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Germinal center follicular T helper (GCTfh) cells are essential players in the differentiation 
of B cells. Circulating follicular T helper (cTfh) cells share phenotypic and functional 
properties with GCTfh cells. Distinct subpopulations of cTfh with different helper capa-
bilities toward B cells can be identified: cTfh1 (CXCR3+CCR6−), cTfh2 (CXCR3−CCR6−), 
and cTfh17 (CXCR3−CCR6+). Alterations in cTfh function and/or distribution have been 
associated with autoimmunity, infectious diseases, and more recently, with several 
monogenic immunodeficiencies. Common variable immunodeficiency (CVID) disease is 
the commonest symptomatic primary immunodeficiency with a genetic cause identified 
in only 2–10% of patients. Although a heterogeneous disease, most patients show a 
characteristic defective B cell differentiation into memory B cells or antibody-secreting 
cells. We investigated if alterations in CVID cTfh cells frequency or distribution into cTfh1, 
cTfh2, and cTfh17 subpopulations and regulatory follicular T (Tfr) cells could be related 
to defects in CVID B cells. We found increased percentages of cTfh exhibiting higher 
programmed death-1 expression and altered subpopulations distribution in smB− CVID 
patients. In contrast to smB+ patients and controls, cTfh from smB− CVID patients show 
increased cTfh1 and decreased cTfh17 subpopulation percentages and increased 
CXCR3+CCR6+ cTfh, a population analogous to the recently described pathogenic 
Th17.1. Moreover, Tfr cells are remarkably decreased only in smB− CVID patients. In 
conclusion, increased cTfh17.1 and cTfh1/cTfh17 ratio in CVID patients could influence 
B cell fate in smB− CVID patients, with a more compromised B cell compartment, and 
the decrease in Tfr cells may lead to high risk of autoimmune conditions in CVID patients.
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inTrODUcTiOn

Common variable immunodeficiency (CVID), the most common symptomatic primary antibody 
disorder in adults, is an enigmatic primary immunodeficiency (PID) characterized by hypogamma-
globulinemia, absent or impaired specific antibody production, and immune dysregulation. Patients 
suffer from respiratory and/or gut recurrent infections, although chronic gastroenteropathies, 
autoimmunity, and even malignancy, are also often present.
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Patients benefit from substitutive gammaglobulin therapy (1–
3). Genetic mutations and polymorphisms account only for 2% of 
CVID patients while for most of them, the underlying molecular 
defect remains unknown (4). Both T and B cells dysfunctions 
have been described in CVID patients. In spite of its heterogene-
ity, the most common defect to all patients is a failure of final 
B cell differentiation into memory B cells or antibody-secreting 
cells. Accordingly, patients have been classified depending on 
their number of naïve, non-switched and switched-memory B 
cells (5–7) in order to more accurately address the relationship 
between experimental findings and CVID phenotypes. For 
instance, a low percentage of memory B cells in CVID patients 
has been associated with a worse clinical presentation and poor 
response to vaccines (7, 8).

Protective immunity after infection or vaccination relies 
on the production of effective antibodies by B lymphocytes. 
Follicular helper T (Tfh) cells have been identified in the recent 
years as a CD4+ T cell subpopulation specialized in directing the 
maturation and differentiation of B cells in the germinal centers. 
Tfh cells were first described as a CXCR5 expressing population 
localizing in tonsillar follicles and supporting B cell maturation 
and immunoglobulin production (9, 10). CD4+CXCR5+ follicu-
lar T cells also express ICOS, programmed death (PD)-1, and 
secrete high levels of interleukin (IL)-21. The most important 
transcription factor for the generation of Tfh cells is Bcl-6 
(11–13). The difficulty to access to secondary lymphoid organs 
has hampered the study of Tfh cells in humans. The discovery 
of a circulating counterpart of this population has allowed 
investigating their relevance in health and disease. Although 
controversy still exists, this circulating Tfh (cTfh) population is 
characterized by a CD4+CXCR5+ phenotype, variable expres-
sion of CD40L, ICOS, PD-1, Bcl-6, CCR7, and IL-21 secretion. 
Heterogeneity exists among cTfh population. According to the 
expression of CXCR3 and CCR6, they can be classified into 
cTfh1 (CXCR3+CCR6−), cTfh2 (CXCR3−CCR6−), and cTfh17 
(CXCR3−CCR6+) that produce a different set of cytokines and 
whose differentiation relies on distinct transcription factors 
(14). Tfh2 and Tfh17, but not Tfh1, cells are able to help naïve 
B cells (14, 15).

Follicular helper T cells play a role in the pathogenesis of 
several diseases. Circulating Tfh cells are increased in a group of 
autoimmune diseases characterized by autoantibody production-
like systemic lupus erythematosus (16, 17), Type I diabetes mel-
litus (18), Sjögren syndrome (19), juvenile dermatomyositis (14), 
Guillain–Barré syndrome (20), or multiple sclerosis (21) among 
others.

The study of monogenic PIDs has evidenced a Tfh cells 
decrease in patients with hyper-IgM syndrome caused by muta-
tions in CD40L, ICOS-deficient patients (22), and XLA patients 
(23), all of them characterized by defects in B cell maturation and 
immunoglobulins production. Patients with hyper-IgE syndrome 
caused by STAT3 mutations show impaired antibody responses 
and are also deficient in circulating CXCR5+CD4+ cells (24). 
Moreover, not only the quantity, but also the quality of Tfh cells 
is altered in monogenic PIDs (25).

Another important evidence of the role of Tfh cells in antibody 
production comes from the study of HIV patients. Although there 

is an expansion of Tfh cells in HIV infected individuals, impaired 
generation of neutralizing antibodies is related to deficient Tfh 
help to B cells (15) whereas high frequency of CD4+PD1lowCX
CR3−CXCR5+ is related to broadly neutralizing antibodies to 
HIV (26). However, due to the differences in the selection of the 
patients sample and in the markers used to identify cTfh cells, 
controversy still exists.

The aim of this study was to evaluate cTfh cells and their 
subpopulations in CVID patients and relate the results to the 
distribution of memory B cell subpopulations.

MaTerials anD MeThODs

Patients
CVID patients (n = 34) were selected according to diagnostic cri-
teria of the European Society for Immunodeficiencies scientific 
group (27). Patients were classified into two groups according 
to the European consensus classification for CVID (EUROclass) 
(7) as (i) CVID patients with ≤2% of IgD−CD27+ (switched 
memory phenotype) B cells or smB−, and (ii) patients with >2% 
of IgD−CD27+ B cells or smB+. Patients with less than 1% B cells 
were excluded.

None of our studied patients had trauma, infections or received 
systemic steroids, standard immunosuppressive therapies, or bio-
logic therapies at least the 3 months previous to the time of study. 
CVID patients received intravenous gammaglobulin therapy 
every 21–28  days. Peripheral blood samples were collected 
before gammaglobulin replacement. Patient 23 was recruited 
at the time of diagnosis and he had not begun the treatment. 
Table 1 summarizes the patients’ age, gender, percentages of B 
cell subpopulations, autoimmune manifestations, and the pres-
ence of enteropathy. Table S1 in Supplementary Material depicts 
extended T CD4+ cell immunophenotype of CVID patients. Age- 
and sex-matched healthy blood donors (n = 37) were included 
as controls. The study was conducted according to the ethical 
guidelines of the 1975 Declaration of Helsinki and approved by 
CEIC (Balearic Islands Clinical Research Ethics Committee; IB 
2517/15) and written informed consent was obtained from all 
subjects.

isolation of Peripheral Blood Mononuclear 
cells (PBMcs), T cell sorting, and cell 
culture
Peripheral blood mononuclear cells were isolated from heparin-
ized blood by Ficoll density gradient centrifugation. PBMCs were 
resuspended in culture medium: RPMI-1640 supplemented with 
10% heat-inactivated fetal calf serum, glutamine (2  mM), and 
antibiotics (penicillin and streptomycin).

Peripheral blood mononuclear cells were cultured 
(1 × 106 cells/mL) in 96-well flat bottom plates and stimulated 
with phorbol myristate acetate (PMA; 20 ng/mL) and ionomycin 
(1µg/mL) (both from Sigma-Aldrich) in the presence of Brefeldin 
A (1µg/mL) (Sigma-Aldrich). Cultures were maintained 18 h at 
37°C in a 5% CO2 atmosphere.

CD4+CXCR5−CD25−CD127+ effector T cells (Teff), 
CD4+CXCR5−CD25highCD127low non follicular regulatory T 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TaBle 1 | age, gender, immunoglobulin levels, B-cells subpopulations, autoimmune manifestations, and enteropathy presence of cViD patients.

Patient age 
(years)

age at 
diagnosis 

(years)

sex (male/
female)

igg (mg/dl) iga (mg/
dl)

igM (mg/
dl)

cD19 
(%)

cD19+ (%) eUrO
class group

autoimmune 
manifestations

enteropathy

cD21 
(low)

igD+cD27− igD+cD27+ igD−cD27+

1 65 55 M 316 9 12 6 19 91 7 <1 smB− Hemolytic anemia –
2 33 20 M 82 <6 5 10 11 94 3 <2 smB− – –
3 33 21 F 351 20 <6 15 24 81 11 2 smB− – –
4 64 49 F 112 <6 <5 6 16 87 7 <1 smB− – –
5 64 52 M 77 <6 <4 2 26 86 7 <2 smB− – –
6 71 66 F 37 <6 <5 4 33 82 5 <1 smB− – –
7 42 36 M 85 <24 <18 6 13 89 7 <1 smB− Lichen planus –
8 31 25 F 330 107 96 12 10 92 5 <1 smB− Thrombopenia –
9 83 68 F 481 <7 52 16 16 84 5 2 smB− – –

10 33 30 F 164 <7 8 24 5 89 6 <2 smB− – +

11 77 67 F 323 98 <6 24 55 73 26 <1 smB− – –
12 27 22 M 316 <25 21 14 35 91 4 <2 smB− – –
13 52 46 F 397 126 22 16 5 83 15 <1 smB− – –
14 36 28 M 75 <25 <17 12 34 82 10 <2 smB− – +

15 32 16 M 461 <28 <17 17 17 87 7 <1 smB− – +

16 40 25 M 382 <6 13 2 NA 86 12 2 smB− Thrombopenia, 
neutropenia

–

17 33 15 M 229 <6 12 6 66 91 1 1 smB− Hemolytic anemia, 
thrombopenia

+

18 67 57 M 452 40 30 4 69 93 3 <1 smB− – –
19 29 14 F <7 <7 <5 5 67 79 16 <1 smB− – –
20 33 30 F 33 7 4 2 44 93 4 <1 smB− – +

21 45 40 F 772a <7a <5a 7 41 97 1 <1 smB− – –
22 42 29 F 7 <6 <4 2 NA 99 1 0 smB− Neutropenia –
23 28 28 M 13 <7 <5 5 4 93 5 1 smB− – +

24 71 58 M 445 <23 <17 16 6 76 15 5 smB+ Neutropenia, Cogan 
syndrome

–

25 48 36 F 288 32 14 20 6 55 13 17 smB+ – +

26 51 36 F 495 44 38 11 7 50 9 15 smB+ – –
27 37 29 F 578 <25 62 9 20 84 8 4 smB+ – –
28 86 72 F 253 26 <16 2 20 39 14 36 smB+ Vitiligo –
29 71 66 F 434 47 46 14 20 64 25 4 smB+ – –
30 15 13 F 471 <7 10 14 11 63 32 3 smB+ – –
31 65 50 F 327 73 30 20 5 70 15 9 smB+ Cutaneous lupus 

erythematosus

+

32 71 55 F 452 46 58 7 5 47 13 19 smB+ – –
33 44 40 F 387 <7 17 6 8 70 11 10 smB+ – –
34 63 42 F 480 <6 39 14 6 77 19 2 smB+ – –

Current age (years), age at diagnosis (years), gender (M, male; F, female), seric immunoglobulin levels (IgG, IgA, and IgM) before starting replacement therapy, percentage of peripheral blood B-cells (CD19+), percentages of CD21low, 
naïve (IgD+CD27−), unswitched memory (IgD+CD27+), and switched memory (IgD−CD27+) B-cells subpopulations (referred to total CD19+ B-cells), EUROclass classification, autoimmune manifestations, and enteropathy presence of 
CVID patients.
NA, not available.
aValues after replacement therapy.
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cells (Treg), and CD4+CXCR5+CD25highCD127low follicular 
regulatory T cells (Tfr) were sorted from PBMCs using a 
FACSAria Fusion sorter cytometer (Becton Dickinson) 
and resuspended in culture medium supplemented with 
0.01  mM β2-mercaptoethanol (Fluka BioChemika). Sorted 
Teff cells were labeled during 5  min at RT (25°C) with 1  µg/
mL CFSE (Invitrogen) following manufacturer’s instructions. 
5 × 104 CFSE-labeled Teff cells per well were cultured 4 days 
in 96-well round bottom plates coated overnight at 4°C with 
anti-CD3 1 µg/mL (UCHT1 clone; eBioscience) in phosphate-
buffered saline (PBS). To evaluate the inhibition of Teff prolif-
eration, unlabeled Treg and Tfr were added to the culture to a 
final volume of 150 μl/well. A CFSE dilution protocol was used 
to evaluate Teff cell proliferation.

Flow cytometry
Cell surface marker expression and intracellular cytokines were 
analyzed by flow cytometry using an Epics FC500 and Navios 
flow cytometers (Beckman Coulter). Data evaluation was done 
with the Kaluza software (Beckman Coulter).

A surface staining protocol was performed to analyze 
membrane antigen expression in B cells and cTfh cells. Briefly, 
100 µL of peripheral whole blood were incubated with differ-
ent combinations of fluorochrome-conjugated monoclonal 
antibodies 20 min at RT (25°C). Red blood cells were lysed and 
white cells fixed using TQ-Prep System (Coulter Corp.) before 
flow cytometry analysis. To evaluate B cells subpopulations and 
phenotypically classify CVID patients, combinations of the 
following antibodies were used: anti-CD19-ECD, anti-CD27-
PCy7 (both from Coulter Immunotech), anti-IgD-FITC (Dako), 
anti-CD21-FITC (Coulter Immunotech), and anti-CXCR5-
PE (R&D Systems). Different mixtures of anti-CD4-PCy5, 
anti-CD45RA-ECD, anti-PD1-PCy7, anti-CD127-FITC, anti-
CD25-PCy5 (all from Coulter Immunotech), anti-CXCR5-PE 
(R&D Systems), anti-CXCR3-FITC, and anti-CCR6-PCy7 
(GrupoTaper) antibodies were used to evaluate cTfh cells and 
their subpopulations.

An intracellular staining protocol was used to evaluate 
stimulation-induced cytokines expression in cultured cells fol-
lowing manufacturer’s instructions (IntraPrep Permeabilization 
Reagent from Beckman Coulter). Briefly, 2 × 104 cultured cells 
were harvested, stained 15 min at RT in the dark with a com-
bination of anti-CXCR5-PE (R&D Systems), anti-CD4-PCy7, 
and anti-CD3-ECD (both from Coulter Immunotech) or, alter-
natively, with anti-CXCR5-PE (R&D Systems), anti-CD3-PCy7, 
and anti-CD4-PCy5 (both from Coulter Immunotech). After 
surface staining, cells were washed with cold PBS, fixed with 
formaldehyde solution 15 min at RT in the dark, washed with 
cold PBS, and permeabilized with a saponine solution 20 min 
at RT in the dark. Intracellular staining was performed adding 
anti-INFγ-FITC (Coulter Immunotech) or anti-IL-17-Alexa 647 
(BD Pharmingen) within the last 15 min of the permeabiliza-
tion step. Finally, cells were washed, resuspended in PBS, and 
analyzed.

Foxp3 expression on PBMC and sorted T cells was evaluated 
by intracellular staining with a PE-conjugated mAb to Foxp3 

(Becton Dickinson) following the fixation/permeabilization 
set manufacturer’s instructions (eBioscience). Unspecific 
intracellular staining was tested with a PE-labeled mouse IgG1 
mAb (R&D Systems) as isotype control. Anti-CD127-FITC, 
anti-CD25-PCy5, and anti-CD4-PCy7 (all from Coulter 
Immunotech) were used as surface markers to identify the 
selected population, as described previously.

statistical analysis
Statistical analysis was performed using GraphPad Prism 
version 4.0 software. Data are expressed as mean values. The 
Mann–Whitney U-test was used to compare differences between 
CVID patients and controls. The Kruskal–Wallis test was used to 
compare differences between subgroups of CVID patients and 
controls. A p-Value less than 0.05 was considered statistically 
significant.

resUlTs

circulating Tfh cells are increased in 
cViD Patients
cTfh cells are identified in peripheral blood as CD4 T cells that 
co-express CXCR5 (28) (Figure 1A). We found a higher percent-
age of CD4+CXCR5+ T cells in CVID patients when compared 
to controls (15.71 vs. 10.79%; p  <  0.001) (Figure  1B). When 
smB− and smB+ patients were evaluated separately, differences 
were found between smB− patients and controls (17.23 vs. 
10.79%; p < 0.001), but neither between both groups of patients 
nor between smB+ patients and controls (Figure  1C). Three 
patients were studied at different time points and the percentages 
of CD4+CXCR5+ T cells were similar (patient 32 initial value: 
9.1%; after 24  months: 9.9%; patient 8 initial value: 33%; after 
27 months: 29%; patient 25 initial value: 16.7%; after 5 months: 
16.8%).

Several studies have shown that cTfh cells are contained 
within the memory CD45RA−CD4+ T cells (28) (Figure  1A). 
For this reason, we also evaluated the percentage of circulating 
CD4+CD45RA−CXCR5+ cells in CVID patients and controls. 
We confirmed a higher percentage of CD4+CD45RA−CXCR5+ 
in CVID patients when compared to controls (14.24 vs. 9.24%; 
p  <  0.001) (Figure  1D). These differences were higher when 
we compared smB− patients and controls (15.75 vs. 9.24%; 
p < 0.001). Again, differences were restricted to the smB− group 
(Figure 1E).

No differences were found between controls and smB− or smB+ 
CVID patients in the distribution of naïve (CCR7+CD45RA+), 
central (CCR7+CD45RA−), and effector (CCR7−CD45RA−) 
memory subpopulations on circulating CD4+CXCR5+ cells 
(Table S1 in Supplementary Material).

PD-1 expression is increased in cTfh and 
non-Follicular cD4 T cells from smB− 
cViD Patients
Since Tfh cells are characterized by a variable expression of 
PD-1, we also evaluated the presence of PD-1 on circulat-
ing follicular CD4+CD45RA−CXCR5+ and non-follicular 
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FigUre 1 | Percentages of cD4+cXcr5+ and cD4+cD45ra−cXcr5+ circulating(c) follicular helper T cells are higher in peripheral blood samples 
from common variable immunodeficiency (cViD) patients than controls. (a) Density plots of the percentage of CD4+CXCR5+ (left) and 
CD4+CD45RA−CXCR5+ (right) cells from a representative CVID patient (upper row) and control (lower row). (B) Differences (p < 0.001) between controls (open 
circles) and CVID patients (light gray circles). (c) Differences (p < 0.001) between controls (open circles) and smB− CVID patients (light gray circles). No differences 
were found between both groups of patients or between smB+ CVID patients (dark gray circles) and controls. (D) Differences (p < 0.001) between controls (open 
circles) and CVID patients (light gray circles). (e) Differences (p < 0.001) between controls (open circles) and smB− CVID patients (light gray circles). No differences 
were found between both groups of patients or between smB+ CVID patients (dark gray circles) and controls.
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CD4+CD45RA−CXCR5− T cells from CVID patients and controls 
(Figure 2A).

We found a higher percentage of PD-1-expressing cTfh cells in 
CVID patients compared to controls (14.71 vs. 7.69%; p < 0.001) 
(Figure 2B). These differences were also found when the expres-
sion of PD-1 was compared between smB− CVID patients and 
controls (17.46 vs. 7.69%; p  <  0.001) or smB+ CVID patients 
(17.46 vs. 8.97%; p < 0.05). We did not find differences between 
smB+ CVID patients and controls (Figure 2C). The expression 
of PD-1 on circulating CD4+CD45RA−CXCR5+ T from three 
CVID patients was similar when evaluated at different time 
points (patient 8 initial value: 9.9%; after 24 months: 7.3%; patient 
32 initial value: 23.9%; after 27 months: 24.8%; patient 25 initial 
value: 8.7%; after 5 months: 10.0%).

The percentage of PD-1-expressing circulating non-follicular 
CD4+CD45RA−CXCR5− T cells was also higher in CVID patients 
compared to controls (8.34 vs. 4.58%; p  <  0.05) (Figure  2D). 
Differences were also found between smB− CVID patients and 
controls (10.18 vs. 4.58%; p < 0.01), but not between both groups 
of CVID patients or between smB+ CVID patients and controls 
(Figure 2E).

The intensity of expression of PD-1 was also evaluated 
(Figure  2F). We found a higher intensity of PD-1 expression 
(gMFI) on cTfh cells from CVID patients compared to controls 
(0.95 vs. 0.67 gMFI; p <  0.001) (Figure 2G). These differences 

were also found when the levels of PD-1 were compared between 
smB− CVID patients and controls (1.06 vs. 0.67 gMFI; p < 0.001) 
or smB+ CVID patients (1.06 vs. 0.69 p < 0.01). We did not find dif-
ferences between smB+ CVID patients and controls (Figure 2H).

The expression of PD-1 was also higher on circulating non-
follicular CD4+CD45RA−CXCR5− T cells from CVID patients 
compared to controls (0.70 vs. 0.56 gMFI; p < 0.05) (Figure 2I). 
Differences were also found between smB− CVID patients and 
controls (0.78 vs. 0.56  gMFI; p  <  0.01), but not between both 
groups of CVID patients or between smB+ CVID patients and 
controls (Figure 2J).

increase of cTfh1 and Decrease of cTfh17 
effector cells in smB− cViD Patients
Different subsets of effector circulating CD4+CD45RA−CXCR5+ 
T cells exist that are characterized according to the expres-
sion of the chemokine receptors CXCR3 and CCR6: cTfh1 
(CXCR3+CCR6−), cTfh2 (CXCR3−CCR6−), and cTfh17 
(CXCR3−CCR6+) (Figure 3A). We evaluated if there were differ-
ences in the distribution of effector subpopulations in cTfh and 
non-follicular CD4+ cells from CVID patients and controls.

We found a higher percentage of cTfh1 cells in smB− CVID 
patients when compared to controls (31.69 vs. 23.40%; 
p < 0.05) (Figure 3B) and to smB+ CVID patients (31.69 vs. 
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FigUre 2 | Programmed death (PD)-1 expression on circulating cD4+cD45ra−cXcr5+ and cD4+cD45ra−cXcr5− cells is higher in peripheral blood 
samples from cViD patients compared to controls. (a) Density plots of percentage of PD-1 expression on CD4+CD45RA+CXCR5− (left), 
CD4+CD45RA−CXCR5− (middle), and CD4+CD45RA−CXCR5+ (right) cells from a representative CVID patient (upper row) and control (lower row). (B) Differences 
(p < 0.001) between controls (open circles) and CVID patients (light gray circles). (c) Differences (p < 0.001) between smB− CVID patients (light gray circles) and 
controls (open circles) or smB+ CVID (dark gray circles) (p < 0.05). No differences were found between smB+ CVID patients and controls. (D) Differences (p < 0.05) 
between controls (open circles) and CVID patients (light gray circles). (e) Differences (p < 0.01) between controls (open circles) and smB− CVID patients (light gray 
circles). No differences were found between both groups of patients or between smB+ CVID patients (dark gray circles) and controls. (F) Histograms of PD-1 gMFI 
on CD4+CD45RA+CXCR5− (left), CD4+CD45RA−CXCR5− (middle), and CD4+CD45RA−CXCR5+ (right) cells from a representative CVID patient (upper row) and 
control (lower row). (g–J) Differences of PD-1 gMFI expression corroborate differences found in percentages of PD-1 positive cells (B–e).
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21.00%; p  <  0.01) (Figure  3B), whereas the percentage of 
cTfh17 cells was significantly decreased in cTfh cells from 
smB− CVID patients when compared to controls (15.78 vs. 
23.24%; p  <  0.01) (Figure  3C). No differences were found 
when cTfh2 subpopulations were compared (Figure 3D). The 
cTfh1/cTfh17 ratio was significantly higher in smB− CVID 
patients when compared to controls (2.84 vs. 1.05; p <  0.01) 
or smB+ CVID patients (2.84 vs. 1.10; p < 0.05) (Figure 3E). 
Interestingly, those patients with the highest percentage of 
cTfh1 cells (patients 6, 19, 20, 22, and 23), all of them smB− 
CVID patients, had the lowest immunoglobulin levels at 
diagnosis (IgG < 40 mg/dl) (Table 1). However, these findings 
did not correlate with a higher incidence of autoimmunity and/
or enteropathy (Table 1).

When effector Th1, Th17, and Th2 non-follicular 
CD4+CD45RA−CXCR5− T cells subpopulations were evaluated, 
no differences were found between CVID patients and controls 
(Figures 3F–I).

A CXCR3+CCR6+ Th subpopulation that rivals with Th1 in 
INFγ production has been recently described as Th17.1 and 
identified in sarcoidosis and Crohn’s disease (29–32). We found 
an increase in the percentage of an analogous CXCR3+CCR6+ 
expressing Tfh population in the smB− group compared to 
controls (9.25 vs. 4.36%; p < 0.05) and to smB+ CVID patients 
(9.25 vs. 3.81%; p < 0.05), but not between smB+ CVID patients 
and controls (Figures 3A,J). No differences were found in Th17.1 
non-follicular CD4+CD45RA−CXCR5− T cells percentages 
between CVID patients and controls (Figure 3K).
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FigUre 3 | Distribution of effector Th1 (cXcr3+ccr6−), Th2 (cXcr3−ccr6−), Th17 (cXcr3−ccr6+), and Th17.1 (cXcr3+ccr6+) subpopulations on 
circulating cD4+cD45ra−cXcr5+ and cD4+cD45ra−cXcr5− cells in peripheral blood samples from cViD patients and controls. (a) Dot-plots of the 
percentage of CXCR3+CCR6− (lower right quadrant), CXCR3−CCR6− (lower left quadrant), CXCR3−CCR6+ (upper left quadrant), and CXCR3+CCR6+ (upper right 
quadrant) subpopulations on circulating CD4+CD45RA+CXCR5− (left), CD4+CD45RA−CXCR5− (middle), and CD4+CD45RA−CXCR5+ (right) cells from a 
representative CVID patient (upper row) and control (lower row). (B) Significantly higher percentage of CXCR3+CCR6− in cTfh cells from smB− CVID patients 
(p < 0.05) (light gray circles) compared to controls (open circles) and smB+ CVID patients (p < 0.01) (dark gray circles). (c) Significantly lower percentage (p < 0.01) 
of CXCR3−CCR6+ of cTfh cells from smB− CVID patients (light gray circles) compared to controls (open circles). No differences were found between smB+ CVID 
patients (dark gray circles) and controls or between both groups of patients. (D) No differences were found in the percentage of CXCR3−CCR6− cTfh cells between 
smB− (light gray circles) and smB+ (dark gray circles) or controls (open circles). (e) Higher cTfh1/cTfh17 ratio in smB− CVID patients (light gray circles) compared to 
controls (open circles) or to smB+ CVID patients (dark gray circles). No differences were found between controls (open circles) and smB− (light gray circles) or smB+ 
(dark gray circles) CVID patients, in the distribution of effector CXCR3+CCR6− (F), CXCR3−CCR6+ (g), and CXCR3−CCR6− (h) circulating non-follicular Th 
subpopulations, nor in the Th1/Th17 ratio (i). (J) Significantly higher percentage (p < 0.05) of CXCR3+CCR6+ in cTfh cells from smB− CVID patients (light gray 
circles) compared to controls (open circles) and smB+ CVID patients (p < 0.05) (dark gray circles). No differences were found between controls and smB− or smB+ 
CVID patients, in the distribution of effector CXCR3+CCR6+ circulating non-follicular Th cells (K).
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These parameters were evaluated again after 5 months in some 
patients and the percentages of the different subsets of effector 
circulating CD4+CD45RA−CXCR5+ T cells (cTfh1, cTfh2, and 
cTfh17) remained similar (data not shown).

inFγ and il-17 expression in cTfh cells 
from cViD Patients and controls
We studied if the alterations observed in the distribution of 
different effector cTfh cell subpopulations translated into the 
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FigUre 4 | Percentages of inFγ and interleukin (il)-17a-producing cD4+cXcr5+ and cD4+cXcr5− cells in peripheral blood samples from cViD 
patients and controls. (a) Dot-plots of the percentage of INFγ−producing CD4+CXCR5+ (left) and CD4+CXCR5− (right) cells from a representative CVID patient 
(upper row) and control (lower row). (B) Dot-plots of the percentage of IL-17A-producing CD4+CXCR5+ (left) and CD4+CXCR5− (right) cells from a representative 
CVID patient (upper row) and control (lower row). (c) Significantly higher percentage (p < 0.01) of INFγ−producing CD4+CXCR5+ cells in CVID patients (light gray 
circles) compared to controls (open circles). No differences were found in INFγ producing CD4+CXCR5− cells between CVID patients (light gray circles) and controls 
(open circles) (D). No differences were found in the percentage of IL-17A-producing CD4+CXCR5+ (e) or CD4+CXCR5− (F) cells between CVID patients (light gray 
circles) and controls (open circles).
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production of signature cytokines of each population. We 
evaluated the percentage of IFNγ or IL-17-producing cTfh and 
non-follicular CD4 T after stimulation of PBMC with PMA and 
ionomycin.

We found a higher percentage of IFNγ−producing cTfh in 
CVID patients than in controls (37.00 vs. 13.95%; p  <  0.01). 
IFNγ−producing non-follicular CD4+CXCR5− T cells were 
also increased in CVID patients in comparison to controls, 
although in this case differences did not reach statistical sig-
nificance (26.25 vs. 12.92%; p =  0.053) (Figures  4A,C,D). No 
differences were found in IL-17 production between CVID 
patients and controls, neither in cTfh nor in non-follicular 
CD4+CXCR5− (Figures 4B,E,F). Therefore, CD4+CXCR5+ and 

CD4+CXCR5− producing INFγ subpopulations were increased 
in CVID patients in agreement with the previously observed 
phenotypic results.

Follicular regulatory T cells and 
regulatory T cells are Decreased  
in smB− cViD Patients
We identified regulatory T (Treg) cells by flow cytometry as 
CD4+CD25highCD127low T cells and follicular regulatory T cells 
(Tfr) as CD4+CXCR5+CD25highCD127low T cells, respectively, as 
previously described (Figure 5A) (33). Foxp3-expressing cells are 
contained within the CD25highCD127low subpopulation of CD4+ 
cells (Figure 5B).
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FigUre 5 | Percentage of cD4+ cD25highcD127low (Treg) and cD4+cXcr5+cD25highcD127low regulatory follicular T(Tfr) cells are lower in peripheral 
blood from cViD patients than controls. (a) Gating strategy of Treg (CD4+CD25highCD127low) and Tfr (CD4+CXCR5+CD25highCD127low) and density plots from a 
representative CVID patient (upper row) and a healthy control (lower row). Panel (B) shows that Foxp3 positive cells are contained within the CD25highCD127low CD4 
cells. (c) Differences in percentage of Tregs between CVID patients (light gray circles) and controls (open circles) (p < 0.001) and (D) between smB− CVID patients 
(light gray circles) and controls (open circles) (p < 0.001). No differences were found between smB+ CVID patients (dark gray circles) and controls or between both 
groups of patients. (e) Differences in percentage of Tfr between CVID patients (light gray circles) and controls (open circles) (p < 0.01) and (F) between smB− CVID 
patients (light gray circles) and controls (open circles) (p < 0.001). No differences were found between smB+ CVID patients (closed circles) and controls or between 
both groups of patients.
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Several studies have shown that Treg are reduced in CVID 
(34). This regulatory T cell subpopulation was significantly 
decreased in our group of CVID patients compared to con-
trols (3.00 vs. 5.50%; p  <  0.001) (Figure  5C). The frequency 
of Treg cells was also reduced in smB− patients compared to 
controls (2.40 vs. 5.50%; p < 0.001), but not to smB+ patients. 
No differences were found between smB+ patients and controls 
(Figure 5D).

Moreover, we studied the Tfr cells, and we found a strikingly 
lower percentage of this subpopulation in CVID compared to 
controls (1.90 vs. 3.20%; p < 0.01) (Figure 5E). The percentage Tfr 
cells was also significantly decreased in smB− patients compared 
to controls (1.60 vs. 3.20%; p < 0.001), but not to smB+ patients. 
No differences were found between smB+ patients and controls 
(Figure 5F).

To confirm that Tfr cells were indeed regulatory T cells, we sorted 
Tfr and non-follicular Treg (Figures 6A,B) and evaluated their 
intracellular expression of Foxp3. Both sorted non-follicular Treg 
and Tfr expressed Foxp3 in contrast to sorted Teff cells (Figure 6C). 
To study their regulatory function, we evaluated the inhibition 
of proliferation of sorted Teff cells cultured with non-follicular 

Treg or Tfr (ratio Treg or Tfr/Teff 0:1 and 1:2). Figure 6D shows 
that both subpopulations inhibit proliferation of Teff cells. These 
results demonstrate that CD4+CXCR5+CD25highCD127low T 
cells express Foxp3+ and exert regulatory function as their non-
follicular CD4+CXCR5−CD25highCD127low counterparts, which 
validate the gating strategy.

DiscUssiOn

In the present study, we have found an increase in the percent-
age of cTfh (CD4+CXCR5+) cells in CVID patients, especially in 
those with a more compromised memory B cell compartment 
(smB− group). These cells express higher levels of PD-1 and are 
skewed toward a Th1 phenotype: cTfh1 (CXCR3+CCR6−) and a 
putative cTfh17.1 (CXCR3+CCR6+) are increased whereas cTfh17 
(CXCR3−CCR6+) are decreased. No differences were found in the 
cTfh2 (CXCR3−CCR6−) subpopulation. Moreover, CVID cTfh 
cells also produce higher levels of INFγ. cTfr cells were strikingly 
decreased in CVID patients as were Treg cells.

Follicular helper T cells are essential for the germinal center 
reaction (35) and the generation of high affinity, long-lived 
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FigUre 6 | Foxp3 expression and inhibitory function of sorted cD4+cXcr5+cD25highcD127low regulatory follicular T (Tfr) and non-follicular 
cD4+cXcr5−cD25highcD127low (Treg) cells. (a) Sorting strategy of Tfr and non-follicular Treg cells. (B) CD25 and CD127 expression of sorted Tfr (post-sort left, 
pink), Treg (post-sort center, blue), and CD4+CXCR5−CD25−CD127+ T effector (Teff) (post-sort right, gray) cells. (c) Histogram of Foxp3 expression of Tfr (pink), Treg 
(blue), and Teff (gray) cells. (D) Dot plots (left column) and histograms (right column) showing proliferation of Teff alone (upper row) or in the presence of Tfr at a 1:2 
Tfr/Teff (middle row) or Treg at a 1:2 Treg/Teff (lower row) ratio.
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antibody responses (36, 37). Studies of Tfh have been dampened 
in humans due to their location in secondary lymphoid organs. 
The cTfh population was identified as a surrogate memory coun-
terpart of lymphoid Tfh cells in peripheral blood (14). These cells 
are CXCR5+, but they express variable levels of other character-
istic markers of Tfh populations like PD-1 or ICOS. Moreover, 
functional heterogeneity exists among cTfh subpopulations: 
cTfh1, cTfh17, and cTfh2 (analogous to Th1, Th2, and Th17 cells) 
can be distinguished according to CXCR3 and CCR6 chemokine 
receptor expression. cTfh2 and cTfh17 cells are able to help naïve 
B cells to produce immunoglobulins via IL-21 whereas cTfh1 cells 
lack the capacity to help B cells (14).

Alterations in cTfh have been extensively associated with 
autoimmune disease, infectious disease, and more recently, with 
immunodeficiency. Increases of cTfh have been described in 
patients with systemic lupus erythematosus (19), rheumatoid 
arthritis (38), dermatomyositis (14), autoimmune thyroid disease 

(39), Sjögren’s syndrome (40), myasthenia gravis (41), multiple 
sclerosis (21), and other autoimmune diseases.

On the contrary, low frequencies of CD4+CXCR5+ cells have 
been described in several monogenic PIDs like ICOS deficiency 
(22), X-linked agammaglobulinaemia (23), STAT3 deficiency 
(24), and also IL10R, CD40L, and NEMO mutations (25). 
However, other studied PIDs with monogenic mutations like 
IFNGR1/2 deficiency, IL-21 or IL-21R deficiency, GOF STAT1, 
and LOF STAT1, SH2D1A, did not show any difference in the 
frequency of CD4+CXCR5+ cells (25).

Strikingly, we have found an increase of CD4+CXCR5+ cells 
in CVID patients. When patients were separated into smB− and 
smB+ patients, the difference was significant only for the smB− 
group indicating a relationship between the altered cTfh cells 
and the “compromised memory B cells generation.” Moreover, 
CD4+CXCR5+ cells from our smB− patients express higher 
levels of PD-1 than normal controls. Initially identified as a 
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molecule responsible for induction of cell death, PD-1 is now 
considered a dominant inhibitor of T cell effector responses 
important in the regulation of humoral immune responses 
(42–45). The increased PD-1 expression in cTfh cells from 
smB− patients may contribute to functional changes in this 
subpopulation.

Mutations in PIDs can affect not only quantity but also 
quality of Tfh cells decreasing their B cell cooperation ability 
(25). We have found a skewing toward cTfh1 phenotype in our 
patients, with increased production of INFγ and a decrease 
in cTfh17 cells especially in the smB− group. Our data are in 
agreement with previous studies published by Ma et  al. who 
found a cTfh1 skewing in several monogenic PIDs like LOF 
STAT3 and GOF STAT1 mutations, with a significant increase 
of CXCR3+ subpopulation and a consistent decrease of CCR6+ 
subpopulation, mirrored by a corresponding skewing of 
cytokines. Patients with these mutations present a defect in 
memory B cells maturation, among other characteristics, as 
do smB− CVID patients. Moreover, INFγ was mostly secreted 
by purified CXCR3+ and CXCR3+CCR6+ cTfh subpopulations, 
IL-17A/F and IL-22 were secreted mainly by CCR6+ cTfh cells, 
whereas all subpopulations were able to differentiate to IL-21-
producing cells. They also demonstrated that CCR6+ cells, 
diminished in our smB− CVID patients, were the most potent 
inductors of immunoglobulin production by co-cultured B 
cells. Thus, these mutations not only compromise the genera-
tion of cTfh subsets, preventing the differentiation of the most 
potent B cell helper cells (25).

Our results are also consistent with the fact that, although 
the presence of cTfh cells in humans correlate with antibody 
responses to influenza vaccination (46) and production of 
neutralizing antibodies in HIV (47), Cubas et al. (48) found that, 
even if present at normal numbers, cTfh in a subgroup of chronic 
aviremic HIV-infected patients, did not cooperate properly with 
autologous memory B cells in co-culture. Memory B cells from 
these patients produced less IgG and specific antibodies when 
co-cultured with autologous cTfh cells. This was apparently due 
to dysfunctional characteristics of the cTfh cells that showed a 
polarized Th1 phenotype and produced increased amounts of 
INFγ that negatively correlated with the production of IgG. In 
keeping with this, those smB− CVID patients in our cohort with 
the highest percentage of cTfh1 cells had the lowest immuno-
globulin levels at diagnosis.

The Tfh1 skewing in our CVID patients was maintained over 
time and not related to higher incidence of autoimmunity and/
or enteropathy in the smB− group compared to the smB+ group. 
In one of the patients (patient 23), the skewing was present at 
the time of diagnosis, before treatment with gammaglobulin 
was initiated, supporting the hypothesis that cTfh1 cells increase 
could play a role in CVID onset, rather than being a consequence 
of the disease progression.

Obeng-Adjei et  al. found that the inefficient acquisition 
of humoral responses to malaria in children is neither due to 
a deficiency in the generation and maintenance of memory 
Tfh cells nor to an altered distribution of Tfh cell subsets, but 
to the preferential activation of a Th1 polarized CD4+PD1+CX
CR3+CXCR5+ subpopulation during acute malaria infection. 

The increase in this peripheral blood subpopulation during 
natural infection does not correlate with the increase of plasma 
cells or the breadth or magnitude of P. falciparum-specific  
antibodies (49).

Apart from their skewed Tfh1 phenotype, cTfh cells from our 
smB− patients show an increase in CXCR3+CCR6+ analogous to 
the recently described Th17.1 subpopulation. These helper effec-
tor cells express and produce high levels of INFγ and have been 
found increased in Crohn’s disease (29) and in the lungs of the 
granulomatous disease (GD) sarcoidosis (31). Autoimmune and 
GDs are a frequent finding in CVID patients. Although still not 
clear, several cytokines including IL-1β, IL-12, and IL-23 have 
been implicated in the differentiation of this population (50). 
Consistently, we have previously found an increase of IL-12 in the 
sera of CVID patients (51), which could be related to the increase 
of this subpopulation. Moreover, Cambronero et al. reported an 
elevated IL-12 production by LPS-stimulated CVID monocytes 
accompanied by a raise of INFγ−producing T cells (52). We do 
not find a decreased production of IL-17 by cTfh cells in spite of 
the reduction of cTfh17 cells. This may be due to the fact that the 
CXCR3+CCR6+ cTfh subpopulation, increased in our patients, 
also produces IL-17 besides INFγ (25).

A high frequency of Tfh PD1+ cells was reported by Coraglia 
et al. in a subgroup of eight CVID patients characterized by the 
presence of GD and/or autoimmunity if compared to controls or a 
CVID group without GD or autoimmunity (53). Martinez-Gallo 
et al. found a high frequency of Tfh PD1+ cells and low frequency 
and function of Treg in a subgroup of CVID patients, related to 
the presence of autoimmunity and autoreactive B cells (54). In 
keeping with previous studies (34), we have also found a decrease 
in the percentage of Tregs in smB− CVID patients, but also and 
more important, a striking decrease in Tfr cells. However, we did 
not find differences in Treg or Tfr when patients were grouped 
according to the presence or absence of autoimmunity and/or 
enteropathy (data not shown). Tfr derive from Treg cells and are 
presumed to suppress germinal center reaction through their 
access to the follicles. Although they can inhibit both Tfh and B 
cells, their mechanism of action is complex and not completely 
understood. Tfr may suppress B cells at many stages of their dif-
ferentiation, even plasma cells (55), although the repercussion in 
the generation of high affinity antibodies is still controversial. The 
decrease in Treg and Tfr might be directly or indirectly related 
to the failure to generate of a normal B cell compartment in the 
smB− CVID group.

In summary, the combination of a skewed Tfh response and a 
decrease in the Tfr population may compromise the generation of 
a functional B cell compartment and efficient humoral response 
in smB− CVID patients.
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