuNTeRACT PATHOgeNS

Two aspects are crucial to understanding the role of IFN-λs in the 
context of infectious diseases: (i) IFNLR distribution in infected 
cells and tissues and (ii) single-nucleotide polymorphisms (SNPs) 
in and around the genes encoding IFN-λs and IFNLR. Both 
aspects show important differences between humans and mice, 
which complicate studies and conclusions drawn from infectious 
disease models (56).

iFNLR Receptor expression
The IL10RB subunit is expressed in many cell types (57), whereas 
the IL28RA subunit expression is much more restricted. Expression 
of IL28RA mRNA has been detected in the lung, intestine, liver 
tissues, immune cells such as B cells, neutrophils, macrophages, 
and plasmacytoid dendritic cells (28, 29, 43, 58–62). Human NK 
cells seem not to express IFNLR (63), whereas mouse NK cells 
show deficient function in IL28R knockout animals (25901316). 
The effects of IFN-λ on cells and tissues are often measured in vitro 
via indirect markers, such as downstream expression of ISGs or 
changes in specific cellular phenotypes. Data on the induction 
of STAT phosphorylation, as the most direct measurement of 
signal induction, are still missing for some cell types and tissues. 
The IFNLR expression is regulated via transcription factors (31) 
and may show variability during an inflammatory process, which 
adds an additional level of complexity. Primary hepatocytes show 
relatively low baseline responsiveness to IFN-λs, yet upon IFN-α 
treatment a marked increase in IL28RA mRNA levels is observed 
(64, 65). Similarly, during cytomegalovirus (CMV) infection of 
fibroblasts, IL28RA mRNA levels increase by about twofold, but 
protein expression levels remain stable (66). A recent paper by 
Lazear et al. suggested that endothelial cells in the blood–brain 
barrier may be sensitive to IFN-λs, reducing permeability to West 
Nile virus in a mouse model (67).

Understanding which immune cells and subsets are respon-
sive to IFN-λs in humans can be experimentally and technically 
challenging due to low target cell densities and less accessible cell 
types such as tissue resident cell types. In contrast, peripheral 
blood mononuclear cells (PBMCs) are relatively easy to access in 
order to explore responses to IFN-λs; therefore, most literature 
focuses on hepatocytes (from liver biopsies) and immune cells 
from the blood. The direct impact of IFN-λs on T-cells via 
surface expression of the specific IFNLR is subject to ongoing 
debate (58, 68–71). IFN-λs may also induce FOXP3-expressing 
regulatory T-cells (72), which may impact a series of immu-
noregulatory aspects during an infection as part of the inflam-
matory response. Several research groups confirm that IFN-λs 
influence the T-helper cell balance, which is shifted toward Th1 
(70, 71, 73–76). The Th1/Th2 balance might be important for 

controlling specific infections such as helminths (6, 77, 78). In 
addition, the B-cell-driven humoral immune responses are also 
modulated by the presence of Th2 cytokines, e.g., during vac-
cination. We have recently shown that IFNL3 is a key regulator 
of the influenza virus-specific B-cell proliferation and antibody 
production (76). The exact mechanism of how Th1/Th2 balanc-
ing and B-cell activation is modulated by IFN-λs and how this 
impacts infectious disease outcome has to be explored in more 
detail in the future.

impact of SNPs
A series of SNPs in IFN-λ ligand and receptor genes have been 
described (see Figure 2). Most importantly, these SNPs have been 
associated with a series of important clinical phenotypes in the 
context of infectious diseases (see Table 1 for more details).

Modulation of IFNLR expression may have a great impact on 
the effects of a particular IFN-λ ligand, and thereby influence 
the subsequent signaling pathway and the outcome of infectious 
diseases. Multiple SNPs in the gene encoding IL28RA have been 
described (94–97). The rs10903035 SNP is located within the 
3′UTR of the IL28RA mRNA sequence, suggesting a potential 
microRNA binding site. This particular SNP was identified as an 
independent risk factor for IFN-α treatment failure against hepa-
titis C virus (HCV) (44, 98). In addition, this SNP has been asso-
ciated with insulin resistance in HIV/HCV coinfected patients 
(94). Another SNP in this gene, rs4649203, has been linked to 
the risk of psoriasis in four independent populations (96), and 
to the development of systemic lupus erythematosus (97). These 
observations suggest an important influence of IL28RA on infec-
tious and autoimmune diseases.

Expression of IFN-λ ligands is modulated by SNPs in both 
transcription factor binding sites and methylation sites of the 
promoter region, as well as frameshift mutations (99–102). The 
IFN-λ gene layout is shown in Figure 2. The clinical impact of 
SNPs in the IFNL3/4 locus was originally observed in the context 
of IFN-α treatment outcomes in patients with chronic HCV 
(79, 80, 87, 90, 103). SNPs within this locus are in high linkage 
disequilibrium, e.g., rs12979860 with ss469415590 (103, 104), 
which complicates the exploration of the effects of individual 
SNPs. Therefore, the impact of some SNPs on IFN-λ expression 
is still debated. Most studies have concluded that the minor 
alleles of SNPs rs12979860 (CT/TT) and rs8099917 (TG/GG) are 
associated with reduced IFNL3 expression during chronic HCV 
infection, observed in liver biopsies (80, 105–107), serum, and 
PBMCs stimulated with polyI:C-, CMV-, and influenza virus  
(66, 76, 108, 109). However, it has also been shown that the 
TT allele of rs12979860 in hepatocytes expresses higher levels 
of IFNL1 and IFNL3 (110). This minor allele genotype of 
rs12979860 (TT) has also been associated with a higher and pro-
longed ISG expression in HCV infection (79, 80, 87, 90, 103, 111). 
Interestingly, the same SNP of the IFNL3 gene is associated with a 
higher ISG expression in mothers after childbirth, suggesting that 
postpartum the normalization of physiological control of IFN 
signaling depends on the IFNL3 genotype (112). Although the 
rs12979860 SNPs have been specifically associated with IFNL3/
L4 expression, these SNPs might also affect the expression of the 
other IFN-λ genes (80, 87, 113).
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FiguRe 2 | Organization of iFNL genes in the human genome. The IFN-λ genes are located in tandem on chromosome 19. Key single-nucleotide 
polymorphisms (SNPs) in coding and non-coding regions of IFN-λ genes are shown. IFNL1, IFNL2, and IFNL3 genes are functional; only a subset of the human 
population possess the SNP rs368234815 with ΔG frameshift mutation in exon 1, producing an in-frame IFNL4.

4

Syedbasha and Egli Lambda and Immunity

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 119

The impact of the ss469415590 SNP on the expression of 
IFNL4 is, in contrast, very well described: in the context of a 
delta-G polymorphism, a frameshift mutation generates a gene 
containing an alternative reading frame, which causes IFNL4 to 
be functionally expressed in about 40% of Caucasians (90). An 
amino acid substitution at residue 70 of IFNL4 (P70S) decreases 
the antiviral activity via a reduction in the ISG expression levels 
(111).

Beside the impact of SNPs on innate immune signaling via 
differences in ISG expression profiles, an important impact on 
adaptive immune functions has been noted. We have shown 
that IFN-λ decreases virus-induced B-cell proliferation and 
antibody secretion in a dose-dependent manner. In addition, 
IFN-λ increases influenza-induced Th1 cytokines (IFN-γ, IL6), 
whereas influenza-induced Th2 cytokines decrease (IL4, IL5, IL9, 
IL13). These effects can also be reproduced with specific allelic 
combinations. In particular, the TG/GG allele of rs8099917 shows 
significantly lower levels of IFN-α, IL2, and IL6 secretion in 
influenza-stimulated PBMCs. In an influenza vaccine cohort, vac-
cine recipients with the rs8099917 TG/GG (minor) allele showed 
significantly higher vaccine-induced humoral immune responses 
(76). Similarly, in a cohort of children vaccinated against measles, 
the post-vaccine antibody titers were significantly higher in the 
group with the rs10853727 SNP AG and GG (minor allele) (89). 
Both SNPs rs8099917 and rs10853727 lie within the IFNL3 
promoter region and have been associated with lower IFNL3 
expression (76, 89).

iFN-λ AND iNFeCTiOuS DiSeASeS

The dual role of IFN-λs, with direct antiviral effects (innate 
immunity) and more long-term immunomodulatory effects on 
T- and B-cell activation and modulation, can result in multiple 
possible interactions with different types of infectious disease. 
Table  2 summarizes the role of IFN-λs in several infectious 
diseases.

viral infections
IFNs protect cells against viral infections. In response, every 
virus has evolved specific ways to counteract IFN signaling and 
its effects (139–143). Only a few studies have explored this in the 
context of IFN-λs. Parainfluenza virus 3 blocks antiviral media-
tors downstream of the IFNLR signaling by modulation of the 
STAT1 phosphorylation in BEAS 2B cells, a bronchial epithelial 
cell line (144). Dengue virus was recently shown to induce IFNL1 
via its non-structural protein (NS1) in order to facilitate dendritic 
cell migration (114).

Using cell culture-based in  vitro models, IFN-λs have been 
shown to play a role in controlling viral replication. In most stud-
ies, cultured cells were treated with IFN-λs and the impact of viral 
infection was assessed. These studies investigated human (66) 
and murine CMV (59), dengue virus (114, 145), encephalomyo-
carditis virus (28, 29, 146), herpes virus type 2 (120), hepatitis B 
virus (115), HCV (37, 60, 113, 115, 116, 147), HIV (40, 117, 118), 
human meta pneumovirus (121), influenza virus (122, 148–152), 
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TAbLe 1 | Single-nucleotide polymorphisms (SNPs) within the iFNL3/iFNL4 gene locus and impact on infectious diseases.

gene SNP Allele type effects of the allele on infectious diseases Reference

IFNL3 rs12979860 C/T and T/T (C-major, 
T-minor)

HCV: decrease of effective treatment for HCV (79, 80)

C/T and T/T (C-major, 
T-minor)

HTLV1: higher proviral load and higher risk of developing HTLV-1-associated myelopathy and tropical 
spastic paraparesis (TSP)

(81)

C/C (C-major) HBV: higher inflammation and liver fibrosis in chronic hepatitis B patients (82)
T/T (T-minor) EBV: observed higher level of EBV DNA in the plasma of EBV viremia patients (83)
T/T (T-minor) CMV: less CMV replication in solid-organ transplant recipients (66)
T/T (T-minor) CMV: lower incidence of active CMV infection and reduced CMV DNAemia in allogeneic stem cell 

transplant patients
(84)

C/T and T/T (C-major, 
T-minor)

HSV: increased rate of HSV-1-related herpes labialis and more clinical severity (85)

T/T (T-minor) ANDV: associated with mild disease progression (86)

rs8099917 T/G (T-major, G-minor) HCV: lower response to PEG-IFN-α/RBV treatment (87)
HTLV1: high risk for developing HTLV-1-associated myelopathy and TSP (88)
CMV: trend to show less CMV replication in solid-organ transplant recipients (66)

G/G (G-minor) ANDV: associated with mild disease progression (86)
T/G and G/G (T-major, 
G-minor)

Influenza vaccination: increased Th2 cytokine production and higher rate of seroconversion following 
influenza vaccination

(76)

rs4803217 C/T (C-major, T-minor) HCV: decreased response to PEG-IFN-α/RBV treatment (80)
rs10853727 A/G and G/G (A-major, 

G-minor)
Measles vaccination: increased post-vaccine titers against measles vaccination (89)

rs12980275 A/G (A-major, G-minor) HCV: failure to clear infection (null virological response: NVR) (80, 87)

IFNL4 ss469415590 ΔG/TT and ΔG/ΔG 
(frameshift variant from 
TT genotype)

HCV: creates a new IFNL4 gene and poorer response to PEG-IFN-α/RBV treatment (90)

(rs368234815) CMV: increases susceptibility to CMV retinitis among HIV-infected patients (91)
CMV: higher susceptibility to CMV infection in solid-organ transplant recipients (92)
HIV: higher prevalence of AIDS-defining illness and lower CD4 lymphocytes levels (93)

IFNLR1 rs10903035 A/G and G/G (A-major, 
G-Minor)

HIV/HCV: early treatment failure with HIV/HCV coinfected patients (94)

IFNL3, interferon lambda 3; IFNL4, interferon lambda 4; IFNLR1, interferon lambda receptor 1; HCV, hepatitis C virus; HTLV-1, human T-lymphotrophic virus type 1; HBV, hepatitis B 
virus; EBV, Epstein–Barr virus; CMV, cytomegalovirus; HSV, herpes simplex virus; ANDV, Andes virus; HIV, human immunodeficiency virus; PEG-IFN-α/RBV, pegylated-Interferon- 
α/Ribavirin.
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lymphocytic choriomeningitis virus (LCMV) (125), norovirus 
(124), respiratory syncytial virus (128, 153, 154), sendai virus 
(155–157), and vesicular stomatitis virus (131, 158, 159).

In vivo, the complexity of the role of IFN-λ within tissues 
and between various immune cells has been explored using an 
IL28RA−/− mouse model, leading to the discovery of multiple 
important aspects of IFN-λ signaling (122, 130, 150).

A recent study by Lin et al. demonstrated that the effects of 
type III IFNs change with increasing age. Rotavirus was controlled 
by both type I and III IFN in suckling mice, whereas epithelial 
cells in particular were responsive. In adult mice, epithelial cells 
were responsive only to type III and not type I IFNs, suggesting 
an orchestrated spatial and temporal organization of the IFN-α 
and IFN-λ responses in the aging murine intestinal tract (160). 
However, there is some controversy regarding the rotavirus data, 
as other researchers have shown that rotavirus is specifically 
controlled by type III and not type I IFN (21518880). Mahlakoiv 
et al. showed that leukocyte-derived IFN-α/β and epithelial IFN-
λ constitute a compartmentalized mucosal defense system to 
restrict enteric viral infection in mice. The authors concluded that 
epithelial barriers to IFN-λ may have evolved to reduce frequent 
triggering of IFN-α/β and thus reduce exacerbated inflammation 

(161). A study by Baldridge et al. showed that antibiotics could 
prevent the persistence of enteric murine norovirus infection, but 
only in the presence of functional IFN-λ signaling. The IL28RA−/− 
mice showed a high rate of infection, despite the administration 
of antibiotics. This may suggest cross talk between the gut micro-
biota and IFN-λ signaling in modulating chronic viral infections 
(162). Important synergistic effects in the intestine have been 
described, with IL22-inducing IFN-λ expression in intestinal 
epithelial cells in a murine rotavirus infection model (163).

The role of IFN-λ during respiratory tract infections has also 
been explored using the IL28RA−/− mouse model. The studies so 
far have concentrated on the classical role of IFNs as antiviral 
cytokines. The IL28RA−/− mouse displayed a significantly higher 
burden of disease than wild-type mice during infections with 
influenza virus and SARS coronavirus (122, 130, 150). One study 
showed the immunoregulatory function of IFN-λ in an LCMV 
model. The authors noted that in an acute LCMV infection 
model, the IL28RA−/− mouse showed a greater than normal CD4+ 
and CD8+ T-cell response compare to the wild type, whereas in 
a chronic LCMV infection model, the IL28RA−/− mice showed a 
greater disease burden and a significantly reduced LCMV-specific 
T-cell response. The paper showed that germinal center B-cells 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TAbLe 2 | Described role of iFN-λσ in infectious diseases.

Pathogens Model Role of iFN-λ Reference

viruses
Cytomegalovirus 
(CMV)

In vitro: HFF cell line and stimulated 
peripheral blood mononuclear cells 
(PBMCs)

IFNL3 reduces CMV-induced CD4 T cell proliferation in PBMCs (66)

Clinical study

Dengue virus In vitro: DC and human lung epithelial cell 
line A549

IFNL1 induce CCR7 expression and DC migration upon dengue virus infection (114)

HBV In vitro: murine hepatocyte cell line 
(HBV-Met)

IFNL induces IFN-α/β-like antiviral response and inhibition of HBV replication in murine 
heptocyte cell line

(115)

Hepatitis C virus 
(HCV)

In vitro: primary hepatocytes and HUH7 
cell lines.

IFNL induces type-1 interferon-like antiviral response and blocks HCV infection in human 
primary hepatocyte and HUH7 cells

(59, 115, 
116)

HIV In vitro: monocyte-derived macrophages IFNL3 inhibits HIV infection of macrophage through the JAK-STAT pathway. (117, 118)
In vitro: T-cells and clinical study IFNL induce antiviral state in culture primary T-cells and supress HIV-1 integration and 

posttranscriptional events

HSV-1 In vitro: human lung epithelial cell line 
A549

Mediator complex (Med23) interacts with IRF-7 to enhance IFNL production and it inhibits 
HSV-1 replication

(119)

Clinical study

HSV-2 In vitro: human cervical epithelial cells IFNL contributes to TLR3/RIG-1-mediated HSV-2 inhibition (120)

Human 
metapheumovirus 
(HMPV)

In vitro: human lung epithelial cell line 
A549

Mice treated with IFNL prior to HMPV infection develop lower viral titer and reduced 
inflammatory responses

(121)

Influenza virus In vivo: mice IFNL restricts virus infection in epithelial cells of respiratory and gastrointestinal tracts (122, 123)
In vitro: cell lines IFNL reduced Influenza A virus-induced disease, with less inflammatory side effects in 

comparison to IFN alpha
In vivo: infected mice

Murine CMV In vitro: intestinal epithelial cell lines IFNL1 mediates antiproliferative and antiviral signals in intestinal epithelial cells (59)

Norovirus In vivo: infected mice IFNL cures persistent murine norovirus infection (124)

Lymphocytic 
chorimeningitis 
virus

In vitro: human lung epithelial cell line 
A549

IFNL2 showed more potent antiviral response to lymphocytic choriomeningitis virus than 
IFNL3

(125)

Rhinovirus In vitro: human bronchial epithelial cell line 
(BEAS-2B)

Increased IFNL production reduces rhinovirus replication in bronchial epithelial cells (126)

RSV In vitro: primary human and mouse airway 
epithelial cells

TLR-s mediates IFNL production in primary airway epithelial cells and induces the antiviral 
response

(127, 128)

In vitro: Hep-2 and Vero cells IFNL-1 shows prophylactic potential against RSV

Rotavirus In vivo: infected mice IFNL reduces viral replication in epithelia cells (129)

SARS coronavirus In vitro: human lung epithelial cell line 
A549

Ifnlr1−/− mice exhibit increased susceptibility to SARS corona virus (122, 130)

In vivo: infected mice

VSV In vitro: mouse hepatocyte cell line IFNL attenuates VSV replication in immortal mouse hepatocytes (MMHD3 cells) (131)

West Nile virus In vitro: Huh7.5 and HeLa cells IFNL can efficiently prevent West Nile Virus infection in cell line (67, 132)
In vivo: infected mice IFNL knockout animals show increased viral load in brain. Treatment with IFNL reduced 

blood–brain permeability for the virus

bacteria
Staphylococcus 
aureus and 
Pseudomonas 
aeruginosa

In vivo: infected mice Ifnlr1−/− mice exhibits less pathology without changes in cell infiltrates (133)

Mycobacterium 
tuberculosis

In vitro: human lung epithelial cell line 
A549

Induces IFNL expression on A549 lung epithelial cells (134, 135)

Clinical study Observed increased concentration of IFNL2 in sputum of pulmonary tuberculosis patients
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Pathogens Model Role of iFN-λ Reference

Listeria 
monocytogenes

In vivo: infected mice IFNL-mediated immune response may control bacterial colonization (136)

Salmonella 
typhimurium

In vitro: human monocyte-derived 
macrophages

The activation of type III interferon by live and heat killed bacteria in phagocytic dentritic 
cells, but role in pathogenesis is not clear

(137)

Borrelia 
burgdorferi

In vitro: stimulated PBMCs The ability of IFNL induction correlates with clinical isolates, type III IFN pathway in 
pathogenesis is yet to be determined

(138)

HSV-1, herpes simplex virus-1; HSV-2, herpes simplex virus-2; RSV, respiratory syncytial virus; VSV, vesicular stomatitis virus; murine CMV, murine cytomegalovirus; SARS, severe 
acute respiratory syndrome.
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were more frequent in peripheral blood in the IL28RA−/− mice 
than wild-type mice. However, the LCMV-induced memory 
B-cell response, in terms of frequencies and LCMV-specific 
antibodies, was comparable (164).

The immunoregulatory actions of IFN-λs have been explored 
in an ovalbumin (OVA)-induced asthma model. The IL28RA−/− 
mice showed a clear shift to increased Th2 cytokines and a more 
severe asthma phenotype. Importantly, IgE antibodies were also 
significantly increased (73). In this model, the IFNL2 (IL28A) 
immunoregulatory activity was dependent on lung CD11c+ 
dendritic cells to decrease OX40L, increase IL-12p70, and thereby 
promote Th1 differentiation (73). The potential role in infection-
triggered asthma has also been explored in humans (72, 126).

Although these conclusions from mice studies are very impor-
tant, a series of important differences to human effects have also 
been noted. In a human chimeric mouse model using human 
hepatocytes, the response rates of human and mice hepatocytes 
toward IFN-λs were very different, specifically in that mouse, 
hepatocytes did not respond to IFN-λ (56). In addition, the 
expression of IFNLR in immune cells seems to be strikingly differ-
ent. Whereas B-cells in humans respond to IFN-λs, in B-cells from 
mice there seems to be no direct effect from IFN-λs (69, 164).

Studies on the impact of IFN-λs in clinical scenarios have 
been dominated by the strong association of IFNL3/L4 SNPs with 
spontaneous clearance of HCV and IFN-α treatment response 
(79, 80, 87, 90, 103, 111). Details on this important association 
have been reviewed in detail elsewhere (165–167). The associa-
tion between IFN-λ SNPs and other infectious diseases is far less 
well explored. Not many studies have linked the genetic associa-
tions with mechanistic immunological assay.

Several studies have explored the association between SNPs 
in the IFNL3/L4 signaling and CMV replication. Transplant 
recipients with the rs8099917 GG allele demonstrate significantly 
less CMV primary replication. This SNP has been associated 
with reduced ISG expression upon infection (66). We postulate 
that this phenomenon has two reasons: (i) significant primary 
CMV replication is less likely due to a higher baseline ISG 
expression and (ii) naïve CMV-specific T cells from seronegative 
healthy blood donors show reduced proliferation capacity when 
pretreated with IFNL3 and stimulated with CMV lysate (66). In 
contrast, the rs368234815 ΔG SNP shows a higher risk for CMV 
retinitis in HIV-infected patients (91) and has been associated in 
a transplant cohort with an increased risk of CMV replication and 
disease, especially in patients receiving grafts from seropositive 

donors (92). Non-immunosuppressed patients with chronic 
periodontitis due to herpes virus infection show significant lower 
IFNL1 levels in gingival fluid compared to a healthy control group 
without viral replication (168), suggesting a protective effect of 
IFNL1 on virus replication, or CMV-induced antagonism of IFN-
λ expression. These results highlight the different roles of IFN-λs 
in acute or chronic infection scenarios and viral reactivation.

The impact of IFN-λs on human T-cell leukemia type-1 virus 
has also been explored in several independent cohorts. The first 
evidence came from Kamihira et  al. showing that the IFNL3 
mRNA expression level was significantly higher in HTLV-1 
mono-infection than HTLV-1/HCV coinfection. In addition, 
the high expression level was associated with the rs8099917 TT 
SNP (169). The impact of the rs8099917 GG SNP on the risk of 
HTLV-1 associated myelopathy/tropical spastic paraparesis (TSP) 
has since been confirmed (88). The impact of the rs12979860 SNP 
is more controversial. One study on the rs12979860 SNP showed 
that the CT/TT alleles were more frequent in patients with 
HTLV-1-associated myelopathy/TSP (81), although this finding 
was not replicated in two additional studies (170, 171). de Sa 
et al. reported that the major alleles of IFNL3 SNPs (rs12979860 
CC and rs8099917 TT) are associated with a shift in the Th1/
Th2 immune response toward a Th1 response (172). The Andes 
virus causes a hantavirus cardiopulmonary syndrome; in a cohort 
of Andes virus-infected patients, the minor alleles of rs12979860 
and rs8099917 (TT and GG) were linked to milder disease com-
pared to CT/CC and TG/TT (86).

The impact of the IFN-λ signaling on humoral immune 
function has been described in two vaccine cohorts: immuno-
suppressed patients vaccinated against influenza (76) and healthy 
children vaccinated against measles (89). These important obser-
vations hold promise for personalized vaccine strategies and 
adjuvant development (4).

bacterial infections
The cytokine microenvironment of a tissue may have an impact 
on the rate at which a particular infectious bacterium can 
colonize and also influence the rate of infections. Planet et  al. 
showed that IFN-λs might lead to important changes in the local 
microbiota during influenza infection. In a mouse model of influ-
enza infection, the authors observed that mice with functional 
IL28 signaling showed more profound changes in their respira-
tory microbiota and subsequent higher colonization rates with 
Staphylococcus aureus compared to IL28RA−/− mice (173). These 

http://www.frontiersin.org/Immunology/
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important findings should be confirmed in a human cohort, as 
S. aureus is an important source of bacterial superinfection after 
an influenza infection. In addition, microbiota changes upon 
common clinical scenarios such as antibiotic treatment may be 
modulated by IFN-λs and their genotypes.

Bacteria including M. tuberculosis induce IFN-α/β and 
IFN-γ; however, little is known about the effects of IFN-λs in 
epithelial immunity. Gram-positive bacteria such as S. aureus, 
Staphylococcus epidermidis, Enterococcus faecalis, and Listeria 
monocytogenes induce IFN-λs, whereas Salmonella enterica sero-
var Typhimurium, Shigella flexneri, and Chlamydia trachomatis 
do not substantially induce IFN-λs, in intestinal and placental 
cell lines (134). Others have reported that S. enterica serovar 
Typhumurium can induce IFN-λs in human DCs (137). IFN-λ 
gene expression can be increased within DCs upon stimulation 
with bacterial components such as lipopolysaccharide. In par-
ticular, during M. tuberculosis infection, IFN-α plays an impor-
tant regulatory role in the pathogenesis (12, 174). M. tuberculosis 
in A549 lung epithelial cells stimulates expression of IFN-λs. In 
addition, the IFNL2 concentration in sputum of patients with 
pulmonary tuberculosis is significantly higher than that in the 
sputum of healthy controls (135). Although the impact of IFN-
λs has not been explored in more detail, the cross talk between 
IFN-α and IFN-λs may play a crucial role in the pathogenesis of 
M. tuberculosis. The modulation of Th1/Th2 toward Th1 may be 
of additional importance.

Neutrophil functions are crucial in clearing bacterial infec-
tions and wound repair (175, 176). A major target of the effects 
of IFN-λs may be neutrophils (62, 177). A study by Blazek et al. 
showed that in a collagen-induced arthritis model, IFNL1 showed 
anti-inflammatory function by reducing the numbers of IL17-
producing Th17 cells and the recruitment of IL-1b expressing 
neutrophils, which is important to amplify the inflammatory 
process (62). Similar effects on neutrophil recruitment to the lung 
have been observed in an OVA-based asthma mouse model (73). 
Although somewhat speculative, this may suggest an important 
modulatory function of IFN-λs via neutrophil recruitment 
toward sites of bacterial infection.

So far, only one study has linked SNPs in genes involved in the 
IFN-λ signaling pathway with an increased risk of bacterial infec-
tions. Xiao et al. showed that SNP rs10903035 with G allele in the 
IL28RA was associated with significantly less frequent urinary 
tract infection (178).

Parasite and Fungal infections
The role of IFN-λs in parasitic and fungal disease has not yet been 
explored. Although somewhat speculative, helminth infections 
in particular might be regulated by SNPs in the IFN-λ system, 
considering the profound evidence on the importance of Th1/
Th2 balance (6, 77, 78). Furthermore, for parasite infections of 
the liver such as Plasmodium spp. there is important evidence 
on the importance of the IFN-α signaling (13, 179–182). Due 
the regulatory interactions of IFN-α and IFN-λ and the clini-
cal importance of relevant SNPs (31), it is not unreasonable to 
postulate an impact.

SuMMARY

IFN-λs, and their modulation via SNPs, are increasingly recog-
nized as important players in a broad range of infectious diseases. 
Although the literature is still dominated by reports on HCV, 
work especially in mouse models has pointed out the important 
role in viral, respiratory, and gastrointestinal infections. Bacterial 
colonization and bacterial infections may also be modulated by 
IFN-λs. The important diversity in IFNs and the large number of 
SNPs adds a difficult-to-address layer of complexity. Therefore, 
further research on IFN-λs outside the HCV field is required to 
understand their roles and diagnostic and therapeutic potential. 
Most importantly, predictions of risks associated with infectious 
diseases have to be confirmed in independent cohorts to allow 
personalized medicine strategies.
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