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Glomerular podocytes are specialized in structure and play an essential role in  glomerular 
filtration. In addition, podocyte stress can initiate glomerular damage by inducing the 
injury of other glomerular cell types. Studies have shown that podocytes possess the 
property of immune cells and may be involved in adaptive immunity. Emerging stud-
ies have also shown that podocytes possess signaling pathways of innate immune 
responses and that innate immune responses often result in podocyte injury. More 
recently,  mitochondrial-derived damage-associated molecular patterns (mtDAMPs) have 
been shown to play a critical role in a variety of pathological processes in cells. In the 
present mini-review, we summarize the recent advances in the studies of innate immunity 
and its pathogenic role in podocytes, particularly, from the perspective of mtDAMPs.
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Podocytes are highly specialized in structure and characterized by abundant foot processes between 
which slit diaphragms are formed and serve as part of glomerular filtration barrier. Podocyte homeo-
stasis is critical for optimal glomerular filtration and podocyte injury or loss can initiate glomerular 
damage, possibly leading to glomerulosclerosis.

Podocytes exhibit features of immune cells. For example, podocytes express certain genes char-
acteristic of immune cells, including MHC class II (1), B7-1 (CD80, a molecule required for T cell 
activation) (2), and FcRn (a receptor protein in antigen-presenting lymphocytes) (3). It has been 
demonstrated that podocytes can act as antigen-presenting cells as shown by their capabilities of 
phagocytosing and processing antigens and presenting them by forming peptide–MHC complexes, 
which can activate T cells (4). Importantly, this property of podocytes as antigen-presenting cells is 
involved in the development of nephritis as shown by amelioration of nephritis in the mice lacking 
MHC II specifically in podocytes in an anti-GBM nephritis model (4). Recently, increasing num-
bers of studies have shown that podocytes possess the components of innate immunity. The innate 
immune responses induced by various ligands have pathological role, leading to podocyte injury 
and podocytopathies. We will review the studies in this area and will discuss mitochondrial damage-
associated molecular patterns (DAMPs) and their involvement in the innate immune activity in 
podocytes.

innATe iMMUne ReSPOnSeS in PODOCYTeS

innate immune System in Podocytes
Podocytes express many genes required for innate immune responses. These genes include a number 
of pattern recognition receptors (PRRs) that sense both pathogen-associated molecular patterns 
(PAMPs, e.g., microbial pathogens) and DAMPs (e.g., endogenous molecules in an organism). In 
addition, the components of downstream signaling pathways are also present in podocytes.
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Toll-Like Receptors (TLRs)
Most members of the TLR family are detectable at mRNA level 
in isolated mouse glomeruli with TLR3 and TLR4 having the 
most abundant expression (5). Immunohistochemical staining 
showed that TLR4 protein is localized in podocytes. In cultured 
podocytes, the treatment with lipopolysaccharides (LPS), a 
PAMP ligand for TLR4, induced the expression of CCL2, CCL7, 
CXCL1, CXCL5, CCL3, CCL5, CXCL7, CXCL9, CXCL11, and 
CXCL13. Moreover, fibrinogen, a DAMP ligand of TLR4, also 
induced the expression of CCL2, CCL7, CXCL1, and CXCL5 
(5). Consistently, nuclear factor kappa B (NFκB) signaling was 
found activated in podocytes that were treated with TLR ligands 
(6). Supportively, the essential components of TLR signaling in 
cultured podocytes, including MyD88, IRAK, TRAF6, etc., have 
also been detected (7). In patients with lupus nephritis, polyoma 
virus infection, or hemolytic uremic syndrome, TLR9 was found 
to be de novo expressed in podocytes and thought to be involved 
in immune response and inflammation in glomeruli (8–10).

NLRP3 and Inflammasomes
The major components of inflammasomes, NLRP3, ASC, and cas-
pase 1, were found to be expressed in podocytes (11), and PAMP 
treatment was capable of upregulating the expression of NLRP3, 
pro-caspase 1, posttranslational processing of pro-caspase 1, and 
the release of IL-18 in podocytes (12). Cellular endogenous reac-
tive oxygen species (ROS) was observed to induce the activation 
of NLRP3 and formation of inflammasomes in mouse podocytes 
and glomeruli (13).

Retinoic Acid-Inducible Gene 1 (RIG-I)
Retinoic acid-inducible gene 1 belongs to the family of RIG-I-like 
helicases, which recognize viral RNA. It is expressed in podocytes 
and fully functional via downstream pathways, IRF3 (transcrip-
tion factor interferon regulatory factor 3), and NFκB, leading to 
cytokines expression and podocyte injury (14).

Receptor of Advanced Glycation Endproducts 
(RAGE)
Receptor of advanced glycation endproducts is one of the PRRs 
and can use DAMPS as its ligands. These DAMPs include 
advanced glycation endproducts (AGE), high-mobility group 
box protein 1 (HMGB1), S100A proteins, etc. RAGE is expressed 
in podocytes and upregulated in diabetic nephropathy (DN) 
(15,  16), and mediate podocyte injury induced by AGE (17). 
More recently, advanced oxidation protein products were also 
shown to be ligands of RAGE and capable of inducing podocyte 
apoptosis (18).

innate immune Responses Are  
Associated with Podocyte injury
Although innate immune signaling pathways are present and 
can be activated in podocytes, there has been no study showing 
that the innate immune responses enable podocytes to elimi-
nate pathogens in the body. Instead, a number of reports have 
described that innate immune responses lead to podocyte injury.

It was shown that injection of a TLR4 ligand, LPS, into mice 
induced proteinuria, accompanied by podocyte foot process 
effacement, in 24 h (2). This effect of LPS requires the expres-
sion of B7-1 (CD80) in podocytes because LPS does not induce 
proteinuria in B7-1 knockout mice (2). TLR3 and RIG-I were 
shown to mediate the effects of viruses on podocytes, leading 
to structural and functional disturbance of podocytes (14). This 
conclusion was further supported by the observation that the 
treatment with polyIC, a TLR3 ligand, caused proteinuria and 
changes in podocytes (19). TLR signaling is also involved in 
podocyte injury in DN by mediating the effect of serum LPS on 
podocytes (20).

Apoptosis is a major consequence of podocyte injury. Intrinsic 
caspase 3 pathway was shown to be responsible for podocyte 
apoptosis. However, it has just been shown that it is caspase 1, but 
not caspase 3, that mediates podocyte injury, at least, in DN, and 
that this process involves NLRP3/inflammasomal pathway (21). 
Involvement of NLRP3/inflammasomes was also demonstrated 
in other podocyte injury model (22). This finding is unexpected 
and surprising and has led to paradigm shift regarding the 
mechanism underlying podocyte death. It is important to further 
investigate how NLRP3/inflammasomes are activated and what 
the responsible ligands are.

MiTOCHOnDRiAL DAMPs (mtDAMPs)

Mitochondria are believed to have evolved from ancient bacteria 
through endosymbiogenesis. They, therefore, have their own DNA 
and protein synthesis machinery. Mitochondrial DNA (mtDNA) 
and the proteins synthesized in mitochondria are both different 
from nuclear DNA (nDNA) and the proteins synthesized on ER.

Formyl Peptides
Like bacteria, mitochondria use formylmethionine (methionine 
attached with a formyl group) for the initiation of protein syn-
thesis, leaving the synthesized proteins formyl modified. During 
evolution, eukaryotic organisms developed formyl-peptide 
receptors that recognize bacterial formyl peptides, leading to 
innate immune responses and bacterial clearance. It is known 
that mitochondrial formyl peptides are still capable of inducing 
innate immune responses (23).

Mitochondrial DnA
Mitochondrial DNA retains the features of bacterial DNA, 
including CpG unmethylation. Like bacterial DNA, which acts 
on TLR9 to induce innate inflammatory response or NLRP3 to 
produce proinflammatory cytokine in immune cells (24, 25), 
mtDNA has been shown to act on TLR9 and NLRP3 similarly in 
macrophages (26–28).

Mitochondrial Transcription Factor  
A (Tfam)
Mitochondrial transcription factor A is a nuclear gene-encoded 
protein that is functionally and structurally homologous to 
HMGB1, a known endogenous danger molecule, and has been 
shown to act as a danger molecule as well. It can work with 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


3

Xia et al. Innate Immune Activity in Podocytes

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 122

unmethylated CpG DNA to act on RAGE and induce response 
of plasmacytoid dendritic cells, leading to release of TNF-α (29, 
30). In addition, recombinant Tfam treatment can induce TNF-α 
expression in cultured macrophages, as well as inflammatory 
responses in animals (31).

mtDAMPs inDUCe innATe iMMUne 
ReSPOnSeS AnD inJURY in 
PODOCYTeS

Podocytes possess many PRRs that are functional as discussed 
above. Particularly, podocytes express TLR9 and NLRP3 that 
can use mtDNA as ligand, as well as RAGE that can use Tfam as 
ligand. These suggest that mtDAMPs may act on podocytes to 
activate innate immune pathways.

endogenous mtDnA and TLR9 Mediate 
Puromycin Aminonucleoside  
(PAn)-induced Podocyte injury
Puromycin aminonucleoside has recently been shown to be 
capable of inducing mtDNA translocation to lysosomes in which 
mtDNA acts as ligand to stimulate TLR9 in podocytes, thereby 
enhancing proapoptotic NFκB and p38 MAPK signaling, 
inflammatory cytokine expression, and apoptosis level (7, 32). 
Nevertheless, mtDNA may also act through NLPR3/inflammas-
omes/caspase 1 pathway in the experimental system because of 
the presence of the NLRP3–caspase 1 pathway in podocytes (11). 
As already mentioned earlier, caspase 1 may be more important 
than caspase 3 in podocyte apoptosis, at least, in the condition of 
diabetes (21).

mtDnA–nLRP3 interaction May Underlie 
Podocyte injury in Dn
We speculate that mtDNA–NLRP3 interaction may be an impor-
tant mechanism underlying podocyte injury/apoptosis in DN. 
It is known that high glucose can induce ROS in podocytes, as 
well as apoptosis of the cells (33), and ROS can induce mtDNA 
oxidative damage in podocytes (34). Importantly, oxidized 
mtDNA has been shown to be more potent in activating NLRP3, 
inflammasomes, and apoptosis in macrophages (27). Together 
with the observation that caspase 1, but not caspase 3, mediates 
podocyte injury in DN (21), these studies strongly suggest that 
high glucose or hyperglycemia may cause podocyte injury or 
death through an innate immune pathway involving NLRP3 in 
diabetes.

AGe–RAGe interaction May Also 
Contribute to Podocyte injury in Dn
Innate immune responses can also be induced by AGE through 
interaction with RAGE and lead to podocyte injury. Under 
diabetic condition, it was found that a high level of AGE (e.g., 
glycated albumin) can cause podocyte apoptosis via RAGE, lead-
ing to innate immune response and podocyte apoptosis (35).

mtDAMPs May Play an important  
Role in Lupus nephropathy (Ln)
Systemic lupus erythematosus (SLE) is a type of autoimmune 
disease in which the immune system of the patient becomes 
hyperactive and attacks normal tissues, including kidney. In 
the development of SLE and LN, mtDAMPs likely play a role 
described as follow.

mtDNA/TLR9 May Be Involved in the Development of 
SLE and LN
In SLE-prone MRL-Fas(lpr) mice, the treatment with DNA 
derived from bacteria or CpG ODN facilitated the development 
of SLE and LN in the mice through activating TLR9 in B cells 
(36, 37). The treated mice manifested an increase of DNA autoan-
tibodies, cytokines, or chemokines in circulation, and infiltration 
of immune cells in tissues, including kidney.

In addition to B cells, mtDNA–TLR9 may also facilitate SLE 
development through plasmacytoid predendritic cells (PDCs) 
as there has been a study showing that viral DNA or the DNA 
in the immune complexes can stimulate PDCs through TLR9 to 
express and secrete IFN-α, a cytokine that is involved in anti-
dsDNA antibody production (38). Meanwhile, mtDNA has been 
shown to have antigenicity that contributes to the formation of 
anti-dsDNA antibodies. Interestingly, oxidized form of mtDNA 
exhibited an enhanced antigenicity compared to that not oxidized 
(39). Additionally, the autoantibodies in SLE patients are reactive 
to mtDNA and have a higher affinity with mtDNA than nDNA 
(40, 41). Consistently, the level of anti-mitochondrial antibody is 
correlated with the development of SLE (42). These observations 
suggest that mtDNA and TLR9 are involved in the development 
of SLE and LN.

mtDNA/TLR9 May Contribute to  
Podocyte Injury in LN
Puromycin aminonucleoside is capable of inducing IFN-α 
expression in podocytes via mtDNA and TLR9 interaction (7). 
In addition, several studies have shown that TLR9 is de novo 
expressed in podocytes in a proportion of SLE patients (8–10). 
This raises a possibility that podocytes are an alternative source of 
IFN-α and other cytokines that are involved in SLE and LN devel-
opment. SLE is characterized by the production of anti-double 
stranded (ds) DNA antibodies, which bind to dsDNA to form 
immune complexes (ICs). Such DNA-containing ICs are capable 
of stimulating plasmacytoid PDCs to express IFN-α through 
TLRs, including TLR9 (38), it is thus reasonable to speculate 
that the anti-dsDNA antibodies can also bind mtDNA to form 
ICs. Since lupus nephritis is pathologically characterized by the 
deposition of the ICs in glomeruli, we speculate that the mtDNA 
in the ICs may be transported to podocytes through endocytosis 
and then either reach endolysosomes to activate the de novo 
expressed TLR9 or act on NLRP3/inflammasomes, resulting in 
podocyte injury/apoptosis and IFN-α and proinflammatory IL-1 
production thereby facilitating LN development. To prove this 
hypothesis, it would be important to examine whether the ICs in 
lupus contain mtDNA.
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As having mentioned above that TLR9 de novo expression 
in podocytes occurs in some of the patients of LN with urinary 
protein level of 0.3–0.5 g/24 h or a negative urinary protein (9), it 
would be interesting to investigate the consequences of TLR9 de 
novo expression in podocytes in the condition. Hu and colleague 
have recently reported that podocytopathy in the LN patients 
with nephrotic range of proteinuria can be divided into two 
types, MCD/mesangial proliferation and FSGS, which differ in 
pathology, tubular lesion, and treatment outcome (43). Whether 
TLR9 expression underlies the difference of the two types of 
lupus podocytopathy warrants further investigation. One feasible 
approach for the study could be to perform immunohistochemi-
cal staining of TLR9 with renal biopsies in a cohort of LN con-
sisting of patients with MCD/mesangial proliferation and FSGS; 
and then test whether TLR9 de novo expression in podocytes 
correlates with the patients with FSGS, which manifests with 
podocyte injury and loss in contrast with MCD.

CiRCULATinG mtDAMPs AnD PODOCYTe 
inFLAMMATiOn AnD inJURY

Proteinuria is frequently observed in the patients with trauma and 
burning and the resulting sterile systemic inflammation response 
syndrome (SIRs) (44–47). Interestingly, elevation of circulating 
mtDNA level has also been observed in the patients (48–52). It 
is thus possible that mtDNA in circulation may play a pathologic 
role in proteinuria development through damaging podocytes. 
Moreover, since the increase of mtDNA in circulation should be 
accompanied by other mtDAMPs, e.g., Tfam, it is also possible 
that these mtDAMPs may act in concert to damage podocytes. 
One study has shown that injection of mtDAMPs into rats via tail 
can cause transient mild proteinuria several hours following the 

injection (32). This little effect of mtDAMPs on podocytes may be 
due to the fact that TLR9 is not expressed in podocytes of normal 
rats, thus precluding the action of mtDNA. Thus, the mtDAMPs 
other than mtDNA might be responsible for the mild proteinuria 
in the rats. Whether a long-term high level of mtDAMPs in circu-
lation would cause more severe podocyte injury, proteinuria and 
even glomerulosclerosis would be interesting to explore.

COnCLUDinG ReMARKS

The available studies have shown that podocytes possess many 
features of immune cells of both adaptive and innate immu-
nity. As non-immune cells, podocytes are usually injured by 
the innate immune responses induced by PAMPs or DAMPs 
(including mtDAMPs). Therefore, further studies of innate 
immune responses in podocytes would provide more insights 
into the mechanism underlying podocyte injury, likely leading 
to improved therapeutics and diagnostics for podocytopathies.
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