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Malaria caused by Plasmodium vivax continues being one of the most important infec-
tious diseases around the world; P. vivax is the second most prevalent species and 
has the greatest geographic distribution. Developing an effective antimalarial vaccine is 
considered a relevant control strategy in the search for means of preventing the disease. 
Studying parasite-expressed proteins, which are essential in host cell invasion, has led to 
identifying the regions recognized by individuals who are naturally exposed to infection. 
Furthermore, immunogenicity studies have revealed that such regions can trigger a robust 
immune response that can inhibit sporozoite (hepatic stage) or merozoite (erythrocyte 
stage) invasion of a host cell and induce protection. This review provides a synthesis of 
the most important studies to date concerning the antigenicity and immunogenicity of 
both synthetic peptide and recombinant protein candidates for a vaccine against malaria 
produced by P. vivax.
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iNTRODUCTiON

Malaria is one of the most important vector-transmitted diseases, affecting a large part of the world’s 
population. Around 214 million new cases appeared in 2015, and 438,000 people died from the 
disease. This disease is caused by parasites from the phylum Apicomplexa, genus Plasmodium, and 

Abbreviations: Spz, sporozoites; RBC, red blood cells; NT, N-terminal; pexel/VTS, Plasmodium export element/vacuolar 
translocation signal; Mrz, merozoites; NFkβ, nuclear factor kappa B; PRRs, pattern recognition receptors; PAMPs, pathogen-
associated molecular patterns; MHC, major histocompatibility complex; NK, natural killer; IFN-γ, interferon gamma; TNF, 
tumor necrosis factor; LDH, lactate dehydrogenase; TAT, thrombin–antithrombin III; HNE, human neutrophil elastase; IL, 
interleukin; Th1, T helper 1; Th2, T helper 2; CXCL9, chemokine (C–X–C motif) ligand 9; CCL2, chemokine (C–C motif) 
ligand 2; CCL5, chemokine (C–C motif) ligand 5; Ig, immunoglobulin; i.v., intravenously; HLA, human leukocyte antigen; CSP, 
circumsporozoite protein; TRAP, thrombospondin-related adhesive protein; GPI, glycophosphatidylinositol; PNG, Papua New 
Guinea; LSP, long synthetic peptides; TLR, toll-like receptor; CpG, cytosine and guanine separated by one phosphate; GLA, 
glucopyranosyl lipid A; TSR, thrombospondin type 1 repeat; MSP, merozoite surface protein; ELISA, enzyme-linked immu-
nosorbent assay; EGF, epidermal growth factor; HABPs, high activity binding peptides; AMA-1, apical membrane antigen-1; 
rPvAMA-1, recombinant Plasmodium vivax apical membrane antigen-1; FcγR-Fc, Fc-gamma receptors; PP, poly-proline; 
TCR, T-lymphocyte receptor; ADCI, antibody-dependent cell-mediated inhibition; DBP, Duffy binding protein; DARC, Duffy 
antigen receptor for chemokines; rDBP, recombinant Duffy binding protein; PBMC, peripheral blood mononuclear cell; RBP, 
reticulocyte-binding proteins; HARBPs, high affinity reticulocyte-binding peptides.
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is transmitted by the bite of a female mosquito from the genus 
Anopheles infected by the parasite (1).

Five species cause malaria in humans: P. falciparum, P. vivax, P. 
malarie, P. ovale, and P. knowlesi. Acute febrile disease symptoms 
appear 10–15 days after the bite of an infected mosquito. Initial 
symptoms include fever, headache, shivering, and vomiting; if not 
treated early on, and depending on the species responsible for 
the disease, severe anemia, metabolic acidosis, or cerebral malaria 
may be produced, and even lead to death (1).

Studying the proteins involved in P. vivax invasion has not 
been easy, mainly due to technical restrictions such as a lack of 
continuous culture in vitro, meaning that studying the parasite’s 
biology has been limited, as well as the identification of new 
antigens and their evaluation in vitro (2, 3).

Infection by more than one Plasmodium species is usually 
omitted in routine diagnosis by microscopy (4, 5), leading to an 
overestimation of the amount of cases caused by coinfection in 
endemic areas and thus to treatment failure (6). Drug resistance 
since the first report in 1989 (7) has been increasing worldwide 
throughout Southeast Asia [Indonesia, China, Thailand, Papua 
New Guinea (PNG)], South America (the Brazilian and Peruvian 
Amazon region, Colombia), Africa (Madagascar, Ethiopia), 
Pakistan, and Turkey (8, 9).

Such resistance appears to be related to mutations regarding 
multidrug resistance 1 (mdr1) gene and variation in the gene’s 
number of copies, presumably due to selective pressure by first-
line chloroquine treatment (10, 11).

Even though malaria caused by P. vivax has been considered 
benign (unlike that caused by P. falciparum), severe P. vivax malaria 
has emerged during the last few years with some cases leading to 
death (12–17). In spite of P. vivax malaria having a greater global 
distribution, it is still considered a neglected infection, thereby 
leading to socioeconomic impact factors being understated in 
endemic regions, causing more than US$2 billion per year costs 
worldwide (18). The forgoing means that investment and efforts 
must be focused on developing a vaccine against P. vivax malaria.

Antigenicity studies arise from evaluating the immune 
response induced in individuals naturally exposed to the infec-
tion. On the other hand, immunogenicity assays evaluate in vitro 
or in vivo the immune response induced when vaccine candidates 
are used for immunization (Figures 1 and 2).

The present review summarizes classical studies that have 
been carried out to date concerning the antigenicity and immu-
nogenicity of the most important proteins considered candidates 
for a vaccine against P. vivax malaria. Although the use of a single-
stage protein is not enough to provide a successful sterile vaccine, 
it has represented an important advance in identifying hundreds 
of malarial antigens that can be combined to develop a multistage, 
multi-epitope sterile vaccine.

MALARiA: iNFeCTiON BY P. vivax

Around 90% of the clinical cases presented are the result of infec-
tion by two of the most relevant species: P. falciparum or P. vivax. 
P. vivax malaria is the second most important around the world 
and is the most prevalent on the Asian and American continents. 
Such infection is characterized by relapses several years after the 

first infection, since a latent form called hypnozoite occurs dur-
ing hepatic phase. This stage is difficult to diagnose, allowing the 
parasite to survive in the host for longer (1, 19, 20).

Infection begins with the vector inoculating sporozoites (Spz) 
into the host’s skin; these Spz are motile and travel through the 
blood stream, later being carried to the liver. Sinnis et al. have 
named a “skin stage” of infection because they have proposed 
that this interaction between Spz and cells at the injection site 
means that Spz may remain in the injection site for 2–3 h, maybe 
in hair follicles, giving rise to infective merozoites (Mrz) (21, 
22). Regarding P. berghei expressing GFP (a rodent parasite), it 
has been observed that Spz have a random gliding-movement. 
Moreover, Spz glide into the skin, interacting with blood vessel 
walls. Lymphatic vessels also become invaded to drain lymph 
nodes near the injection site where some Spz can partially develop 
into exoerythrocytic stages (23–25).

Sporozoites migrate from the skin to liver cells (these becom-
ing infected first) and then cross/traverse endothelial cells and 
use cell traversal machinery to pass through the endothelium, 
thereby beginning the hepatic stage that might go unnoticed 
clinically (26, 27). Some parasites remain as hypnozoites during 
this stage, and others go into the blood stream giving rise to the 
erythrocyte stage where the disease’s clinical manifestations are 
presented.

The severity of the disease during the erythrocyte stage 
depends on various factors, such as the location of parasitized 
red blood cells (RBC) in the target organs, the local and systemic 
action of the parasite’s bioactive products, pro-inflammatory 
cytokine production, as well as innate and adaptive immune 
system cytokine and chemokine regulators, and the activation, 
recruiting, and infiltration of inflammatory cells (28).

After invading the hepatocytes, each Spz replicates within the 
parasitophorous vacuole by a family of parasite proteins having an 
NT export motif called pexel/VTS (Plasmodium export element/
vacuolar translocation signal) (29–31). The circumsporozoite 
protein (CSP) enters the hepatocyte’s cytoplasm using the pexel/
VTS motif and a nuclear localization signal to go into the nucleus. 
CSP in the nucleus induces the expression of the host’s genes, 
where the NFkβ transcription factor controls the expression 
of genes involved in inflammation (32), controlling biological 
functions such as metabolic transport, the cell cycle, the immune 
response, and apoptosis, thereby creating a favorable setting for 
parasite growth (31).

The Plasmodium erythrocyte stage begins when an infected 
hepatocyte ruptures and releases close to 30,000 Mrz into the 
blood stream, undertaking an initial journey as merosomes to the 
lungs and then becoming disseminated in the circulation. Each 
Mrz infects an immature RBC (reticulocyte), which generates 16 
new Mrz 48 h later (33).

iMMUNe ReSPONSe ReGARDiNG 
MALARiA

Innate and adaptive immune system molecules are involved in 
disease pathogenesis and control. Clinical immunity to malaria 
can be acquired during three phases: immunity to the disease, 
immunity to symptomatic infection, and partial immunity to 
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FiGURe 1 | Plasmodium vivax preerythrocyte stage protein immunogenicity. After sporozoites have been inoculated into the skin by Anopheles mosquitoes, 
they travel to the liver via the bloodstream and enter hepatocytes thereby initiating the preerythrocyte stage. P. vivax circumsporozoite protein (CSP) and 
thrombospondin-related adhesive protein (PvTRAP) are involved in hepatocyte recognition and binding in a mammalian host. In CSP, the N-terminal (NT) and repeat 
region facilitate parasite binding to hepatocytes. Adaptive immune responses against PvCSP and PvTRAP control invasion of hepatocytes by cytokines [CD4+ 
T-helper 1 (Th1) and CD4+ T-helper 2 (Th2) cells], cytophilic antibodies, and CD8+ T-cells. Interferon gamma (IFN-γ) increases and interleukin (IL)-4 decreases after 
vaccination with CSP-long synthetic peptides [CSP-LSP-N terminal; CSP-LSP-R (repeat region), and CSP-LSP-N terminal]. Cytophilic antibodies (IgG1 and IgG3) 
are produced after vaccination with CSP-LSP-N; CSP-LSP-R. Immunization with PvCSP recombinant vaccine (VMP 001) combined with CpG10104 has induced 
protection and activation of B-cells, macrophages (MΦ), and dendritic cells (DCs). When this recombinant vaccine is formulated with glucopyranosyl lipid A (GLA), 
there is activation of CD4+ T-cells, production of tumor necrosis factor-alpha (TNF-α), and reduction of IL-2. Immunization with PvTRAP, expressed in viral vectors, 
induces activation of CD8 T-cells and production of IFN-γ, TNF-α, and IL-2.
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parasitemia (28). The premunition (absence of fever with infec-
tion and lower densities of parasitemia) is present in places where 
malaria is endemic and in people that had suffered of several 
infections through the years (8–15 years), thus acquiring natural 
immune responses that lower the risk of clinical disease (34). The 
term was coined early in the 1900s during epidemiological studies 
with patients from endemic areas that can control the parasitemia 
and develop a subclinical infection (35). It is characterized by a 

slow acquisition rate, present just in holo- or hyper-endemic 
areas, rapidly lost, strain dependent, IgG dependent, and directed 
toward blood-stage parasites; although the immune response 
induced is strong, it is not a sterilizing immunity. The protection 
mechanism has not been completely described, but there is evi-
dence that cytophilic antibodies and memory cells produced after 
repeated infections with Plasmodium variants are responsible for 
this kind of protection (34, 36–39).
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FiGURe 2 | Plasmodium vivax erythrocyte stage protein immunogenicity. P. vivax parasites are differentiated into tissue schizonts in hepatic cells, which, 
after thousands of replications, are released into the bloodstream as merozoites (Mrz). These Mrz predominantly invade reticulocytes, and their infection cycle is 
repeated every 48 h. Several surface and microneme merozoite proteins have been identified as vaccine candidates. Surface proteins would include merozoite 
surface protein-1 (MSP-1/Pv200), which is an abundant ligand on merozoite surface and is essential for reticulocyte invasion. MSP-1 was cleaved into 83, 30, 38, 
42 (33 and 19) kDa fragments; immunization with the complete protein induced IgG production. MSP-1–42 fragment increased IgG1, IgG2a, and IgG2b 
production but not that of IgG3, as well as interleukin (IL)-2, IL-4, IL-10, and interferon gamma (IFN-γ) production in vaccinated mice. Immunization with 19-kDa 
fragments produced high antibody titers that were T-cell dependent. Higher antibody and IFN-γ production was observed after vaccination with the 33-kDa 
fragment. Another surface protein is merozoite surface protein-1 paralog (MSP1-P), which was also cleaved into 83, 30, 38, 42, 33, and 19 kDa; the last two 
fragments (C-terminal region) induced a Th1 cytokine response profile, having high tumor necrosis factor (TNF), IFN-γ, and IL-2, but low IL-10 and IL-4 cytokines 
(Th2 profile). High IgG1 and IgG2b titers were observed in vaccinated animals with 19-kDa fragment. Merozoite surface protein-3 (MSP-3): PvMSP3-α block II is 
highly immunogenic and induces IgG production. The PvMSP-3β region with Quil A, Titer Max, or IFA adjuvants has produced a balanced Th1/Th2 response and 
IgG but became directed toward a Th2 response when formulated with Alum. Merozoite surface protein-9 (MSP-9) immune response against NT and repeat region 
II was mainly IgG, having greater IgG1, IgG2a, and IgG2b titers than IgG3 isotype production. These two regions also induced higher IFN-γ than IL-5 production in 
spleen cells. The following are microneme proteins: the Duffy binding protein (DBP) is a surface receptor for invading human reticulocytes and is divided into seven 
regions where regions II (main ligand domain) and IV induce specific antibody production. Apical membrane antigen-1 (AMA-1) is essential during cell host invasion, 
and its ectodomain defines three subdomains (DI, DII, and DIII). Immunization with AMA-1 induced high IgG antibody titers. Vaccinating mice with human 
adenovirus type 5 and rAMA-1 have produced long-lived specific antibodies (IgG1 and IgG2a), memory T-cell, and Th1/Th2 balance immune responses. An arrow 
pointing upwards (↑) indicates an increase in antibody titers or cytokine production; an arrow pointing downwards (↓) shows reduced cytokine or antibody 
production.

4

López et al. Immune Response Induced by Plasmodium vivax

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 126

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


5

López et al. Immune Response Induced by Plasmodium vivax

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 126

An innate immune response is triggered during Plasmodium 
infection as first line of defense, followed by an adaptive immune 
response, which includes T-cells, B-cells, and antibodies. A 
mosquito inoculates Spz into a host’s skin when biting; these can 
remain in the skin for up to 6 h after inoculation (40). Such reten-
tion affects the place for antigen presentation and the location 
and type of response so induced.

Dendritic cells (DCs) present antigens, depending on the 
anatomic environment and the resulting immune response. 
These cells, through pattern recognition receptors, recognize the 
pathogen-associated molecular patterns (PAMPs) exhibited by 
the parasite. The mechanism of action regarding such recogni-
tion triggers intracellular signals enabling DC maturation (41). 
Three PAMPS have been described in P. falciparum: hemozoin, 
immunostimulatory nucleic acid motifs, and glycosylphosphati-
dylinositol anchors [glycophosphatidylinositol (GPI) anchors] 
(42).

The parasite’s main source of protein is RBC hemoglobin. 
Hemoglobin hydrolysis releases lipophilic prosthetic group—
heme—which is extremely toxic for the parasite. Heme detoxi-
fication is thus necessary and is achieved by converting heme 
into an insoluble crystalline material called hemozoin (Hz) (43). 
Regarding P. falciparum infection, Hz binds DNA inside host 
cell phagolysosomes and cytosol, and toll-like receptor (TLR)9 
is activated by nucleic acids, NLRP3, AIM2, and other cytosolic 
sensors (42, 44–46).

In terms of AT content in the genome, P. falciparum has the 
highest AT content (82%) and P. vivax the lowest AT content 
(56%). On the other hand, in  silico analysis has shown that P. 
falciparum contains ~300 CpG and ~6,000 AT-rich motifs and 
P. vivax ~2,000 CpG and ~5,500 AT-rich motifs. The release of 
CpG Plasmodium DNA into phagolysosomes produces an innate 
immune response activating TLR9 (42, 44, 47).

Glycophosphatidylinositol anchors connect surface proteins 
with the protozoan plasma membrane; they are essential toxins 
for parasite viability (48). They turn on the innate response 
because they induce cytokine synthesis and are recognized by 
TLRs such as TLR1–TLR2 or TLR2–TLR6 (depending on GPI 
anchor activation containing three or two fatty acid chains, 
respectively) and TLR4 (49–51).

Some functions described for DCs have been T- and 
B-lymphocyte activation, immune tolerance, natural killer (NK) 
cell activation, and macrophage activation (52). For example, 
a third of Spz are drained to regional lymph nodes where they 
become internalized by skin-derived DCs (CD103+) and pre-
sented to CD8+ T-cells (26).

Some studies have shown that infected RBC bind to DCs, 
inhibit their maturation, and cannot stimulate a T-lymphocyte 
response in acute P. falciparum infection. Other studies have 
shown that inhibition depends on contacting a larger amount of 
infected RBC per DC (53, 54).

Antigens begin to be presented on hepatocyte surface dur-
ing the hepatic stage in context of the major histocompatibility 
complex (MHC) class I molecules expressed on all nucleated cells 
to become recognized by CD8+ T-cells (55).

Immune response during the erythrocyte stage is mainly 
mediated by antibodies while a cellular response predominates 

during the hepatic stage (56). CD4+ T-, B-, and NK cells also 
play an important role in the immune response induced by the 
parasite during the erythrocyte stage since immunity depends on 
memory B-cell production and lifespan, following infection (57).

During P. vivax infection, some individuals can acquire 
immunity naturally; such immunity consists of a cytokine 
production-mediated cellular immune response, cytokine recep-
tors, and proteolytic enzymes forming part of the host response 
to infection, as well as IgG antibodies. Patients having moderate 
parasitemia in endemic regions of Colombia have high IFN-γ and 
TNF-α levels, a pro-inflammatory cytokine profile correlated with 
the response found in an unstable transmission region. The bal-
ance in interleukin (IL)-10/TNF-α rate could prevent increased 
parasitemia and host pathology (58).

A study by Hemmer et al. evaluated the production of lactate 
dehydrogenase (as hemolysis parameter), TNF-α (which produces 
a response to parasite products and has antiparasitic activity), 
thrombin–antithrombin III (pro-coagulant activity parameter), 
and human neutrophil elastase (its secretion becoming increased 
by parasite products, having antiparasitic activity) in a population 
infected by P. falciparum and P. vivax or P. ovale (59).

The parasitemia/response rate of each parameter was greater 
in patients suffering P. vivax or P. ovale malaria than P. falciparum; 
regarding parasitemia, TNF-α response was stronger in P. vivax 
or P. ovale infection than P. falciparum. The increase of these 
factors in P. vivax infection helped to control parasitemia, while 
they led to complications in P. falciparum infection such as host 
response-mediated severe malaria (59). Studies have shown that 
P. falciparum parasitemia levels decrease when coinfected with 
either P. vivax or other Plasmodium species, compared to single 
infection (60), thereby attributing a possible attenuating role to 
other P. falciparum species (60–62).

Another study that compared the immune response of patients 
suffering complicated and uncomplicated malaria caused by P. 
vivax reported a higher IFN-γ/IL-10 rate in patients having com-
plicated disease, as well as higher TNF-α level. They concluded 
that the severity of disease caused by P. vivax was correlated with 
pro-inflammatory immune response activation and cytokine 
imbalance (63).

Interleukin-10 acts as immunoregulator by controlling the 
effects of other cytokines produced by CD4+ Th1 and CD8+ 
T-cells in Plasmodium infection. The overproduction of cytokines 
such as IFN-γ by these cells not only helps to increase phagocytosis 
for eliminating the parasite but also produces immunopathologi-
cal effects associated with the disease. However, studies involving 
another group of patients suffering P. vivax malaria found high 
levels of IFN-γ and IL-10 in patients with previous episodes 
of malaria. Polymorphism studies regarding the IL-10 gene 
promoter in populations from endemic regions have shown that 
polymorphisms neither influence the production of this cytokine 
nor its regulatory function regarding the immune response (64, 
65).

Goncalves et al. evaluated the cytokine pattern in uncompli-
cated symptomatic P. vivax and P. falciparum infection in a low 
malaria transmission region in Brazil to test the hypothesis that 
P. vivax infection causes a greater pro-inflammatory cytokine 
response than infection by other Plasmodium species. They 
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found a greater anti-inflammatory cytokine response than in 
P. falciparum infection, but similar pro-inflammatory cytokine 
response. The response of anti-inflammatory cytokines such as 
IL-10 and IL-10/TNF-α, IL-10/IFN-γ and IL-10/IL-6 ratios in 
clinical malaria caused by P. vivax was short-lived and positively 
correlated with parasitemia rather than with the symptoms. 
This means that there must be a balance between inflammatory 
cytokine and regulator responses (66).

Network analysis was one of the approaches adopted by 
Mendoca et  al. for understanding the interaction between dif-
ferent blood biomarkers for inflammation, tissue damage, and 
oxidative stress and the immunopathogenesis of malaria. They 
concluded that when studying uninfected individuals from 
endemic regions, the network of interactions showed high den-
sity between these biomarkers, limiting the symptoms but not 
the infection. IL-10 and IL-4 have connections with chemokine 
(C–X–C motif) ligand 9 (CXCL9) in uninfected people and with 
chemokine (C–C motif) ligand 2 and IFN-γ in people having 
asymptomatic P. vivax infection (67, 68).

Such interactions revealed a protective role for IL-4 and 
IL-10 cytokines due to their modulating effect on these pro-
inflammatory cytokine and chemokine. The network of biomark-
ers in patients suffering mild malaria consisted of IFN-γ, tumor 
necrosis factor (TNF), and chemokine (C–C motif) ligand 5, 
while the interaction occurred between CXCL9 and IL-12 in 
symptomatic patients. CXCL9 was associated with regulatory 
cytokines thereby suggesting their role in resistance to infection, 
as well as being associated at the beginning with symptoms when 
linked to IL-12. Patients who had a fatal outcome regarding the 
disease had an interaction between TNF, IFN-γ, and IL-10, the 
latter modulating the Th1 response, negatively regulating TNF 
and IFN-γ, due to an IL-12p70 suppression that could lead to 
death (67, 68).

Cytokine profile variations have been observed in malaria–
dengue coinfection. TNF levels have increased in patients with 
coinfection regarding single infection thereby highlighting 
the role of IL-6, INF-γ, and IL-7 (68). Regarding the humoral 
response, antibodies play an import role in protection against 
malaria, and this has been demonstrated in different studies. 
Cohen et  al. showed that passive transfer of antibodies from 
malaria-immune individuals to naïve young children suffering 
severe clinical malaria reduced the parasite density and clini-
cal symptoms related to this disease (69). This experiment was 
confirmed by further studies where adult patients controlled the 
clinical symptoms and parasitemia after receiving intravenously 
injections of sera from people living in malaria-endemic areas 
(70, 71).

Immunoglobulins can protect or arrest disease progression 
in different ways; neutralizing anti-Spz antibodies can block 
Spz from invading hepatocytes (72–74). Mrz can be opsonized 
in the erythrocyte stage by specific antibodies that activate cell-
mediated death or prevent the invasion of RBC and block the 
proteins responsible for binding to molecules on cell surface.

Studies in malaria-endemic areas have suggested that high 
IgG3 and IgG1 cytophilic antibody titers are associated with pro-
tection (75). In vitro studies have shown that monocytes can kill 
asynchronic malaria parasites in the presence of cytophilic IgG3 

and IgG1 antibodies (76). These antibodies facilitate phagocytosis 
and kill Plasmodium parasites since cross-linked FcγR–Fc induce 
a respiratory burst. Antibody responses against P. vivax CSP-1 
(77), PvMSP-1 (78–81), PvRBP1 (82, 83), PvAMA-1 (84), and 
PvMSP-3α (85, 86) have been characterized by IgG1 and IgG3 
predominance, which are associated with malaria exposure and 
malaria protection; Tables 1 and 2 summaries the results obtained 
in each study.

MHC Molecules and the immune 
Response
Major histocompatibility complex proteins have high polymor-
phism in human beings; antigen-binding capability varies from 
one allele to another, increasing or reducing their affinity (55). 
The forgoing is essential for developing an effective vaccine 
inducing a protective immune response.

Major histocompatibility complex antigen-presenting 
molecules are divided into two large groups. Class I present 
intracellular antigens and can couple eight to nine amino acid-
long peptides due to the smaller size of their grooves. Class II 
recognizes extracellular antigens and can display 13–18 amino 
acid-long peptides (109).

The genes encoding class II MHC proteins in humans are 
called human leukocyte antigen (HLA) and are in chromosome 
6. They have alpha and beta subunits, an immunoglobulin 
domain, and a short transmembrane portion. They have genes 
from three classes of protein: HLA-DP, HLA-DQ, and HLA-DR; 
the most polymorphic locus is HLA-DR at expense of a highly 
polymorphic beta subunit, unlike the alpha subunit, which is 
monomorphic in humans (110).

The peptide’s binding site is formed by two almost parallel 
alpha helix regions above a beta sheet. The peptides are bound 
in the groove formed by the helices, with their terminal residues 
extended. The peptides adopt an extended poly-proline type II 
conformation exposing the peptide backbone to MHC conserved 
hydrogen-bonding residues covering the groove. Such conforma-
tion allows a peptide’s side-chains to bind to the groove of the 
MHC binding site, as well as allowing the side-chains to bind to 
MHC pockets in positions 1, 4, 6, and 9. The others bind to the 
T-lymphocyte receptor (TCR)-binding site (55, 111).

Major histocompatibility complex class II molecules, expressed 
constitutively on antigen-presenting cell surface (DCs, mac-
rophages, and B-lymphocytes) recognize extracellular peptides 
processed by the endosome/lysosome pathway, which are edited 
by the HLA-DM molecule. MHC class II presents the antigen to 
the TCR of CD4+ T-lymphocyte (T-helper) (55).

The CSP is one of the most important proteins described 
to date in Spz. Previous studies involving individuals residing 
in P. vivax malaria-endemic regions in Brazil have shown low 
responses for antibodies directed against the repeat region. An 
association has been reported between the HLA-DR16* allele 
and antibody response to P. vivax VK247 variant CSP repeats, as 
well as an association between the HLA-DR7* allele and a lack of 
antibody response to VK210 variant CSP repeats (112).

A study involving an infected population in Brazil evaluated 
the relationship between HLA-DRB1* alleles and the antibody 
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response to CSP, MSP-1, AMA-1, and Duffy binding protein 
(DBP) peptides. A significant association was found between high 
MSP-1 antibody levels (especially to the Pv200L fragment) and 
the HLA-DR3* allele; while no association was found between 
CSP, AMA-1, and DBP antibody production and HLA-DRB1* 
alleles (113).

During the erythrocyte phase, the merozoite surface protein 
(MSP) family is the responsible of the interaction between Mrz 
and reticulocytes. PvMSP-1, PvMSP-3, and PvMSP-9 are poten-
tial vaccine candidates since they are exposed to the immune 
system and are recognized by antibodies from naturally infected 
individuals. A study by Lima-Junior et al. evaluated IgG antibody 
response to P. vivax MSP-1, MSP-3α, and MSP-9; a relationship 
between HLA-DRB1*04 individuals and high antibody response 
to PvMSP3CT and PvMSP3NT and HLA-DQB1*03 individuals, 
and response to PvMSP3CT was observed (86).

IgG response was positively associated with HLA-DRB1*04 and 
HLA-DQB1*03 individuals regarding PvMSP-9 repeat regions 
and the NT region. Such response involving high antibody levels 
was associated with a possible selective pressure by P. vivax in the 
Amerindian population. Antibody responses for PvMSP-9 were 
more correlated with the time spent living in a malaria-endemic 
area and not with a particular HLA-DRB1* allele (86).

Ferreira et  al. constructed and expressed a synthetic 
gene encoding promiscuous T-helper epitopes bound to the 
PvRBP1435–777 sequence. Although it has been observed in clinical 
assays that candidates for a vaccine against P. vivax are poorly 
immunogenic, they predicted that this chimerical protein (called 
PvRMC-RBP1) would be recognized by multiple HLA alleles. 
Epidemiological and serological studies proved the preserva-
tion of B-cell conformational epitopes in the chimeric protein. 
However, no association was found between HLA-DRB1* and 
HLA-DQB1* alleles and IgG antibody responses to the chimeric 
or native proteins. This seemed to be because PvRBP1 had mul-
tiple promiscuous T-cell epitopes, which did not induce specific 
genetic restriction (83).

Non-HLA Host Polymorphism
Miller et  al. proved (for the first time) the hypothesis that the 
Duffy negative erythrocytes are resistant to P. vivax infection 
in Africans (114). The Duffy antigen or Duffy antigen receptor 
for chemokines (DARC) is expressed on RBC surface (115). Its 
encoding genetic locus having three alleles [FY*A (Fya) and FY*B 
(Fyb) with SNP of differences and FY*O] has a negative serological 
phenotype Fy(a−b−) (116, 117). The absence of DARC expres-
sion in RBC is due to a point mutation (T46C) in the GATA box 
of this gene’s promoter (118, 119).

Duffy negative patients infected with P. vivax have been found 
during the last few years (56, 120). Mendes et al. reported that 
Duffy negative individuals from Africa’s West Coast were infected 
with different strains of P. vivax, and they concluded that the 
parasite evolved quickly and used other receptors different to 
Duffy to invade RBC (121).

The balance between innate and adaptive immune response is 
important in the development of immunopathology and clinical 
severity in several infectious diseases. Sohail et al. have investi-
gated polymorphisms in the TNF-α gene promoter region and 
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TABLe 2 | erythrocyte phase protein antigenicity.

Protein Protein region Country N Prevalence of 
individuals having 

anti-antigen 
reactivity (igG)

Reference

Merozoite surface 
protein-1 (MSP-1)

N-terminal (NT) Brazil (Pará) 37 51.4% (78)
C-terminal 64.1%

MSP-1 C-terminal (Pv20018—18 kDa fragment) Republic of Korea (Northern Province 
of Kyunggi)

421 88.1% (IgG) (93)
94.5% (IgM)

MSP-1 Pv200L Colombia (Buenaventura) 69 52.2% (94)

MSP-1 C-terminal (Pv20019—19 kDa fragment) Turkey (Province of Sanliurfa) 82 69.5% (IgM) (95)
53.6% (IgG)
7.3% (IgA)

Merozoite surface 
protein-1 paralog

C-terminal (PvMSP1P-19) Republic of Korea (Province of 
Gyeonggi Gangwon)

30 73% (IgG3) (81)
C-terminal (PvMSP1P-33) 43% (IgG1)

57% (IgG1)

PvMSP3-α Full length Brazil 276 77% (86)
C-terminal 54%
NT 39%

PvMSP3-α Full length Brazil (Rondonia State) 282 78% (85)
Repeat block I 64%
Repeat block II 53%
C-terminal 54%
NT 39%

PvMSP3-α Repeat block I Papua New Guinea (PNG) 264 36% (96)
Repeat block II 38%
C-terminal 65%
NT 38%

PvMSP3-α FP-1 (aa 359–798) Brazil (Amazon region) 220 68% (97)

PvMSP3-β FP-1 (aa 35–375) Brazil (Amazon region) 220 26% (97)
FP-2 (aa 385–654) 64.5%
FP-3 (aa 35–654) 66%

PvMSP-9 PvMSP9-Nt Brazil (Ribeirinha, Colina) 306 74% (98)
PvMSP9-RI-RII
PvMSP9-Ct

PvMSP-9 PvMSP9-NT V147-K159; V438-D449; K325-I339; P434-I448; A443-K456 Brazil (Rondonia state) 142 61.2% (IFN-γ) (99)
49% (IL-4)

PvMSP-9 PvMSP9-Nt PNG 183 45.9% (96)
PvMSP9-RI-RII 8.7%

Duffy binding protein 
(DBP)

DBPII-IV PNG (Mandang) 100 60% (100)

DBP DBPII-IV Colombia (Buenaventura) 92 40% (101)

Apical membrane 
antigen-1 (AMA-1)

PV66/AMA-1 Brazil (North) 221 85% (IgG) (102)
48.5% (IgM)

AMA-1 DI Brazil (Amazonas region) 100 13% (103)
DII 65%
DIII 12%
DI–DII 60%
DII–DIII 58%
Ectodomain 70%

AMA-1 PvAMA-1 Iran 84 81% (104)

AMA-1 PvAMA-1 Brazil 1,330 52.5% (105)

AMA-1 PvAMA-1 Brazil 83 73% (106)

(Continued )
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Protein Protein region Country N Prevalence of 
individuals having 

anti-antigen 
reactivity (igG)

Reference

PvRBP1 Full length Brazil (Rondonia state) 294 66% (82)
PvRBP1431–748 41%
PvRBP1733–1407 47%

PvRBP1 PvRMC-RBP1 Brazil (Rondonia state) 253 47% (83)
PvRBP123–751 60%

PvRBP1 Coiled-coil and C-terminal peptides Republic of Korea 16 68% (107)
Repeat sequence peptides
NT and repeat sequence peptides
Coiled-coil and C-terminal peptides

62%
68–87%
62–68%

PvRBP2

PvRBP1 PvRBP1a-34 Republic of Korea 104 34% (108)
PvRBP1b-32 39%

TABLe 2 | Continued
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its association with vivax infection in an Indian population. They 
found that TNF-308A and TNF-1031C were associated with vivax 
infection (very low frequency) in the study population (122). 
Other research has shown that IL1B, IL4R, IL12RB1, and TNF 
genes were associated with susceptibility to P. vivax malaria in a 
population from Brazil’s Pará state, reporting −5,839C>T SNP 
promoter association with P. vivax malaria susceptibility (123).

Da Silva et al. have shown an Amazonian population’s many 
host polymorphisms association with susceptibility or resistance 
to malaria infection. SNPs in the IL-10, CTL4 and TLR4 genes 
have been significantly associated with lower risk of clinical 
malaria, while a SNP in the IRF1 gene has displayed an enhanced 
risk. An intronic SNP in LTA was associated with protection, and 
one SNP on the TNF promoter was associated with susceptibility 
to clinical malaria (124).

Another study found no differences regarding IL6-176G>C 
polymorphism distribution in participants making up the differ-
ent clinical groups of vivax malaria in a Brazilian population. No 
association was found between TNF-308G and clinical manifes-
tations of malaria and no haplotype having DDX39B (22 C>G 
and 348 C>T) and TNF-308G> was identified or polymorphisms 
increasing the risk of clinical vivax malaria. Moreover, study 
participants having the genotype combination described here 
associated with resistance against manifestations of P. vivax infec-
tion (CG/CC/GG/GG) also had lower levels of pro-inflammatory 
TNF and IL-6, suggesting that DDX39B confers protection against 
malaria pathogenesis by reducing inflammatory response (125).

P. vivax PReeRYTHROCYTe PHASe 
PROTeiN ANTiGeNiCiTY AND 
iMMUNOGeNiCiTY

P. vivax CSP
One of the predominant surface proteins in Spz is the CSP; it 
is expressed during the preerythrocyte phase and plays a fun-
damental role during hepatocyte invasion (126). This protein is 
a candidate for a vaccine against malaria in the preerythrocyte 

phase since various studies have shown that anti-CSP antibodies 
block hepatocyte invasion (88, 127, 128).

Circumsporozoite protein in the different Plasmodium species 
has a highly conserved structure; it consists of an NT extreme 
(N), a species-specific central repeat region (R) located between 
two conserved regions (region I and region II), and a GPI anchor 
in the C-terminal extreme (129). The repeat region contains an 
immunodominant B-cell epitope, which is associated with its 
immunogenic potential (130).

Furthermore RTS,S/AS01, the most advanced recombinant 
vaccine to date for preventing malaria caused by P. falciparum, 
is designed from P. falciparum circumsporozoite protein (PfCSP) 
repeat region peptides and C-terminal region T- and B-epitopes, 
coexpressed with hepatitis B surface antigen. Phase III clinical 
studies have shown 33–50% efficacy 1-year post-immunization 
in 5- to 17-month-old infants (89, 92, 131). However, after a 
7-year follow-up, the vaccine efficacy declined to 4.4%, with a 
16.6% efficacy against all episodes of clinical malaria in the 
low-exposure cohort and to −2.4% in the high-exposure cohort 
(132). Furthermore, no vaccine efficacy was observed against 
severe malaria in children and young infants immunized with 
RTS,S/AS0 (133). Given that CSP has been widely studied in P. 
falciparum, and among different Plasmodium species, this protein 
is considered as a potential target for designing a vaccine against 
P. vivax (134–137).

Three allele variants of the P. vivax circumsporozoite protein 
(PvCSP) have been described: VK210, VK247, and vivax-like 
CSP-P, which differ at repeat region sequence level (138, 139). 
VK210 has greater global distribution, being found in countries 
like Brazil (140), India (141), Thailand (142), and Peru (143), while 
VK247 is found in some regions of Colombia and Brazil (144), 
and vivax-like CSP-P in Brazil (140), Indonesia, Madagascar, and 
PNG (139).

Antigenicity studies in people exposed to the disease in dif-
ferent endemic regions have found variable prevalence in indi-
viduals responding to different PvCSP fragments (87) (Table 1). 
Preclinical studies and phase I clinical assays (Table 3) have been 
carried out regarding P. vivax with long synthetic peptides (LSP) 
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TABLe 3 | Plasmodium vivax vaccine clinical trials.

Stage Protein Name Type Clinical 
trial

Reference

Preerythrocytic PvCSP CSP-N, 
-R, -C

LSP Phase Ib (77, 145)

PvCSP VMP001 Rec Phase 
I, IIa

(146)

Transmission 
blocking

Pvs25 ScPvs25/
ISA51

Rec Phase I (147)

Pvs25 Pvs25H/
Alhydrogel

Rec Phase I (148)

Erythrocytic PvDBP ChAd63 
PvDBP

Viral 
vector

Phase Ia www.
clinicaltrials.gov 
NCT01816113

LSP, long synthetic peptide; Rec, recombinant; CSP, circumsporozoite protein.
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having more than 70 Pv amino acids from PvCSP amino terminal 
(N), carboxyl terminal (C), and repeat (R) regions linked to teta-
nus toxoid peptide (87). Immunized non-human primates from 
the genus Aotus spp. produced specific antibody response recog-
nizing both LSP and CSP since the first immunization (87). LSP 
has also induced a Th1-type immune response characterized by 
increased IFN-γ and reduced IL-4 production in T-lymphocytes 
stimulated in vitro (87, 137).

High IFN-γ production in  vitro and cytophilic antibodies 
(IgG1 and IgG3) capable of recognizing fragments from the 
PvCSP N- and R-regions have been produced by LSP (as in 
experimental models) in phase I clinical assays. By contrast, the 
C-terminal region has not been immunogenic in humans (77).

Specific B- and T-cell epitopes must be included to stimulate 
an immune response thereby enabling recognition by class I and 
class II MHC molecules. Two modified LSP, PvCS-NRC (137 aa) 
and PvNR1R2 (131 aa) have induced a strong antigen-specific 
antibody response in immunized mice. They have inhibited Spz 
invasion of hepatoma cells (HepG2A-16) in vitro by 65 and 90% 
for both PvCS-NRC and PvNR1R2, respectively (88, 128). PvCS-
NRC has included conserved regions I and II and the repeat 
region sequence from VK210 and VK247 variants (88, 129). 
PvNR1R2 has been improved by including B-epitopes, T-epitopes, 
and cytotoxic lymphocytes epitopes (128).

Immunogenic fragments of CSP have been evaluated in a 
recombinant vaccine (VMP 001) expressed in Escherichia coli 
encoding a PvCSP chimera (149). VMP 001 has triggered a potent 
immune response in BALB/c mice following a third immuniza-
tion. The antibodies so produced were capable of agglutinating 
live Spz, indicating a loss of Spz-infective capability (150). 
rPvCSP-c, a recombinant protein similar to VMP 001 (91), has 
shown antibody-specific reactivity against variants VK210 and 
VK247 (151).

Formulations have been made with adjuvants or TLR agonists 
to maximize vaccine candidate fragments’ immune response. 
Regarding adjuvants, assays involving BALB/c mice and Aotus spp. 
monkeys have proved that formulation with Freund’s, Montanide 
ISA270, and Montanide ISA51 adjuvants, which have not led to 
significant differences concerning specific antibody production. 
However, clinical assays have revealed greater immunogenicity 
(having greater antibody titers and IFN-γ production) when 

Montanide ISA 51 adjuvant was used (145). Other adjuvant that 
has been tested is the inert nanoparticles, which is coated with 
the P. berghei CSP and induced CD8 T cell immunity without 
pro-inflammatory signals and also induced IFN-γ production 
levels determined to be required for sterile protection in the P. 
berghei challenge model (152).

PvCSP has been formulated with TLR agonists helping to 
improve the immune response. Aotus nancymaae immunized 
with VMP 001 plus a TLR9 agonist (CpG 10104) have produced 
high antibody titers since the first dose, antibodies directed 
against the C-terminal region, and the VK210 variant repeat 
region predominating. It was seen that 66.7% of immunized pri-
mates became protected following experimental challenge (153), 
associated with the activation of B-cells, macrophages, and DCs 
by the CpG 10104 agonist (154).

Other formulations have been evaluated by using new ago-
nists. When using VMP 001 for immunization with the TLR4 
agonist (glucopyranosyl lipid A) it was found that this created 
a CD4+ cell response with high IL-2 production but low TNF 
levels (90). Fusing a polypeptide covering the PvCSP immuno-
dominant region coformulated with the FliC agonist (Salmonella 
typhimurium flagellin) produced a PAMPs-dependent immune 
response via TLR5 (155).

The results of PvCSP vaccine phase I/II of Pv(VMP001/
AS01B) have been published recently; it induced an antibody, 
cell-mediated immune response and delayed the latent period, 
but it did not induce sterile protection (146). Experience with 
P. falciparum vaccines has demonstrated that single-stage and 
single-target antigens cannot induce long-lived, sterile protec-
tion (133). The next generation P. vivax vaccine should include 
multiple targets, especially those needed for binding to host cells 
and those blocking transmission.

Thrombospondin-Related Adhesive 
Protein (PvTRAP)
The thrombospondin-related adhesive protein (TRAP) has 
also been evaluated as a potential preerythrocyte phase vaccine 
candidate. TRAP is a type I transmembrane protein, expressed in 
the micronemes and translocate to Spz surface during hepatocyte 
invasion. The ectodomain consists of an A domain, a thrombos-
pondin type 1 repeat (TSR), and a repeat region, which is variable 
among species. The A and TSR regions are cell adhesion domains 
that interact with hepatocyte membrane receptors thereby ena-
bling invasion (156–158).

This protein has been studied in P. berghei and P. falciparum 
as vaccine candidate; these studies showed a significant reduction 
in parasites during hepatic phase, mediated by CD8+ cytotoxic 
T-lymphocytes but involving low antibody production (159, 160) 
P. falciparum (161).

A P. vivax study with PvTRAP LSP involved immunizing mice 
and Aotus spp., which were then experimentally challenged. A 
good antibody response against the peptide was produced in 
mice, but only 50% recognized Spz. Four immunizations were 
needed in Aotus for obtaining a significant antibody titer, but 
IFN-γ levels did not increase; four of the six monkeys became 
protected following experimental challenge (162).
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Mice immunized with PvTRAP expressed in viral vectors have 
induced a better immune response associated with high IFN-γ 
production and TNF-α by CD8+ T-lymphocytes and the produc-
tion of high antibody titers specific against PvTRAP. A marked 
increase in IL-2 production from CD8+ lymphocytes has been 
seen after inoculating Spz, indicating an active response in the 
liver (163).

One of the main problems in developing an antimalarial 
vaccine using PvTRAP has been its high genetic polymorphism 
observed in different isolates from different regions around the 
world (164). An approach to preventing these problems would 
involve studying proteins’ conserved regions instead of using 
immune-dominant antigens, which are highly polymorphic.

P. vivax eRYTHROCYTe PHASe PROTeiN 
ANTiGeNiCiTY AND iMMUNOGeNiCiTY

Merozoite Surface Protein-1 (MSP-1)
The MSP family has been the most studied candidate from the 
erythrocyte asexual phase when developing an effective vaccine 
against malaria. The MSP-1 belongs to this family, being one of 
the most studied and currently important for both P. falciparum 
and P. vivax (165).

The MSP-1 analog in P. vivax is encoded by the Pv200 gene 
(166), having a 200-kDa molecular weight (167). The proteolytic 
processing profile is thought to be similar than for P. falciparum 
MSP-1, leading to 4 fragments: 83, 30, 38, and 42 kDa; further 
cleavage of the last one (C-terminal region) produces 33 and 
19  kDa polypeptides, which are released to the blood stream. 
A 19-kDa portion remained bound to the recently formed ring 
phase following reticulocyte invasion (79, 168).

A study in Pv exposed individuals found IgG responses to 
rPv200L (like the Pf190L fragment) indicating that the protein 
has high antigenicity. Sera from immunized animals showed 
IgG-specific antibodies capable of recognizing this protein Pv. 
The authors highlighted the fact that the observed response had 
a protective tendency since Aotus spp. developed low parasitemia 
peaks following P. vivax challenge (94).

The 19-kDa C-terminal fragment has been one of the most 
studied from MSP-1 (Pv200). Kaslow and Kumar studied Pv20019 
protein immunogenic capability in mice vaccinated with three 
doses. An increase in antibodies was observed in sera, which 
became increased with the second vaccination, this being attrib-
uted to a booster for helping epitopes in Pv20019. The response 
was T-cell dependent, suggesting that an immune response to a 
vaccine based on this protein could be boosted by natural infec-
tion (169).

Studies in an endemic area of Brazil by Soares et al. detected 
IgG antibodies against MSP-1 C-terminal and NT region. 
Response to the C-terminal region increased according to 
patients’ number of previous episodes of malaria, an increase 
of up to 80% being observed in patients who had suffered more 
than four episodes. Moreover, in vitro proliferation was observed 
in 47% of the individuals and IFN-γ production 54% of them. 
This study suggests that the C-terminal region contains two 
immunogenic epidermal growth factor (EGF)-like domains 

which induce T-cell and antibody responses against P. vivax 
during natural infection in humans (78). Later studies with the 
C-terminal region, specifically PvMSP-119, have shown that these 
two EGF-like domains function as a binding portion in PvMSP-1 
interaction with erythrocytes (170).

Later studies by Soares et al. found that antibody titers against 
PvMSP-119 became rapidly reduced (by up to 13-fold) in infected 
individuals and those who had received treatment against the dis-
ease. Antibody response against the NT region became reduced, 
even though such reduction was not significant. The decrease 
of antibodies directed against the C-terminal region could have 
contributed toward cases of reinfection in high-risk areas (171). 
Fernandez-Becerra et  al. evaluated IgG subclasses in children, 
finding a predominant IgG1-type response against the C-terminal 
region and low IgG3 and IgG4 percentages. The predominant 
antibodies in adults were IgG3, a correlation between antibodies 
against the C-terminal region and age being observed (172).

High antibody titers against Pv20019 have been observed in 
infected soldiers in the republic of Korea Pv, mostly IgG and 
IgM to a lesser extent; these were maintained for a long period 
of time (from 4 to 6 months) following recovery from malaria 
(173). Another study showed that IgG antibody permanence was 
maintained for more than 5 months, while IgM-type remained 
negative 2–4 months after the onset of symptoms (93).

The major responses in Turkey (where P. vivax is the only 
Plasmodium species present in the area) were IgG, IgM, and IgA 
to a lesser extent. It is worth highlighting the fact that PvMSP-119 
was highly antigenic in individuals who are naturally exposed to 
the infection and, since no other Plasmodia are infecting in that 
area, the response observed cannot be attributable to a crossed 
reactivity (95).

Rosa et  al. characterized the MSP-119 recombinant protein’s 
antigenic and immunogenic properties together with two 
T-helper epitopes (the universal pan allelic DR epitope and a new 
internal MSP-1 epitope from the 33-kDa C-terminal region). It 
was seen that T-helper epitopes did not modify protein recog-
nition by human IgG. The complete recombinant protein was 
immunogenic in marmosets (Callithrix jacchus jacchus), but only 
when Freund’s adjuvant was used (174).

A study of immune response and protection was conducted 
in our institute, two groups of Aotus spp. (one splenectomized 
and the other not) were immunized with two recombinant 
polypeptides (rPvMSP-114 and rPvMSP-120) from the MSP-1 
33-kDa C-terminal region containing high activity binding 
peptides (HABPs) to reticulocytes. Most immunized monkeys 
recognized the rPvMSP-114, rPvMSP-120, or the mix of HABPs 
by enzyme-linked immunosorbent assay (ELISA) and dena-
tured PvMSP-1 42 and 33-kDa fragments by Western blot. 
Although half the animals immunized with the rPvMSP-114 
and rPvMSP-120 mixture were protected, some monkeys did 
not produce antibodies against the vaccine candidate. This 
suggested that protection was not only mediated by a humoral 
immune response (175). The next study involved vaccinating 
Aotus spp. monkeys with the two above mentioned recom-
binant polypeptides but in three doses. Aotus spp. produced 
antibodies capable of recognizing the native protein and man-
aged to control parasitemia in four out of the five immunized 
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monkeys. Interestingly, some animals produced high IFN-γ 
levels and controlled parasitemia but displayed low antibody 
titers; conversely, some other animals were protected having 
high antibody tires but low IFN-γ levels (176).

Other studies have found that anti-PvMSP-1 antibodies 
(predominantly IgG), recognizing the NT region, are associ-
ated with a reduced risk of infection and clinical protection 
against the PvMSP-1. Although these antibodies do not 
recognize the C-terminal region (79), there have been reports 
that the C-terminal region is immunogenic and capable of 
naturally stimulating antibody production in new infections 
(78, 93, 173).

The MSP-1 protein’s 42-kDa fragment has also been studied 
due to its potential as vaccine candidate; its immunogenicity 
was evaluated in mice. High IgG1, IgG2a, and IgG2b antibody 
levels were observed while IgG3-type response was low. A 
high proliferative response also found high IL-2, IL-4, IL-10, 
and IFN-γ levels being detected in culture supernatants (177). 
Greater prevalence of recognition of PvMSP119 than PvMSP142 
was found when a naturally acquired humoral immune response 
was reported (178).

An MSP-1 paralog has been identified recently (PvMSP1-P); 
its immune response was characterized using different protein 
fragments (83, 30, 38, 42, 33, and 19  kDa). The NT (83  kDa) 
fragment and two from the C-terminal region (33 and 19 kDa) 
were recognized by sera from infected patients living in endemic 
areas (179).

IgG1 and IgG3 (IgG2b in mice) were the predominant 
responses in patients from endemic regions, as in immunized 
mice. The C-terminal region induced a predominantly Th1 profile 
of cytokine response having high TNF, IFN-γ, and IL-2, but low 
levels of IL-10 and IL-4 cytokines (Th2 profile), showed greater 
lymphoproliferative response than the MSP1–19 fragment. The 
correlation between parasitemia and anti-MSP1P antibody level 
suggest that it does not contribute strongly to inhibiting parasite 
growth (81).

Due to its colocation with MSP1, it has been thought that it 
played a similar role in erythrocyte invasion; however, analyz-
ing the sequences has suggested different roles for each protein. 
Cytoadherence assays demonstrated that MSP1-P could be an 
essential adhesion molecule regarding P. vivax invasion to eryth-
rocytes, is immunogenic in humans, and is a potential vaccine 
candidate against P. vivax (179).

Merozoite Surface Protein-3 (MSP-3)
The P. vivax merozoite surface protein-3 (PvMSP3) is a member 
of the MSP family characterized by having a highly polymorphic 
alanine-rich central domain (180). It has a relatively conserved N- 
and C-terminal domain and two central blocks of seven repeats 
forming tertiary supercoiled helices in their structure (180–182). 
It is expressed in schizonts and is associated with Mrz surface 
during the erythrocyte phase (180).

Its homolog in P. falciparum has been studied as a vaccine 
candidate in preclinical (183) and phase I assays, protection 
was associated with reduced parasitemia by cytophilic antibod-
ies inducing antibody-dependent cell-mediated inhibition of 
parasite growth mechanism (184). It has been shown to be highly 

immunogenic in P. vivax, having a high prevalence of antibodies 
directed against PvMSP-3α block II (96).

A correlation has been described between time spent living 
in an endemic region and the number of previous episodes of 
malaria, involving an increase in IgG1 and IgG3 anti-PvMSP-3α 
(85, 86, 96). A naturally acquired response has been found toward 
15 antigenic determinants, mainly located in repeat regions (85). 
Other studies have reported the C-terminal region as being the 
most antigenic, having a significant increase in IgG in a population 
from Brazil (97) and PNG (96). However, it has been found the 
antibodies directed against block II are associated with protection 
against clinical episodes of P. vivax malaria, having greater than 
500 parasites/μL parasitemia (96).

Interestingly, no response against PvMSP-3α was produced in 
immunogenicity studies with C57BL/6 mice, while high antibody 
titers were produced with PvMSP-3β following the second and 
third immunization (97). Incorporating adjuvants (Quil A, 
TiterMax, or IFA) has maximized the response against PvMSP-3α, 
indicating that another parasite’s molecules must act as adjuvant 
for PvMSP-3α antigenic presentation during natural infection 
(96, 97). Regarding cellular response, PvMSP-3β with Quil A, 
Titer Max, or IFA adjuvants have produced a balanced Th1/Th2 
response, while the Alum adjuvant directed response toward Th2 
with a significant murine IgG1 increase. Alum co-formulated 
with the TLR9 agonist (CpG ODN 1826) balanced the Th1/Th2 
relationship, increasing Th1 response due to pro-inflammatory 
cytokine production (97).

Merozoite Surface Protein-9 (MSP-9)
The P. vivax merozoite surface protein-9 (PvMSP-9) is also 
a potential vaccine candidate. Some studies have shown that 
this protein is conserved among Plasmodium species infecting 
humans, rodents, and primates. Furthermore, antibodies pro-
duced against PvMSP9 homologs in P. cynomolgi and P. knowlesi 
can inhibit Mrz invasion of erythrocytes (180).

The P. vivax, P. knowlesi, and P. cynomolgi msp-9 genes encode 
a hydrophobic signal peptide and repeat motifs upstream of the 
stop codon and a C-terminal region having two species-specific 
blocks of repeat amino acids (PvMSP9-RI and PvMSP9-RII). 
Together with P. falciparum has four cysteine residues close 
to the NT giving the MSP-9 family’s structural and functional 
characteristics. This protein is expressed during schizogony and 
is organized on Mrz surface during schizont development and 
segmentation (180, 185).

The cellular and humoral immune response of BALB/c mice 
immunized with PvMSP9-Nt, PvMSP9-RII recombinants, and 
the mixture of both recombinants was evaluated for testing 
PvMSP-9 immunogenicity. Antibody response in mice was deter-
mined by ELISA and was mainly IgG; there were greater titers for 
IgG1, IgG2a, and IgG2b isotypes than IgG3. Regarding cellular 
response, the amount of spleen cells secreting IFN-γ was higher 
than those secreting IL-5. Moreover, sera from patients living 
in an endemic region of Brazil recognized the two recombinant 
regions, demonstrating that both were immunogenic (186).

A study was carried out on a population, which was naturally 
exposed to P. vivax infection in Brazil, and the immune response 
against PvMSP9-RIRII and PvMSP-N terminal domains was 
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evaluated. Of the 306 individuals in this study, 74% had IgG anti-
bodies that recognized at least one of the recombinant proteins, 
thereby indicating that these proteins are antigenic during natural 
infection, especially PvMSP9-RIRII. When the IgG subclasses 
were evaluated, IgG1 was predominant for PvMSP9-RIRII and 
PvMSP9-N terminus, and IgG2 was prevalent for PvMSP9-
RII. Furthermore, five synthetic peptides predicted to bind to 
HLA-DR alleles were chosen, and the overall cellular response 
frequency for at least one of the peptides was 58% for IFN-γ and 
41% for IL-4. No association was found between IFN-γ produc-
tion and IgG levels regarding recombinant proteins. Lima-Junior 
et al. thus concluded that PvMSP9 C-terminal and NT domains 
are immune response targets for individuals living in P. vivax 
endemic regions. The reactivity index for IgG has been positively 
correlated with time spent living in an endemic area; conversely, 
IgG3 reactivity did not predominate regarding response to the 
recombinant proteins. It has been shown that PvMSP9 NT region 
peptides induce memory T-cell response where IFN-γ and IL-4 
cytokines produced in significant proportion by individuals from 
endemic regions has indicated the presence of T-cell epitopes 
(98).

Another study involving volunteers from an endemic region of 
the Amazon region showed that the response of cells producing 
IFN-γ was significantly greater than those regarding IL-4. The 
results obtained for 5 of the 11 peptides selected contained PvMSP9 
promiscuous T-cell epitopes. The core sequence (ASIDSMI) 
shared by three of the peptides was highly immunogenic; another 
peptide could have had two immunodominant epitopes, one in 
the overlapping core region and another in the C-terminal region, 
which produced a cellular response in 23 volunteers (99).

The specific response of IgG to PvMSP9-N terminal has been 
associated with protection against symptomatic P. vivax infection 
in children aged less than 3 years old in a PNG endemic region. 
Such antibodies specific for PvMSP9 were prevalent in children 
suffering frequent infections and have been associated with 
protection in children who have not had these infections. The 
authors concluded that two classes of antibodies are produced 
against the PvMSP9 NT region, one produced by short-lived 
memory B-cells and the other by long-lived cells (96).

Duffy Binding Protein (DBP)
Plasmodium vivax Mrz requires antigens from the Duffy blood 
group as surface receptor for invading human reticulocytes (114). 
P. vivax DBP adhesion to its receptor on erythrocytes [Duffy anti-
gen receptor for chemokines (DARC)] is essential for the parasite 
to continue developing during the asexual phase in human blood 
(114, 187). PvDBP is a 140-kDa protein, which is located in the 
micronemes; it has been divided into four important regions: 
a peptide signal sequence (region I), two cysteine-rich regions 
separated by a non-homologous hydrophilic region (region II, 
identified as the erythrocyte-binding domain, and region VI), 
and transmembrane domain (region VII) (188–191). PvDBP is a 
main target to use as vaccine candidate since its importance dur-
ing parasite invasion and its ability to induce antibodies against 
the parasite’s asexual phases (114, 192).

Serological evaluation in a PNG endemic area has shown 
that a humoral immune response was common and increased 

with age, suggesting a possible booster effect regarding antibody 
response in some cases by repeated exposure to the infection 
(100). A similar pattern has been observed in an endemic region 
of Colombia where a positive correlation was found between 
increased antibody response and patients’ age. Also, an immuno-
logic boost for DBP was found, even in endemic areas having a 
low transmission level (101). The forgoing shows that DBPII was 
naturally antigenic in people residing in endemic regions.

Children having high antibody levels against DBPII has been 
associated with delayed reinfection time with the same P. vivax 
variant; however, such association was not observed when 
evaluating MSP1–19 (193). In other studies have been observed 
that naturally acquired neutralizing antibodies against DBP are 
short-lived, increasing with acute infection, and are strain specific 
(194, 195).

Antibodies from plasma from naturally exposed people and 
from animals immunized with recombinant Duffy binding 
protein (rDBP) have blocked the specific interaction between the 
PvDBP ligand domain in  vitro and its receptor on erythrocyte 
surface; such inhibitory activity has been correlated with antibody 
titers (196, 197). The forgoing shows DBP’s potential as vaccine 
candidate due to its essential role as adhesion molecule (196).

The cytokine production of individuals exposed to P. vivax was 
analyzed; IFN-γ, IL-10, and IL-2 induction was observed. The 
response was seen to depend on individuals’ age and the specific 
DBPII variant, producing partially acquired immunity to P. vivax 
in these populations (198). Similarly, epitopes mapped from the 
DBPII critical binding region have produced a humoral response, 
accompanied by increased antibody levels associated with 
patients’ increased age, suggesting recognition through repeated 
infection. Some individuals recognized rDBPII but not linear 
epitopes, indicating the presence of conformational epitopes; 
such cases occur regularly in young people or subjects suffering 
first acute P. vivax infection, suggesting that multiple infections 
are needed for the recognition of linear epitopes (199).

The DBP binding domain (DBPII) is polymorphic, tending to 
compromise the efficacy of any vaccine associated with strain-
specific immunity (192). Due to the high rate of polymorphism 
observed in DBP region II, an in-depth investigation was made 
of the relative importance of conserved and polymorphic residues 
in this region by directed mutagenesis. The mutations causing 
the loss of ligand function were mainly produced in discontinu-
ous groups of conserved residues, while almost all mutations in 
polymorphic residues did not alter RBC binding (200). Such 
polymorphism has been seen to have a synergic effect on the 
antigenic nature of DBP (201). Sera from patients reacted to 
denatured, non-reduced, and native rDBP, indicating immuno-
genic conserved linear B-epitopes (100). The immune efficacy of a 
DBPII vaccine depends on inducing antibodies, and this response 
should be optimized toward conserved epitopes to protect against 
P. vivax (197).

Since DBP region II epitopes have been shown to be immu-
nogenic, studies have established universal epitopes, which can 
be presented by different HLA-DR alleles inducing an effective 
cellular and humoral immune response, making them a candi-
date for a subunit-based vaccine (202). Antigenicity studies using 
PvDBPII universal epitopes have shown that lymphoproliferation, 
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IL-6, and IFN-γ production is induced in peripheral blood mono-
nuclear cells (PBMCs) from individuals exposed to infection. 
Such results have suggested that these epitopes having affinity for 
HLA-DR molecules can be good components of a vaccine against 
P. vivax (203).

Polymorphisms observed in DARC have also been associated 
with P. vivax infection severity and susceptibility in humans. 
Individuals with low DARC expression (a single negative allele) 
have a greater probability of having anti-MSP1 and anti-DBP 
antibodies than individuals having high DARC expression (dou-
ble positive alleles). Individuals having high expression of DARC 
have been found to be associated with greater susceptibility to 
infection, exhibiting low frequency and magnitude of specific 
antibody response against P. vivax during the blood stage. This 
could indicate that one of P. vivax’s primary mechanisms for evad-
ing host immunity works through indirect negative regulation 
of DARC, influencing the humoral response against erythrocyte 
invasion and parasite development (204).

Apical Membrane Antigen-1 (AMA-1)
The AMA-1 in Plasmodium is a transmembrane protein, which 
is localized in the micronemes. It seems to be essential during 
cell host invasion and is present in all Plasmodium species (205, 
206). Eight disulfide bonds have been identified in the AMA-1 
ectodomain of 66 kDa, defining three different subdomains (DI, 
DII, and DIII) (207). Immune responses induced by AMA-1 
from different Plasmodium species have shown potent parasite-
inhibitory effects both in animals and in  vitro thus suggesting 
AMA-1 as a potential vaccine candidate (208).

Plasmodium vivax AMA-1 ectodomain (PV66/AMA-1) has 
been shown to be highly immunogenic in rhesus monkeys, 
inducing high IgG antibody titers; however, these suffer a rapid 
decline. A slight reduction in parasitemia has been observed in P. 
cynomolgi-challenged animals previously immunized with PV66 
(209).

Mice immunized with human adenovirus type 5 and rAMA-1 
have produced long-lived specific antibodies (including IgG1 
and IgG2a) and memory T-cell proliferative responses. Memory 
T-cell responses were effector- and central-type, central memory 
predominating (210). In mice it was observed that response was 
both Th1 and Th2 following three immunizations and persisted 
for 1 year following the first immunization. On the other hand, 
the antibodies produced were capable of recognizing the native 
protein located on P. vivax parasites (211).

When evaluating the immune response against two PvAMA-1 
variants (A and B), there were no significant differences regarding 
the prevalence of IgG response. A marked switching in isotypes, 
which became increased with age, was also seen. The predomi-
nant cytophilic antibodies recognized PvAMA1A (IgG1) and 
PvAMA1B (IgG1–IgG3). The immune-epidemiological data in 
this research were similar regarding the two variants, this implied 
that one of these forms could be used in a universal erythrocyte 
stage PvAMA-1 antigen-based vaccine (212).

An IgG response was observed in people residing in endemic 
regions exposed to P. vivax in Brazil, IgG1 being the dominant 
subclass. This antibody response was slightly lower than that 
observed with MSP119 and increased by 100% in individuals 

having had more than three episodes. Sequences of PvAMA-1 
variable domain from different isolates have been seen to have 
limited polymorphism in this country (102).

This protein has been seen to be involved in Mrz invasion 
and contains an extracellular portion containing three different 
domains (207). When evaluating DI, DII, and DIII, separately or 
in combination in P. vivax-infected individuals, a greater immune 
response toward proteins containing the domain II was observed. 
Inhibition assays using the PvAMA-1 ectodomain led to com-
mon epitopes being identified within the DI–DII domains, which 
were recognized by antibodies from people residing in endemic 
regions. Immunization in mice having the PvAMA-1 ectodomain 
induced high levels of antibodies, predominantly against DI–II 
(103).

A linear B-epitope was also identified between amino acids 
290–307 (SASDQPTQYEEEMTDYQK) in domain II, this pep-
tide was recognized by sera from individuals naturally infected 
by P. vivax (213).

Recombinant P. vivax apical membrane antigen-1 DII was for-
mulated with six adjuvants and was highly immunogenic regard-
less of the adjuvant used. DII-specific antibodies recognized 
native AMA-1 protein, demonstrating that it is immunogenic and 
indicating that this protein region could be evaluated as part of a 
subunit-based vaccine against malaria caused by P. vivax (214).

Reticulocyte-Binding Proteins (RBP)
Reticulocyte-binding proteins include PvRBP1 and PvRBP2 and 
their variants PvRBP1a and b and PvRBP2a, b, and c, and other 
family members (215). RBP1 is a homodimer bound by disulfide 
bonds, binds non-covalently to RBP2, and forms a protein 
complex (216). They are colocalized in the apical zone in Mrz 
micronemes and contain a transmembrane domain toward the 
C-terminal extreme, possessing repeat regions in PvRBP2 and 
reticulocyte-binding domains (108, 215, 217–219).

It is thought that RBPs could participate in reticulocyte inva-
sion since no infection by P. vivax has been observed in mature 
erythrocytes (220). Their reticulocyte-binding ability has also 
been reported, but the specific receptors have yet to be identified 
(219). It has recently been found that only PvRBP2b binds specifi-
cally to reticulocytes (221). Due to their participation in infection, 
they have been studied as erythrocyte phase vaccine candidates, 
aimed at blocking Mrz invasion of reticulocytes (218).

High affinity reticulocyte-binding peptides (HARBPs) have 
been identified, 5 in a fragment from the region I of PvRBP1 NT 
extreme (222) and 24 throughout the whole protein (223). The 
highly-conserved region III (between amino acids 1,941–2,229) 
had the greatest amount of HARBPs (223) and, when used as 
immunogen, it  induced high antibody titers in Aotus nancymaae 
monkeys, able to recognize the full PvRBP1 in parasite lysate. 
T-lymphocytes became activated following the second and third 
doses, but no protection was obtained after experimental chal-
lenge (224). Due to studies involving other P. falciparum proteins 
showing that highly conserved sequences are not immunogenic, 
in spite of having high binding capability, it has been suggested 
that changes must be made in some amino acids to increase the 
immune response and induce protection based on studies of criti-
cal binding residues for HARBPs from region III (224).
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Antigenicity studies have found a direct relationship between 
higher anti-PvRBP1 antibody titers and the number of previous 
episodes, the time spent residing in an endemic region and age 
(82, 83, 219, 224). The immune response to PvRBP1 has also 
been associated with greater IgG1 and IgG3 cytophilic antibody 
presence against fragments from polymorphic regions (82, 83).

Studies regarding different populations where an acquired 
response to B-epitopes (107) and various fragments from PvRBP1 
and PvRBP2 variants (108, 219) have shown high prevalence of 
IgG antibodies against fragments from repeat region, the super-
coiled helix, and PvRBP1 C-terminal region (107) (Table  2). 
Regarding the NT region (including the most polymorphic 
region of the PvRBP1a and b variants) (108), IgG prevalence was 
intermediate in a population from Thailand, while no antibody 
response against PvRBP1b was found in a population from the 
Republic of Korea (219).

On the other hand, PvRBP2 has been seen to have greater 
antibody prevalence against NT region, repeat region (107), 
and PvRBP2c variant fragments (219). PvRBP2c is one of the 
most polymorphic variants, probably having the greatest global 
distribution, associated with the prevalence of this variant’s rec-
ognition (219). PvRBP2b and PvRBP1a have been correlated with 
lower risk of parasitemia in a cohort study of PNG children (221). 
Regarding other proteins such as PvDBP, PvRBP antigenicity is 
much lower (82, 108).

Antigenicity and/or immunogenicity of 
Non-Classical vaccine Candidates
In spite of the technical limitations involved in studying P. vivax 
proteins, other proteins characterized as being promising vac-
cine candidates have been studied during the last few years. One 
such is merozoite surface protein-10 (PvMSP10) having NT and 
C-terminal regions with two EGF-like domains and a GPI anchor 
(225). Colombian individuals exposed to P. vivax infection have 
shown reactivity to recombinant PvMSP10; rPvMSP10 has also 
elicited high antibody titers against the protein in immunized 
Aotus monkeys but no protection after challenge (226). Infected 
Korean individuals had 42% IgG prevalence, IgG1 and IgG3 
antibodies predominating. Immunized mice have shown a Th1 
response-biased immune response (227).

The Pv34 protein was characterized based on homology of 
the P. falciparum Pf34 protein, and antigenicity was evaluated 
in PBMCs from individuals previously exposed to infection. 
Stimulation with rPv34 induced proliferation in 71% of indi-
viduals and high IL-2, IFN-γ, and IL-4 production (Th1/Th2 
profile), such response being attributed to recognition of T- and 
B-epitopes responsible for a combined immune response (228).

Another protein characterized was PvRON-1, based on 
its homologous PfASP protein in P. falciparum. This protein’s 
antigenicity was evaluated using sera from people having had 
previous P. vivax infection. The results showed that PvRON-1 
was expressed during natural infection and could generate an 
antibody response in the host (229).

An antigenicity and immunogenicity study of P. vivax rhoptry-
associated leucine (Leu) zipper-like protein-1 (PvRALP-1) was 
carried out on patient serum samples and immunized mice. 

PvRALP-1 was recognized in samples from patient sera, IgG1 and 
IgG3 being the predominant subclasses, although without signifi-
cant differences with the other subclasses; Th1/Th2 response was 
balanced in immunized mice (230).

The CelTOS microneme protein characterized and tested 
for P. falciparum, having 98% homology with P. vivax, should 
be considered for further studies since cross-species protection 
has been demonstrated in preclinical studies (231). It has been 
described as vaccine target by blocking transmission infection 
or preerythrocytic stage due to its cell traversal function in Spz 
and ookinetes (232). A recent study proved ~20% prevalence of 
antibodies against PvCelTOS in a Thai population (233). More 
studies related to immunogenicity, and antigenicity potential are 
needed and should involve new proteins characterized during the 
last few years, related to host cell invasion during different life 
cycle stages, such as rhoptry neck proteins.

TRANSMiSSiON BLOCKiNG P. vivax 
vACCiNe CANDiDATeS

One of the methodologies used for controlling malaria infection 
has been the search for transmission blocking vaccines, through 
strategies for preventing ookinete development in the vector 
(234). The assays conducted for transmission blocking have been 
focused on two main proteins, Pvs25 and Pvs28, expressed on 
gametocyte surface. Anti-sera have recognized Pv25 in zygotes 
and mature ookinetes, and Pv28 more in mature ookinetes (235).

Immunogenicity tested with recombinant proteins Pvs25 and 
Pvs28 in mice has shown a splenic T-cell proliferative response. 
Anti-sera from mice immunized with a Pvs25–28 chimera had a 
high antibody titer compared to mice immunized with Pvs25 or 
Pvs28 alone. Anti-Pvs25–28 and anti-Pvs25 had higher transmis-
sion blocking than anti-Pvs28 (235, 236).

Studies had demonstrated that P. vivax SalI strain recombinant 
Pvs25 and Pvs28 had transmission blocking capability, even with 
natural isolates, thus overcoming genetic polymorphism between 
isolates (237). Higher transmission blocking has been described 
as a direct function of antibody titers in sera (238–240).

Different vaccination schemes have been tested, varying 
adjuvant, dose, expression system (148, 237, 238, 240, 241). 
Phase I clinical trials determining security and immunogenicity 
in humans have shown high transmission blocking capability 
in humans, demonstrating these antigens’ potential as vaccine 
candidates (147, 148).

CONCLUSiON

This review has summarized immune responses induced by 
P. vivax vaccine candidates, which are essential in host cell 
invasion. Classical vaccine development has been focused on 
immunodominant antigens such as sporozoite and MSPs, which 
are recognized by sera from partially protected individuals who 
are naturally exposed to infection. However, surface proteins, for 
example PvMSP1 and PvCSP, have high allelic polymorphism 
(164, 242, 243) and are under positive selection by the immune 
response. After several natural infections, many of these epitopes 
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have shown an ability to generate a strong immune response in 
individuals without clinical symptoms, showing an association 
with IFN-γ effector T-cell activation and generation of cytophilic 
antibody subclasses. Similar immune responses have been 
observed in animal models immunized with these polymorphic 
immunodominant antigens. Nevertheless, the success for this 
kind of vaccines has been limited, since the cross protectivity 
obtained for the remaining strains is very low and induces a 
short-lived immune response (244, 245). Moreover, parasites 
change their cell targets and molecules during preerythrocytic, 
erythrocytic, and sexual stages, and single-antigen/single-stage 
vaccines do not induce sterile protection. It has been observed 
that P. falciparum parasites hide their amino acid conserved 
domains of the proteins involved in the invasion of host cells, 
showing immune dominant and polymorphic epitopes to the 
immune system (246).

Other methodologies are needed to solve these kinds of issue. 
An alternative is to develop an antimalarial vaccine (246), focused 
on synthetic peptides designed on conserved regions of Spz and 
Mrz proteins having high hepatic cell or RBC-binding ability. 
Although these peptides are not immunogenic, P. falciparum and 
P. vivax studies have shown that such peptides can be modified 
by changing their critical RBC-binding residues for others having 
similar mass but opposite polarity, making them highly immuno-
genic and protective (247, 248).

Another problem in the development of an antimalarial 
vaccine concerns the many haplotypes present in the exposed 
population. The HABPs can also be modified that fit properly 
inside the peptide-binding region of MHCII. In studies with P. 
falciparum with a MSP-2 HABP that has been modified to bind 
to HLA-DRβ1*0403 molecules with high affinity, it was shown 
that Aotus monkeys bearing HLA-DRβ1*0403-like molecules, 

produced high antibody titers with sterile immunity after 
challenge with P. falciparum FVO. This was a proof-of-concept 
immune protection-inducing protein structures demonstrat-
ing that specifically modified HABPs are able to induce sterile 
protection against malaria by engaging the proper TCR/pMHCII 
interactions (249).

Evaluation of conserved epitopes and non-immunodominant 
antigens important in parasite adhesion and invasion of erythro-
cytes should be prioritized for multistage, multi-epitope, minimal 
subunit-based, chemically synthesized antimalarial development, 
covering a large part of the HLA-DRβ1* population in endemic 
areas to protect them against malarial parasites.
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