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Allograft rejection constitutes a major complication of solid organ transplantation requiring 
prophylactic/therapeutic immunosuppression, which increases susceptibility of patients 
to infections and cancer. Beyond the pivotal role of alloantigen-specific T cells and anti-
bodies in the pathogenesis of rejection, natural killer (NK) cells may display alloreactive 
potential in case of mismatch between recipient inhibitory killer-cell immunoglobulin-like 
receptors (KIRs) and graft HLA class I molecules. Several studies have addressed the 
impact of this variable in kidney transplant with conflicting conclusions; yet, increasing 
evidence supports that alloantibody-mediated NK cell activation via FcγRIIIA (CD16) 
contributes to rejection. On the other hand, human cytomegalovirus (HCMV) infection 
constitutes a risk factor directly associated with the rate of graft loss and reduced host 
survival. The levels of HCMV-specific CD8+ T cells have been reported to predict the risk 
of posttransplant infection, and KIR-B haplotypes containing activating KIR genes have 
been related with protection. HCMV infection promotes to a variable extent an adaptive 
differentiation and expansion of a subset of mature NK cells, which display the CD94/
NKG2C-activating receptor. Evidence supporting that adaptive NKG2C+ NK cells may 
contribute to control the viral infection in kidney transplant recipients has been recently 
obtained. The dual role of NK cells in the interrelation of HCMV infection with rejection 
deserves attention. Further phenotypic, functional, and genetic analyses of NK cells may 
provide additional insights on the pathogenesis of solid organ transplant complications, 
leading to the development of biomarkers with potential clinical value.
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iNTRODUCTiON

Kidney transplantation is a widely used therapeutic intervention for chronic renal failure. Graft 
rejection remains a major complication, requiring prophylactic/therapeutic administration of 
immunosuppressive drugs. Consequently, kidney transplant recipients (KTR) are exposed to an 
increased susceptibility to infections, particularly by herpesviruses (e.g., cytomegalovirus and 
Epstein–Barr virus). Besides the pivotal role played by alloantigen-specific T cells and antibodies 
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in the pathogenesis of graft rejection, natural killer (NK) cells 
alloreactivity and their contribution to antiviral defense receive 
increasing attention.

Diversity of the Human NK Cell Receptor 
Repertoire and NK Cell Subsets 
Distribution
Natural killer cells constitute an innate lymphoid lineage 
involved in early defense against certain intracellular pathogens 
and tumors, which mediate cytotoxicity and pro-inflammatory 
cytokine production upon interaction with pathological cells 
(1–3). NK cells are controlled by an array of germ line-encoded 
inhibitory and activating/co-stimulatory receptors (NKR), as well 
as by different cytokines (e.g., IL-2, IL-12, IL-15, IL-18, and type 
I interferons), which regulate their differentiation, proliferation, 
and effector functions. Inhibitory killer-cell immunoglobulin-
like receptors (KIRs) and CD94/NKG2A complement each other, 
scanning potential target cells for altered surface expression of 
HLA class I (HLA-I) molecules.

The combinatorial distribution of these NKR along differen-
tiation determines the existence of a variety of NK cell subsets 
capable of responding against pathological cells, which have 
downregulated HLA-I expression, as predicted by the “missing-
self ” hypothesis (4). In the context of transplantation, NK cell 
subsets may also react against normal allogeneic cells lacking 
specific HLA-I ligands for their inhibitory KIR (iKIR).

Killer-cell immunoglobulin-like receptor and NKG2 NK cell 
receptor families include other members with activating function 
whose physiological role is being investigated. At late differentia-
tion stages, cytolytic T lymphocytes (TCRαβ CD8+, CD4+, and 
TCRγδ) may also display HLA-specific NKR (i.e., KIR, CD94/
NKG2A, CD94/NKG2C, and LILRB1) (5, 6).

KiRs for HLA-A, -B, and -C
The human KIR family comprises (i) six receptors (four KIR2DL 
and two KIR3DL) with cytoplasmic “immunoreceptor tyrosine-
based inhibition motifs” (ITIMs), which recruit the SHP-1/2 
tyrosine phosphatases preventing NK cell activation; (ii) six KIR 
with short cytoplasmic tails lacking ITIMs (i.e., KIR2DS and 
KIR3DS), which interact with DAP12; this adaptor molecule 
contains “immunoreceptor tyrosine-based activation motifs” 
(ITAM) linked to protein tyrosine kinase (PTK) activation path-
ways; and (iii) two KIR (2DL4 and 3DL3) displaying ambiguous 
signaling motifs (7, 8).

Most iKIRs specifically recognize sets of HLA class Ia (i.e., 
HLA-A, -B, and -C) allotypes sharing structural polymorphisms 
at the α1 domain; yet, the ligands for some of them (e.g., 
KIR2DL5) and most activating KIR (aKIR) remain elusive. In 
an example of convergent evolution, the physiological role of 
KIR is undertaken in mice by members of the Ly49 lectin-like 
family; the Ly49H receptor triggers NK cell functions upon 
interaction with the m157 viral protein, contributing to defense 
against murine CMV (9–11). The low affinity interaction of some 
aKIR with HLA-I molecules suggests that they might specifically 
recognize pathogen-derived HLA–peptide complexes or other as 
yet unknown molecules.

At the population level, KIR repertoires are quite diverse due 
to the fact that not all KIR loci are found in the genome of every 
individual, and to the existence of a variety of alleles. Each KIR 
is encoded by a different gene in chromosome 19q13.4, and mul-
tiple KIR haplotypes/genotypes have been described worldwide 
(8). Moreover, iKIR–ligand interactions modulate functional NK 
cell maturation through an education process termed “licensing,” 
ill-defined at the molecular level, which dictates that most mature 
NK cells display at least an inhibitory NKR specific for self HLA-I 
molecules (12, 13).

CD94/NKG2 Killer Lectin-Like Receptors 
for HLA-e
CD94 and members of the NKG2 family are lectin-like mem-
brane glycoproteins encoded at the NK gene complex on human 
chromosome 12. Similar to KIRs, the CD94/NKG2A heterodimer 
constitutes an inhibitory receptor linked to the SHP-1 tyrosine 
phosphatase, and CD94/NKG2C is coupled through DAP12 to a 
PTK activation pathway (14). The specific ligand for both CD94/
NKG2 receptors is constituted by the HLA-E class Ib molecule, 
which binds to leader sequence peptides from other HLA-I mol-
ecules, including alleles not recognized by iKIRs (15–17). Thus, 
CD94/NKG2A prevents the response against cells with a normal 
expression of HLA-I molecules, complementing the function 
of KIRs. HLA-E may present pathogen-derived peptides [e.g., 
human cytomegalovirus (HCMV), HIV-1, and HCV] altering 
CD94/NKG2A recognition (18–20). On the other hand, CD94/
NKG2C binds to HLA-E with lower affinity than its inhibitory 
counterpart (21, 22) and has been reported to be involved in the 
response to human HCMV (see Adaptive NK Cell Response to 
HCMV).

Additional Activating and inhibitory NKR
The CD16A (FcγRIIIA) receptor is coupled through CD3ζ or 
FcεRIγ chain adapters to a PTK activation pathway, triggering 
cytotoxicity and cytokine production upon interaction with 
IgG-opsonized cells (23). A CD16A allelic dimorphism (158V or 
F) influences the affinity of its interaction with IgG, modulating 
receptor-mediated signaling and activation of effector functions 
(24). Surface CD16 expression is downregulated in activated NK 
cells through a shedding process mediated by ADAM-17 metal-
loprotease (25, 26).

The human NKG2D C-type lectin triggers phosphatidyl inosi-
tol-3 kinase signaling through the DAP10 adaptor (27). NKG2D 
functions as an activating/co-stimulatory receptor specific for a 
set of ligands (MICA, MICB, and “UL16-binding proteins”) dis-
played by pathological cells, which are also inducible by cellular 
stress in normal tissues (6). Several immune evasion mechanisms 
that prevent NKG2D ligand (NKG2D-L) expression in HCMV-
infected cells have been identified (28).

Natural cytotoxicity receptors, i.e., NCR1 (NKp46), NCR2 
(NKp44), and NCR3 (NKp30), are connected to PTK signaling 
pathways through different ITAM-bearing adapters (29). In 
addition to their putative role in recognition of pathogen-derived 
molecules, there is evidence supporting the expression of ligands 
in normal cells that may trigger NK cell functions when control 
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FiGURe 1 | Diversity of the human peripheral blood natural killer (NK) 
cell compartment. Two main NK cell populations are identified according to 
expression levels of the CD56 marker. CD56bright NK cells secrete pro-
inflammatory cytokines but display a low cytotoxic potential and are often 
considered to represent an early maturation stage. According to such view, 
this subset is believed to differentiate into the major cytotoxic CD56dim NK cell 
population, which includes a variety of subsets differing in NKR expression 
[e.g., killer-cell immunoglobulin-like receptors (KIRs), CD94/NKG2A, and 
CD94/NKG2C]. Whether some CD56dim subsets (e.g., NKG2A− KIR+) might 
directly derive from immature NK cell precursors rather than from NKG2A+ 
KIR− CD56bright NK cells is not formally ruled out. Human cytomegalovirus 
(HCMV) infection promotes the differentiation and stable expansion of an NK 
cell subset, which displays high levels of the CD94/NKG2C receptor and an 
oligoclonal inhibitory KIR (iKIR) expression pattern, associated with other 
phenotypic and functional characteristics (see details in Section “Adaptive NK 
Cell Response to HCMV”). The nature of their precursors and the 
mechanism(s) underlying such adaptive NK cell response to HCMV are 
investigated.
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by inhibitory receptors is reduced (30). NKp46 is coupled to 
the CD3ζ or FcεRIγ chain, triggering cytotoxicity and cytokine 
production upon recognition of an ill-defined cellular ligand(s). 
NKp46 has been shown to be involved in the NK cell response 
to HCMV-infected dendritic cells and macrophages (31, 32). 
The nature of cellular ligands for NKp44 also remains open, and 
several ligands have been reported for the CD3ζ-linked NKp30 
(30, 33).

In addition to the pivotal role played by adhesion molecules 
(i.e., LFA-1 and CD2) in the NK cell interaction with target cells, 
engagement of DNAM1, a co-stimulatory receptor specific for 
Nectin-2 (CD112) and PVR (CD155), contributes to the response 
against tumor and virus-infected cells (32, 34). NK cells may 
acquire additional inhibitory NKR upon activation or at late dif-
ferentiation stages. Among these checkpoints, LILRB1 (ILT2, LIR-
1, or CD85j) interacts with a wide spectrum of HLA-I molecules 
and binds with a higher affinity to the UL18 HCMV glycoprotein 
(35, 36); similarly, TIGIT (T cell Ig and ITIM domain) binds to 
CD155 competing with DNAM1 (37).

Peripheral Blood NK Cell Subsets
The human peripheral blood NK cell compartment includes a 
variety of cell subsets, which represent distinct maturation stages 
and display different combinations of HLA-I-specific NKR. 
Similar to T and B lymphocytes, NK cells may undergo clonal 
expansion and late differentiation events, skewing the NKR 
repertoire and further diversifying their phenotypic/functional 
profile (Figure 1).

Two NK cell populations are identified in peripheral blood 
according to their surface expression levels of the CD56 neural-
cell adhesion molecule isoform (i.e., CD56bright and CD56dim) 
(38). CD56bright NK cells constitute a minor fraction (~10%) of 
the normal circulating NK cell compartment. They display a low 
cytotoxic potential but secrete pro-inflammatory cytokines and 
are conventionally considered to represent an early maturation 
stage (39). Most CD56bright NK cells express CD94/NKG2A, 
NKG2D, and NCR, but lack KIR and CD16. The predominant 
(~90%) CD16+NKG2D+CD56dim NK cell population comprises 
distinct subsets, defined according to KIR, NKG2A, and NKG2C 
expression (e.g., NKG2A+KIR+NKG2C+/− and NKG2A−KIR+

NKG2C+/−). Evidences have been obtained indirectly support-
ing a linear differentiation model in which CD56bright NK cells 
sequentially give rise to the other NK cell subsets (38, 40). Yet, 
the possibility that alternative differentiation pathways branching 
from NK cell precursors may independently generate CD56bright 
and CD56dim subsets cannot be formally ruled out.

Further levels of NK cell phenotypic/functional heterogeneity 
are determined by (i) the diversity of human NKR repertoires, 
conditioned by the existence of hundreds of different KIR hap-
lotypes diverging in gene and allotype content; (ii) the clonal 
distribution of KIR combinations among CD56dim NK cells, 
modulated by the influence of KIR–ligand interactions on NK 
cell maturation; (iii) the oligoclonal adaptive expansion of NK cell 
subsets in response to HCMV infection (see Adaptive NK Cell 
Response to HCMV); and (iv) the incidence of late differentiation 
events, which determine additional phenotypic and functional 
changes (e.g., expression of CD57 and LILRB1) (Figure 1).

NK CeLLS AND HCMv iNFeCTiON iN KTR

Human cytomegalovirus is a member of the herpesviridae 
family which causes highly prevalent lifelong infections in 
all human populations, generally asymptomatic in immuno-
competent hosts. The virus establishes latency, undergoing 
occasional reactivation which allows its efficient transmission 
through secretions (41, 42). HCMV may cause severe congenital 
disorders (43) and increases the morbidity/mortality rate in 
immunocompromised individuals (44, 45), being associated 
with some chronic inflammatory disorders (i.e., atherosclerosis) 
and immune senescence (46). As a consequence of immunosup-
pression to prevent graft rejection, KTR are exposed to HCMV 
reactivation/reinfection, leading to potentially severe complica-
tions (47, 48).

Together with specific T lymphocytes and antibodies, com-
monly analyzed to assess the adaptive immune response to 
HCMV, NK cells contribute to defense against this pathogen (49, 
50). To escape from CD8+ T cells, HCMV downregulates surface 
expression of HLA-I molecules in infected cells, interfering with 
antigen presentation (51, 52). Consequently, engagement of 
inhibitory NKR is impaired promoting NK cell activation, which 
is counteracted by a variety of viral immune evasion strategies 
(53–55).
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FiGURe 2 | Contribution of adaptive natural killer (NK) cells to human 
cytomegalovirus (HCMv) control. (A) Evidences supporting a contribution 
of different T and NK cell subsets in the control of HCMV infection in kidney 
transplant recipients have been reported. (B) Adaptive NKG2Cbright NK cells 
generated in response to HCMV infection efficiently mediate antibody-
dependent cytotoxicity and cytokine production (e.g., TNF-α and IFN-γ) in 
response to HCMV-infected cells. Yet, there is no consistent evidence 
supporting an involvement of CD94/NKG2C in triggering NK cell effector 
functions against infected cells, and the nature of a hypothetical viral ligand 
remains elusive.
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Adaptive NK Cell Response to HCMv
In 2004, we discovered that healthy HCMV-seropositive 
(HCMV+) individuals display increased proportions of NK 
and T cells hallmarked by high surface levels of CD94/NKG2C 
(NKG2Cbright) (56). The imprint of HCMV in the NK cell com-
partment is perceived to a variable extent only in some HCMV+ 
subjects, persisting under steady state conditions. A number 
of reports have extended these observations in different set-
tings, and the terms “adaptive” or “memory-like” are currently 
employed to designate the human differentiated NKG2Cbright 
NK cell population (55). For the sake of precision, we have 
strictly used this original definition along the text. Yet, it is of 
note that these terms have been used by some authors to define 
other NK cell populations (e.g., in vitro cytokine-differentiated 
NK cells) (57).

Expansions of NKG2Cbright cells are not induced by other 
herpesviruses (i.e., EBV and HSV-1) but have been reported in 
the course of different viral infections, yet associated with HCMV 
coinfection (58–61). As compared to other NK cell subsets, includ-
ing the low proportions of NKG2Cdim cells detected in HCMV(−) 
and some HCMV(+) individuals, adaptive NKG2C+ NK cells 
display a phenotype characterized by an oligoclonal pattern of 
iKIR specific for self HLA-I molecules (preferentially HLA-C). 
Moreover, they express reduced levels of NCR (i.e., NKp30 and 
NKp46), Siglec7, and CD161 (56, 62–64), acquire late differentia-
tion markers (e.g., CD57 and LILRB1) (65, 66), maintain surface 
expression of NKG2D and CD16, and display increased levels of 
CD2 involved in their activation (67, 68). Epigenetic downregula-
tion of signaling molecules (e.g., FcεRIγ chain and Syk) and cer-
tain transcription factors have been associated with adaptive NK 
cell differentiation (69, 70). From a functional standpoint, they 
contain greater levels of Granzyme B and efficiently secrete TNF-
α and IFN-γ (62, 63), mediating antibody-dependent cytotoxicity 
(ADCC) and cytokine production against HCMV-infected cells 
(71–73).

Expansions of NKG2C+ cells following HCMV infection were 
reported in immunosuppressed transplant recipients (65, 66, 
74), in a severe T cell primary immunodeficiency (75), as well as 
in children and newborns with congenital or postnatal HCMV 
infection (76, 77), independently of aging (78–80). Altogether, 
these observations suggest that the magnitude of the HCMV 
imprint on the NK cell compartment in healthy individuals is 
likely fixed at the time of primary infection, presumably depend-
ing on host/virus genetics and other circumstantial factors (e.g., 
age at infection, viral load, etc.) (81).

By analogy with the role of Ly49H+ cells in the response 
to murine CMV (82), we hypothesized that CD94/NKG2C-
mediated specific recognition of virus-infected cells drives 
the adaptive differentiation, proliferation, and survival of this 
lymphocyte subset (55). Indirectly supporting this view, in vitro 
stimulation of PBMC from HCMV+ donors with virus-infected 
cells elicited a preferential expansion of CD94/NKG2C+ NK cells 
(83, 84). Yet, at variance with Ly49H, the nature of a hypotheti-
cal viral ligand remains uncertain, and there is no experimental 
evidence supporting that the CD94/NKG2C receptor may trigger 
NK cell effector functions against HCMV-infected cells (32, 55, 
83, 85). By contrast, NKG2C+ adaptive NK cells have been shown 

to efficiently mediate antibody-dependent effector functions, 
particularly pro-inflammatory cytokine production, against 
HCMV and HSV-1 infected cells (24, 71). It is of note that CD16 
remains functionally coupled to the CD3ζ adapter (73) following 
downregulation of FcεRIγ. The molecular mechanisms driving 
this pattern of response to HCMV and the existence of a putative 
CD94/NKG2C viral ligand are investigated (Figure 2).

A deletion of the NKG2C gene (officially designated KLRC2) 
is frequently detected in different human populations, with some 
variation depending on their ethnic/geographic origin (86–89). 
NKG2C gene copy number is directly related with surface expres-
sion levels and the activating function of CD94/NKG2C (62). 
Moreover, the NKG2C genotype is as well associated with steady 
state numbers of circulating NKG2C+ NK cells, which appear 
reduced in NKG2C+/del as compared to NKG2C+/+ individuals, 
further supporting a role of the NKR in driving the generation 
of adaptive NK cells (62, 76, 88). The identification of ~5% 
HCMV(+) healthy NKG2Cdel/del blood donors illustrates that the 
receptor is dispensable for controlling the viral infection under 
normal conditions, being redundant with other cell types (i.e.,  
T lymphocytes). Moreover, NKG2C− NK cell subsets sharing 
some phenotypic features with canonical adaptive NKG2C+ 
NK cells have been reported in HCMV(+) NKG2Cdel/del blood 
donors (68, 90) and HCMV-infected hematopoietic stem cell 
transplantation (HSCT) recipients (91). On the other hand, the 
lack of NKG2C+ NK cells has been suggested to alter the control 
of primary HCMV infection in childhood (88); a putative rel-
evance of the NKG2C deletion in immunosuppressed patients is 
discussed in the next section.

NK Cell Response to HCMv infection  
in KTR
Posttransplant HCMV infection constitutes a risk factor for 
cardiac and renal allograft vasculopathy associated with chronic 
graft dysfunction and is directly associated with the rate of graft 
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loss and reduced host survival (47, 48, 92). Antiviral prophylaxis is 
commonly administered to HCMV(−) KTR transplanted from an 
HCMV(+) donor or treated with intensive immunosuppression; 
patients developing HCMV viremia receive antiviral therapy, not 
free of adverse effects. Identification of biomarkers predicting the 
risk of posttransplant HCMV infection is warranted to improve 
its clinical management. Regular immunosuppressive therapy in 
KTR is aimed to prevent rejection, impairing the development of 
alloreactive T cells and production of alloantibodies, but has been 
proposed to be less effective on differentiated CTL and mature 
NK cells (93). Yet, alterations of the phenotypic and functional 
profile of circulating NK cells following immunosuppression 
were detected in other studies (94, 95). After low-dose therapy 
with anti-thymocyte globulin (ATG) NK cells recovered faster 
than T cells (96). In this regard, following induction with ATG 
functionally competent NK cells were reported to display for 
several months an NKG2A+ KIR− phenotype (97). Thus, it is 
plausible that NK cells may contribute to antiviral defense in 
KTR, partially compensating their impaired T cell response.

The putative influence of KIR and HLA-I genotypes in the 
control of HCMV infection in KTR has been addressed. A rela-
tion of the KIR repertoire with viral load was reported in primary 
HCMV infection (98), even though the risk of HCMV disease 
was not influenced by KIR–ligand matching (99). De Rham et al. 
detected increased numbers of KIR3DL1+ NK cells in KTR dur-
ing the acute phase of HCMV reactivation (100). In both KTR 
and healthy blood donors, this NK cell subset efficiently killed 
in  vitro infected fibroblasts; different interpretations for this 
observation were proposed. On the other hand, KIR-B haplotypes 
encoding aKIR were related with a lower rate of HCMV infection 
(101). In cases receiving thymoglobulin and intensive immuno-
suppression, KIR-associated control of HCMV was limited to 
seropositive KTR (102). A role of activating NKR in the control 
of other viral infections (e.g., BK and varicella zoster) has been 
also proposed (103, 104).

We recently explored the relationship of adaptive NKG2C+ 
NK cells with the outcome of HCMV infection in KTR, monitor-
ing pre- and posttransplant the NK cell immunophenotype and 
the incidence of viremia (105). NKG2C+ NK cell expansions 
did not systematically follow detection of HCMV viremia in 
KTR, thus suggesting that a prompt control of the infection by 
antiviral therapy and preexisting differentiated CTL may hamper 
the adaptive NK cell response development. Conversely, late 
NKG2C+ NK cell expansions might reflect clinically unnoticed 
HCMV replication after withdrawal of antiviral therapy. In this 
regard, symptom-free HCMV reactivations in KTR have been 
associated with altered phenotypic and functional profiles of NK 
cells, which expressed LILRB1 and downregulated FcϵRIγ (106). 
In the same line, increased proportions of LILRB1+ (LIR-1+) NK 
cells were originally associated with HCMV infection in lung 
transplant recipients (107).

Regular immunosuppressive protocols did not modify the lev-
els of adaptive NK cells in KTR without detectable viremia along 
the follow-up, nor did they impair their expansion in some cases 
undergoing HCMV infection (105). Nevertheless, the possibility 
that immunosuppression may interfere with de novo adaptive NK 
cell differentiation, as it does with alloreactive T cell development, 

is not ruled out. Further studies are warranted to precisely assess 
the impact of different drugs on the development and effector 
functions of adaptive NK cells.

Of note, high pretransplant levels of NKG2C+ NK cells were 
associated with a reduced incidence of posttransplant HCMV 
viremia, independently of other related variables (e.g., thymo-
globulin induction, antiviral prophylaxis, and age), suggesting 
that adaptive NK cells might confer some protection against viral 
reactivation/reinfection (105). In this regard, a low NK cell count 
post-liver transplantation has been reported to be an independent 
risk factor for HCMV disease (108). Despite their limited direct 
in vitro response against HCMV-infected cells, adaptive NKG2C+ 
NK cells may contribute to antiviral defense. In particular, they 
efficiently mediate antibody-dependent effector functions and 
likely participate in the response to HCMV reactivation in KTR, 
in combination with specific IgG (70, 71, 73) (Figure 2B). In this 
context, the influence of CD16A dimorphism and IgG allotypes 
on the magnitude of ADCC deserves attention (24). The pos-
sibility that aKIR may be involved in the putative antiviral effect 
of adaptive NKG2C+ NK cells appears unlikely, considering that 
they do express iKIR (63, 64, 90) and that their expansion is 
independent of KIR-A/B haplotypes (56). Nevertheless, NK cell 
subsets expressing CD94/NKG2C or aKIR might play comple-
mentary roles in the response to HCMV.

The frequencies of TcRαβ T cells specific for HCMV antigens 
(e.g., IE-1 and pp65) have been reported to predict the risk of 
posttransplant infection (109, 110); moreover, TcRγδ T cells were 
associated with control of posttransplant HCMV viremia (111). 
Adaptive NKG2C+ NK cells and CTL have been proposed to be 
independent (78–80). Thus the possibility that the association of 
adaptive NKG2C+ NK cells with a lower risk of HCMV infection 
might indirectly reflect a central role of HCMV-specific TcRαβ  
T cells (Figure 3) appears unlikely; further studies are warranted 
to precisely address this issue.

The distributions of the NKG2C genotypes in two different 
KTR cohorts, studied pre- and posttransplant, appeared compa-
rable to the frequencies detected in blood donors; as reported, 
the magnitude of the NKG2C+ NK cell expansion was greater 
in NKG2C+/+ than in NKG2C+/del subjects (105). Remarkably, 
somewhat increased frequencies of the NKG2C+/del genotype and 
a reciprocal reduction of NKG2C+/+ cases were detected among 
KTR suffering symptomatic HCMV infection; unexpectedly, an 
opposite reduction of the NKG2Cdel/del frequency was observed 
among this KTR group. Despite that differences did not reach 
statistical significance, the coincident trends in both cohorts 
suggested a relation of NKG2C copy number with the outcome 
of HCMV infection and its impact in KTR; larger studies are 
warranted to confirm these observations.

Altogether these results indirectly support that adaptive 
NKG2C+ NK cells may play an active role in defense against 
HCMV, partially compensating in KTR the effect of immunosup-
pression on T cells. High pretransplant levels of NKG2C+ cells 
may predict a lower risk of posttransplant HCMV replication/
disease in KTR receiving regular immunosuppression, par-
ticularly in NKG2C+/+ HCMV(+) patients (Figure  3). On the 
other hand, posttransplant expansions of differentiated adaptive 
NKG2C+ NK cells reflect the incidence of viral replication and, 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 3 | Hypothetical relation of adaptive natural killer (NK) cells 
and specific T lymphocytes with posttransplant infection risk in 
kidney transplant recipients. NKG2Cdim NK cells detected in human 
cytomegalovirus (HCMV)(−) individuals express lower surface levels of the 
receptor and differ phenotypically and functionally from adaptive NK cells 
expanding in response to HCMV infection (NKG2Cbright) (see details in Section 
“Adaptive NK Cell Response to HCMV”). Pretransplant frequencies of 
virus-specific T lymphocytes and of NKG2C+ NK cells in seropositive 
recipients have been independently related with a reduced incidence of 
HCMV infection (D, donor; R, recipient).

FiGURe 4 | Natural killer (NK) cell-mediated alloreactivity in solid 
organ transplantation. (A) NK cells lacking inhibitory KIR (iKIR) specific for 
donor HLA class I ligands (“mismatched,” right) may potentially mediate 
cytotoxicity and cytokine production against the allograft. NK cell alloreactivity 
is favored by cellular stress conditions (e.g., pro-inflammatory stimuli) 
inducing graft expression of ligands for activating NKR (e.g., NKG2D ligand). 
(B) Donor-specific alloantibodies (DSA) trigger CD16+ NK cell-mediated 
cytotoxicity and cytokine production against the allograft, overcoming the 
control by inhibitory NKR (e.g., iKIR) (left); iKIR–ligand mismatch might 
synergize with a DSA-CD16-mediated response (right).
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once established, might contribute to its control. It is plausible 
that antibody-mediated response to other viral infections may as 
well contribute to the expansion of adaptive NKG2C+ cells (70, 
112). It is uncertain whether adaptive NK cells may comparably 
respond to HCMV reactivation or reinfection, reported to have 
a different clinical impact (113). From a practical standpoint, 
monitoring basal and posttransplant levels of adaptive NK cells 
may provide biomarkers to evaluate the control of HCMV, with 
practical implications in the clinical management of the viral 
infection. Assessing the relation with other phenotypic features 
displayed at late stages of adaptive NKG2C+ NK cells differen-
tiation (e.g., CD57 expression and FcεRIγ chain loss) deserves 
attention. Furthermore, studies in larger cohorts are required 
to assess the relation of the adaptive NK cell response in KTR 
with the incidence of other viral infections, as well as with the 
risk of chronic graft rejection, cardiovascular disease, and cancer 
(48, 114). In this regard, the possibility that antibody-dependent 
activation of adaptive NK cells may participate in donor-specific 
alloantibodies (DSA)-mediated rejection is addressed in the next 
section.

NK CeLLS AND ALLOGRAFT ReJeCTiON

NK Cell Alloreactivity
Mature NK cells whose iKIR fail to recognize HLA-I alleles on an 
allograft are predicted to mediate cytotoxicity and pro-inflamma-
tory cytokine production, as long as activating NKR are engaged 
by ligands displayed on target cells. Some degree of KIR–ligand 
mismatching between donors and recipients is estimated to occur 

in 50–75% of HLA non-identical transplants, and several studies 
have addressed the impact of this variable in kidney transplant 
outcome (Figure  4A). On one hand, KIR–ligand mismatches 
were suggested to influence short-term outcome in KTR (115) 
and were associated with a reduced long-term graft survival in 
HLA-incompatible KTR (116), proposing a beneficial effect of 
NK cell-targeted immunosuppression. Conversely, KIR–ligand 
mismatch was reported by others to be irrelevant for predicting 
long-term allograft survival (117) and, in the same line, no effect 
on the risk of rejection was perceived after reduction of immuno-
suppressive therapy (118).

These apparently conflicting observations might be reconciled 
considering the implications of inhibitory NKR–MHC class I 
mismatch in other experimental and clinical transplant settings. 
Classical animal models of “F1-hybrid resistance” revealed a role 
of NK cells in rejection of allogeneic hematopoietic transplants, 
but not of other tissues grafts (119). In HSCT, donor NK cell-
mediated alloreactivity has been shown to potentially exert an 
antileukemic effect without promoting graft-versus-host disease 
(120). In the same line, adoptive immunotherapy with allogeneic 
NK cells in HSCT recipients has been proven a safe procedure 
(121, 122). Altogether these observations support that the NK cell 
alloreactive potential, determined by KIR–ligand mismatch, may 
have a negligible pathogenic impact in solid organ transplantation, 
unless engagement of activating NKR triggers NK cell effector 
functions. Accordingly, NK cell alloreactivity would be favored 
by stimuli promoting graft expression of activating NKR ligands 
(e.g., NKG2D-L). This situation may take place in the context of 
infections (e.g., HCMV) or T cell/DSA-mediated rejection reac-
tions, enhancing the pathogenic impact of these adverse events 
(Figure 4A). From a methodological standpoint, the genotypic 
prediction of KIR–ligand mismatching should be complemented 
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by a direct assessment of the frequencies of potential alloreac-
tive NK cells, using specific mAbs to discriminate homologous 
activating and iKIR as reported for HSCT (123).

Alloantibody-Dependent NK Cell 
Activation
Posttransplant donor-specific anti-HLA antibodies (DSA) are 
a major risk factor in kidney transplant, causing microvascular 
damage associated with humoral rejection. In addition to com-
plement activation, HLA-specific alloantibodies may trigger NK 
cells through CD16 to mediate ADCC and cytokine production 
(Figure  4B). Indications that NK cells contribute to chronic 
antibody-mediated rejection (ABMR) have been obtained in 
experimental models and analyzing kidney biopsies (124, 125). 
Consistent with a pathogenic role of NK cells, increased CD56+ 
cells have been observed in graft lesions from patients suffering 
ABMR. NK cell-associated gene expression has been associated 
with microvascular inflammation (126, 127), providing biomark-
ers with potential diagnostic/prognostic value (128–130). CD16A 
is also expressed by TCRγδ and some TCRαβ T lymphocyte 
subsets (131, 132). CD16+ TCRγδ T cells have been related with 
the response to posttransplant HCMV infection in KTR, and 
evidences supporting their involvement in ABMR have been 
reported (111, 133).

CD16 downregulation and expression of activation markers 
have been observed in circulating NK cells from KTR, likely 
reflecting IgG-dependent NK cell activation triggered by infec-
tious pathogens (e.g., HCMV) or DSA (134). In the same line, 
altered distributions of circulating NK cells have been associated 
with the presence of alloantibodies in KTR. DSA+ patients were 
reported to display lower proportions of the major CD56dim NK 
cell subset as compared with cases without anti-HLA antibodies 
(95). Increased proportions of CD56bright and CD56dim NKG2A+ 
cells, but not their absolute numbers, were observed in DSA+ KTR 
(135). The data suggest that alloantibody-mediated activation of 
NK cells via CD16 may promote their turnover, accounting for 
the imbalanced NK cell subset distribution.

This hypothesis predicts that CD56bright NKG2A+ CD16− 
NK cells should be spared from the effect of alloantibodies, 
consistent with their increased proportions in DSA+ KTR. On 
the other hand, the association of DSA with increased propor-
tions of CD56dimNKG2A+ NK cells suggests that engagement of 
CD94/NKG2A by HLA-E, conserved in all individuals, might 

also dampen the alloantibody effect on this subpopulation. 
Conversely, KIR–ligand mismatch would add to alloantibody 
activation of CD56dimNKG2A− KIR+ NK cells, synergizing with 
the pathogenic effects of DSA and accelerating their turnover. 
Given the oligoclonal expression by adaptive NKG2C+ NK cells 
of self-reactive KIR, preferentially specific for HLA-C molecules 
(63, 64), and their ability to mediate antibody-dependent effec-
tor functions (71, 73), it is likely that they may play a relevant 
pathogenic role in DSA-mediated graft rejection of KIR–ligand-I 
mismatched transplants.

In summary, consistent evidence has been obtained support-
ing a functional duality of NK cells in the context of kidney trans-
plantation, reflected by their positive involvement in the response 
to HCMV infection as opposed to their participation in graft 
rejection. Further studies integrating phenotypic, functional, and 
genetic analysis of NK cells should provide valuable insights on 
the pathogenesis of solid organ transplant complications, leading 
to the potential development of clinically useful biomarkers.
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