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CD4+ T cells have been and are still largely regarded as the orchestrators of immune 
responses, being able to differentiate into distinct T helper cell populations based on 
differentiation signals, transcription factor expression, cytokine secretion, and specific 
functions. Nonetheless, a growing body of evidence indicates that CD4+ T cells can also 
exert a direct effector activity, which depends on intrinsic cytotoxic properties acquired 
and carried out along with the evolution of several pathogenic infections. The relevant role 
of CD4+ T cell lytic features in the control of such infectious conditions also leads to their 
exploitation as a new immunotherapeutic approach. This review aims at summarizing 
currently available data about functional and therapeutic relevance of cytotoxic CD4+ 
T cells in the context of viral infections and virus-driven tumors.
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CD4+ T CeLL LiNeAGe DeveLOPMeNT AND PLASTiCiTY

Thymic development of T cells clearly distinguishes two different fates for the MHC class 
II-restricted CD4+ T helper (Th) and the MHC class I-restricted CD8+ cytotoxic T cell lineages 
(1). However, it is now widely believed that CD4+ T cells can also exert cytolytic activity beside 
the helper function, as demonstrated by in vitro (2, 3) and in vivo evidence (4–9).

The main role of CD4+ T cells is to indirectly orchestrate the immune response by differentiating 
into distinct Th cell populations. These subsets are characterized by specific differentiation signals, 
expression of distinct master transcription factors, secretion of signature cytokines, and specific 
functions (10–12). The first functional diversification proposed, identified, and separated Th1 from 
Th2. Th1 cells are induced by interleukin (IL)-12, express T-bet, and target intracellular pathogens 
through the release of interferon (IFN)-γ. Conversely, Th2 lymphocytes are stimulated by IL-4, 
are characterized by GATA-3 expression and IL-4 production, and play a critical role in fighting 

Abbreviations: APC, antigen-presenting cells; CMV, cytomegalovirus; CTL, cytotoxic T lymphocytes; EBV, Epstein–Barr 
virus; gB, glycoprotein B; HBV, hepatitis B virus; HBcAg, hepatitis B core antigen; HCC, hepatocellular carcinoma; HCV, 
hepatitis C virus; HIV, human immunodeficiency virus; HPV, human papillomavirus; IAV, influenza A virus; LCL, lympho-
blastoid cell lines; LCMV, lymphocytic choriomeningitis virus; MCMV, murine cytomegalovirus; miRNA, microRNA; PTLD, 
posttransplant lymphoproliferative disease; Runx3, Runt-related transcription factor 3; TCR, T-cell receptor; Th, T helper; 
ThPOK, Th-inducing BTB/POZ domain-containing Kruppel-like zinc-finger transcription factor; Treg, regulatory T cells.
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extracellular parasites (13–15). During the years, several other 
functionally distinct subsets of helper CD4+ T cells have been 
identified and characterized. Th17 cells control fungi and extra-
cellular bacteria through the release of IL-17 and IL-22 (16, 17). 
Follicular helper T cells reside in B cell follicles and are essential 
for the generation of B cell memory (18, 19). Th9 are involved in 
allergic asthma (20), whereas Th22 act in skin immune defense 
(21). Finally, regulatory T cells (Treg) represent an heterogeneous 
population that plays a key role in mediating peripheral tolerance 
and include naturally occurring Treg, Type 1 Treg, and Th3 cells 
(22–24). The modulatory activities of Type 1 Treg are mainly 
mediated by TGF-β, but seem to depend also on specific cell-
to-cell interactions. This interplay results in the selective killing 
of myeloid antigen-presenting cells (APC) through a mechanism 
depending on granzyme B and perforin (HLA class I-mediated) 
(25), suggesting a direct activity of CD4+ T lymphocytes against 
target cells.

Similarly, CD4+ cytotoxic T lymphocytes (CD4+ CTL) have 
been described for their direct contribution to control infections 
and malignancies as being capable of lysing class II-expressing 
targets (10). Initially considered as an in vitro artifact (2, 3), CD4+ 
CTL have been isolated in mice and humans in various pathologic 
conditions, including viral infections [human immunodeficiency 
virus (HIV) 1, influenza virus, cytomegalovirus (CMV), and 
Epstein–Barr virus (EBV)], autoimmune and autoinflammatory 
diseases (rheumatoid arthritis, ankylosing spondylitis), and 
malignancies (B cell chronic lymphocytic leukemia) (5–9, 26), 
as well as after vaccination (27, 28). While in healthy individuals 
the percentage of CD4+ CTL hardly exceeds 2% of total periph-
eral CD4+ T cells, they are markedly increased in the presence 
of chronic viral infections, reaching in some HIV-1-infected 
individuals up to 50% of the CD4+ T cells and exhibiting a clear 
cytotoxic potential against viral antigens (6, 26, 29, 30). In vitro 
experiments demonstrated that the cytotoxic ability of these 
effectors is not conferred by soluble mediators, but rather by a 
direct cell-to-cell contact (28). Originally assimilated to the more 
classical CD4+ T cells, CD4+ CTL display distinct surface mark-
ers and functional properties that relate them to Ag-experienced 
end-stage differentiated CD4+ T cells (6).

Intriguingly, it is becoming increasingly clear that belonging 
to the above-described differentiation lineages is not an irre-
versible program in CD4+ T cell development. Indeed, recent 
evidence indicates that some CD4+ T cells maintain a certain 
degree of plasticity, which allows the acquisition of characteris-
tics of alternative lineages upon antigen restimulation (24, 31). 
T-cell stability and plasticity are regulated by different factors 
such as cellular conditions (cytokines and costimulatory mol-
ecules), transcriptional circuitries, and chromatin modifica-
tions (32). Since the expression of a master regulator may be 
transient or dynamic, it would be more appropriate to consider 
the levels, ratios, and context of expression rather than the mere 
presence/absence of transcription factors as they could change 
during the course of immune stimulation (11). Moreover, the 
interplay between lineage-specifying transcription factors, 
including T-bet (Th1), GATA-3 (Th2), ROR-γt (Th17), and 
FoxP3 (Treg), which are frequently co-expressed, contributes 
to determine the final outcome of the gene expression profile of 

CD4+ T cells (33). T-cell differentiation and plasticity are also 
controlled by several microRNA (miRNA), the “immunomiRs,” 
involved in T cell thymic development (miR-181a and miR-150), 
activation (miR-21, miR-155, and miR-17~92), or functional 
differentiation (miR-126 and miR-146a) (34, 35). Epigenetic 
processes are also involved in T-cell plasticity because they 
facilitate hereditable and stable programs of gene expression 
while preserving the possibility to be modified in response to 
environmental changes. For example, DNA methylation and 
histone deacetylation dampen the expression of both Th1- and 
Th2-specific cytokines (36) and cytosine methylation controls 
CD4 expression, which is silenced in CD8+ T cells and stably 
expressed in CD4+ T cells (37). The notion of CD4+ T cell plas-
ticity, which clarifies that CD4+ T cell differentiation states are 
not definitive (12), challenges the concept of irrevocable CD4 
versus CD8 lineage commitment (38). This concept legitimizes 
the hypothesis that, in response to chronic or strong antigen 
stimulation, mature CD4+ T cells can be able to switch off their 
expression of the helper T cells master regulators and differenti-
ate into functional CTL (39).

TRANSCRiPTiONAL FACTORS iNvOLveD 
iN THe ACQUiSiTiON OF CYTOLYTiC 
ABiLiTY BY CD4+ T CeLLS

During thymic development, the CD4+ versus CD8+ lineage com-
mitment from the common CD4+CD8+ thymocyte precursors is 
critically controlled by key transcription factors. The Th-inducing 
BTB/POZ domain-containing Kruppel-like zinc-finger tran-
scription factor (ThPOK) suppresses the cytolytic program in 
MHC class II-restricted CD4+ thymocytes (Figure 1, left panel). 
On the contrary, in MHC class I-restricted precursor cells, the 
Runt-related transcription factor 3 (Runx3) opposes ThPOK 
and promotes the lineage commitment of CD8+ cytolytic T lym-
phocytes (CD8+ CTL) (40). It is important to underline that this 
functional programming coincides but does not depend on the 
MHC restriction or expression of the co-receptor CD4 or CD8αβ, 
but it is rather controlled by the activity of these key transcription 
factors (39).

On this assumption, it was recently demonstrated that 
through a unique mechanism of plasticity at postthymic level, 
mature CD4+ Th cells can convert themselves to cytotoxic MHC 
class II-restricted effectors at the expense of becoming inflam-
matory or immunosuppressive cells, turning off ThPOK expres-
sion (39, 40), as shown in the right panel of Figure 1. The authors 
identified in the ThPOK silencer the transcriptional switch 
that terminates ThPOK transcription, which in turn favors the 
derepression of the CTL program in mature CD4+ effector cells, 
leading to the acquisition of the cytolytic potential (39). The 
repressive activity of the ThPOK silencer, which is suppressed 
by the same ThPOK, is activated by the zinc-finger transcription 
factor MAZR (also called PATZ1 or Zfp278) (41) that, in turn, 
functions as a negative regulator of ThPOK (39). MAZR seems 
to act by directly binding to ThPOK silencer, even though the 
involvement of other transcription factors cannot be excluded 
(41) (Figure 1, right panel).
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FiGURe 1 | Main phenotypic features and transcriptional pathways involved in the differentiation of CD4+ T helper (Th) cells into CD4+ cytotoxic 
T lymphocytes (CD4+ CTL). A chronic stimulation in the presence of inflammatory conditions may favor the expression of genes responsible for a cytotoxic T 
lymphocytes (CTL) fate for CD4+ T cells as Runt-related transcription factor 3 (Runx3) and Eomesodermin (Eomes), at the expense of genes usually expressed by 
CD4+ Th, as Th-inducing BTB/POZ domain-containing Kruppel-like zinc-finger transcription factor (ThPOK) and GATA3. Therefore, CD4+ CTL express higher levels 
of Fas ligand (FasL) compared to CD4+ Th, cytotoxic granules with perforin and granzyme, and the degranulation marker CD107a. The particular phenotype reflects 
a highly differentiated memory cell, expressing typical NK markers, and equipped to migrate to peripheral tissues through chemokine receptors.
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Studies performed in the gut mucosa revealed that most 
CD4+ intraepithelial lymphocytes show modest expression of 
ThPOK, while expressing high levels of Runx3. These cells lost 
their differentiation into the Th17 subset and their colitogenic 
potential, avoiding the excessive activation of an inflammatory 
response in the intestine (42). Runx3 may thus intervene in 
the suppression of both ThPOK expression and Th17 differen-
tiation, whereas it induces an increased expression of Tbx21 
mRNA, which encodes for T-bet (42). This transcription factor, 
together with Eomesodermin also known as T-box brain protein 
2, Trb2, encoded by the EOMES gene, critically controls the 
effector functions of CTLs. In particular, in vitro experiments 
demonstrated that the introduction of Eomesodermin alone is 
sufficient to convert the functions of fully differentiated Th cells 
toward those of CTL. Ectopic expression of this transcription 

factor leads to a decrease in CD154 (namely the CD40 ligand) 
upregulation, is pivotal for helper function (Figure 1, left panel), 
and elicits perforin expression and Fas ligand (FasL) upregula-
tion (Figure 1, right panel). Interestingly, the cytolytic activity of 
Eomesodermin transfectants appeared more efficient than that 
of perforin-transfected cells, indicating that Eomesodermin 
may play a critical role in the activation of granule exocytosis 
pathway (43). Eomesodermin expression is strictly regulated by 
Runx3 and ThPOK, which are, respectively, responsible for the 
induction and the suppression of its expression in CD4+ T cells 
(43) (Figure 1, right and left panels, respectively). The enforced 
expression of Eomesodermin in CD4+ T cells induces a 10–100 
times higher expression of cytotoxic genes such as perforin and 
granzyme B, if compared to naive CD4+ T cells, even if much 
lower than in CD8+ effector cells (44). It is still not clear whether 
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the acquisition of cytotoxic gene expression implies the cessa-
tion of ThPOK expression or antagonism of its function (37). In 
Th2 cells, Eomesodermin, which is highly expressed in memory 
cells but downregulated in IL-5-producing effectors, interacts 
with GATA-3 preventing its binding to IL-5 promoter (45). 
GATA-3 is a crucial transcription factor already in early CD4+ 
T cell lineage differentiation acting upstream of ThPOK (1, 46), 
and it is mutually expressed with Runx3 (40). Since GATA-3 
binds to ThPOK locus (Figure 1, left panel) and likely relieves 
Runx-dependent ThPOK repression (47), its down modulation 
could be also involved in the CD4+ T cells acquisition of cytolytic 
potential controlled by Runx3 and Eomesodermin expression 
(Figure 1, right panel).

CD4+ CTL appear thus distinct from Th1 cells, even though 
their differentiation could follow a Th1 developmental pathway, 
with IL-12 contributing to granzyme B and perforin induction (28, 
48). In this context, in a mouse model of melanoma, the CD134 
(OX40) and CD137 (4-1BB) costimulation as immunotherapy 
in the presence of IL-2, imprinted a cytotoxic phenotype relying 
on Eomesodermin, on both Ag-specific and bystander CD4+ 
Th1 cells (49). Similarly, CD4+ T cells with cytotoxic potential 
are specifically induced at the site of infection during influenza 
virus infection. The development of these CD4+ CTL seems to 
depend on the cooperation of the STAT2-dependent type I IFN 
signaling and the IL-2/IL-2 receptor-α pathway, which induce the 
T-bet and Blimp-1 transcription factors (50). The transcriptional 
repressor Blimp-1 favors the binding of T-bet to the promoters 
of cytolytic genes as granzyme B and perforin, independently 
of its DNA binding/repressor activity. Blimp-1 likely acts also 
by repressing other repressors of the granzyme B and perforin 
genes, such as miRNA targeting these genes, thus favoring their 
expression (28, 50) (Figure 1, right panel).

DiFFeReNTiATiON MARKeRS, 
LOCALiZATiON AND ACTivATiON 
OF CD4+ CTL

The acquisition of cytotoxic potential in CD4+ T cells is 
probably dependent on a postthymic differentiation process 
characterized by the sequential attainment of lytic granules 
with granzymes and perforin and the parallel loss of CD27 
and CD28 surface expression that identify them as highly 
differentiated, end-stage cells resulting from chronic stimula-
tion (6, 26, 51). Interestingly, the ability to acquire cytotoxic 
activity by conventional CD4+ T cells seems to be influenced 
by both Treg and CD8+ T cells. Indeed, in a transgenic mouse 
model, Treg depletion significantly increased the production of 
cytokines and granzyme B in virus-specific CD4+ T cells, but 
did not affect the CD4+ T-cell-mediated MHC class II-restricted 
cytotoxicity, which was clearly enhanced only after CD8+ T cells 
depletion (52). This means that CD4+ CTL could play a critical 
role in chronic infection when cytotoxic CD8+ T cells become 
functionally exhausted (52).

In different infections, virus-specific CD4+ T cells have been 
described with distinct differentiation phenotypes, with CMV-
specific CD4+ T cells more differentiated than CD4+ T cells 

recognizing influenza virus, hepatitis C virus (HCV), EBV, and 
HIV-1 (26). Indeed, in  vivo models of influenza revealed the 
presence of CD4+ T cell-mediated cytotoxicity also in response 
to acute infection and showed the presence of both CD27+ and 
CD27− CD4+ granzyme+ T cells in the lung, while chronic infec-
tion with γ-herpes virus may further differentiate CD4+ CTL to 
CD27− cells (10). CD4+ CTL generated in mouse models also 
show an increased expression of the CD43 activation marker (10). 
The high expression of the CD11a and CD11b integrins, and the 
RO and RB CD45 isoforms (but not the RA) usually observed 
in CD4+ CTL, further supports their belonging to the memory 
pool of CD4+ T cells (28, 30) (Figure  1, right panel). Usually, 
CD4+ CTL do not show activation or proliferation markers, 
being mainly CD38−, CD69−, HLA-DR−, and present high levels 
of Bcl-2 and a weak staining for the active proliferation marker 
Ki-67 (6, 39, 51), suggesting a non-activated phenotype and very 
low turnover as long-lived cells, at steady state. Notably, Mucida 
and colleagues reported a higher expression of CD69 in CD4+ 
CTL compared to CD4+ Th cells and related this feature to strong 
and repeated activation signals (39).

As shown in the right panel of the Figure  1, commonly 
expressed markers in CD4+ CTL also include CD57 and NK 
receptors, such as the killer immunoglobulin-like receptor 
CD158j, KARAP/DAP12 (killer cell activating receptor-
associated protein/DNAX activating protein of 12  kDa), and 
the killer lectin receptor NKG2D (but NK/NKT-specific mark-
ers as CD16, CD56, and CD161 are absent) (51), as well as the 
degranulation marker CD107a (LAMP-1) (39). Another typical 
marker predominantly expressed on activated CD8+ T cells and 
NK/NKT cells was observed in a small fraction of CD4+ T cells: 
the cytotoxicity-related, MHC class I-restricted, T cell-associated 
molecule CRTAM. The unique population of CRTAM+CD4+ 
T cells was observed in mucosal tissues and inflammatory sites 
and may likely represent precursors of CD4+ CTL (53).

Conversely, CD4+ CTL lack CCR7 and CD62L expression, 
which precludes their migration to lymph nodes, although 
these cells are equipped to migrate to peripheral tissues through 
chemokine receptors as CCR5, CXCR3, and CX3CR1 (51) 
(Figure 1, right panel).

Interestingly, phenotypic variations of CD4+ CTL can be 
observed also according to the anatomic sites in which these 
cells develop. For example, the receptor for epithelial cadherin 
CD103 appears highly expressed only in CD4+ CTL generated 
in the lungs of influenza-infected mice (54). The environment of 
the lung is probably better suited for CD4+ CTL differentiation 
and activity, if compared to draining lymph nodes where CD4+ 
T cells do not express markers of cytolytic potential (28, 50). 
Similarly, the differentiation in cytotoxic effectors could also 
take place for CD4+ T cells migrating to the intestinal tissue 
and particularly to the intraepithelial compartment (42). The 
road map favoring this differentiation in the gut is different 
from that available in the setting of the thymus for CD8+ CTL 
and may be probably related to the presence of commensal 
microflora, as CD4+ CTL are absent in germ-free mice (38, 39). 
Both the lungs and gut are thoroughly exposed to environmental 
cues, which favor immune activation and chronic stimulation 
of lymphocytes, key factors for CD4+ CTL differentiation and 
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activation, together with inflammatory conditions (26, 30, 40) 
(Figure  1).

The aforementioned environmental conditions, in which 
CD4+ CTL usually develop, include several cytokines directly 
responsible for the acquisition of cytolytic potential by CD4+ 
T cells. IL-15 is one of the candidates as it is present at abnormally 
elevated levels in several diseases showing increased numbers of 
CD4+ CTL, including rheumatoid arthritis and HIV-1 infection 
(6). In agreement with this observation, in  vitro short-term 
incubation with IL-15 increased the number of CD4+ T cells 
expressing cytotoxic markers in PBMCs of both healthy donors 
and HIV-1-infected individuals (6). At steady state, CD4+ CTL 
appear immunologically quiescent. In addition to inflamma-
tory conditions, their activation also requires the simultaneous 
stimulation with cognate antigen at low doses in the presence of 
APC (39, 55). Beyond IL-15, IL-2 also seems to play a pivotal role 
in the induction of cytotoxicity ability in CD4+ T cells. Indeed, 
strong IL-2 signals acting through Jak3 and STAT5 are necessary 
to induce in vitro granzyme B and perforin in CD4+ T cells (56). 
In addition, higher amounts of the type I IFN IFN-α and pro-
inflammatory cytokines IL-6 and TNF-α, extend IL-2 signaling 
and optimize CD4+ CTL generation (28). Also IL-12 may con-
tribute to this process by increasing the expression of perforin 
and granzyme B through the activation of STAT4, whereas IL-4 
activates STAT6 and inhibits the cytotoxic activity of in  vitro 
generated CD4+ CTL (54).

MeCHANiSMS OF ACTiON  
ReSPONSiBLe FOR THe CYTOLYTiC 
ACTiviTY OF CD4+ CTL

The cytolytic activity of CD4+ CTL is mainly mediated by two 
major mechanisms of action: the exocytosis of cytotoxic granules, 
as perforin, granzyme B, and granulysin, and the Fas-dependent 
pathway. Both require a cell–cell direct interplay and T-cell 
receptor (TCR)/MHC/peptide interaction, which trigger cell 
degranulation in the first case and FasL upregulation in the 
second pathway (30, 51). The two mechanisms are not mutually 
exclusive, but rather appear to depend on external stimuli or envi-
ronmental circumstances. High levels of peptides and absence 
of IL-2 stimulate the Fas:FasL mechanism, whereas low peptide 
doses and addition of exogenous IL-2 are required to induce 
perforin-mediated cytotoxicity (10). In the majority of cases, 
CD4+ CTL probably use the perforin-dependent mechanism to 
induce apoptosis in target cells, since these effector T cells develop 
mainly in the presence of IL-2 and low peptide doses (26, 51, 53). 
Perforin and granzyme B pathways are in some cases, as during 
influenza A virus (IAV) infection, the only cell killing mechanisms 
used by CD4+ CTL (28). The two mechanisms of action seem to 
be differentially employed depending on CD4+ CTL functional 
role. In particular, the Fas:FasL pathway is mainly implicated in 
CD4+ CTL ability to downregulate the immune response. Indeed, 
antigen-presenting B cells express high levels of FasL on their sur-
face and are particularly sensitive to the Fas-mediated cytolytic 
pathway. On the contrary, perforin- and granzyme B-mediated 
cytotoxicity is involved in response to several viruses, as HIV-1, 

CMV, EBV, HSV, and influenza, and against B cell lymphocytic 
leukemia. On the other hand, granulysin is primarily used in case 
of mycobacterial and fungal infections (10). However, in all these 
circumstances, CD4+ CTL can also use Fas:FasL as a compensa-
tory mechanism when IL-2 is limiting (48).

A few papers described other cytotoxicity mechanisms 
potentially employed by CD4+ CTL, including the TNF-related 
apoptosis-inducing ligand pathway (57), and the binding between 
CD154 (CD40L) expressed on T cells and CD40 on target cell sur-
face. The latter may mediate cytolytic activity after immunization 
with a recombinant protein antigen associated to a TLR4 agonist 
(GLA-SE) (27).

To date, the overall functional activity of CD4+ CTL has been 
considered markedly weaker than the cytolytic capacity of CD8+ 
T cells. Several factors may underlie this assumption. Indeed, 
MHC class II is expressed by half of target cells, and the functional 
avidity of CD8+ T cells is 1,500-fold higher than that of CD4+ 
T cells. Thus, when adjusting CD4-mediated cytotoxicity for 
effector:target ratio, precise specificities, and functional avidities, 
the only difference between CD4+ and CD8+ T cells is the slightly 
delayed killing kinetics of CD4+ CTL (58). Interestingly, when 
measuring secreted amounts of granzyme B through ELISpot or 
ELISA assays, there are no relevant differences between activated 
memory CD4+ T cells and memory CD8+ T cells, thus demon-
strating that CD4+ T cells can be major sources of extracellular 
granzyme B (59).

CYTOLYTiC CD4+ T CeLLS AND 
viRAL iMMUNiTY

Overall, CD4+ CTL appear to be involved in the recognition 
and the elimination of virus-infected cells in the manifold 
response activated by the immune system during viral infections. 
Accordingly, in the following sections, we described the contri-
bution of CD4+ CTL to the immune response against different 
viruses. As summarized in Figure 2, for each virus, we reviewed 
the current literature mainly with respect to the antigens recog-
nized by these effectors, the selected tropism for virus-infected 
target cells, the mechanisms of lysis differentially involved, and, 
when possible, vaccinations and immunotherapeutic strategies 
exploiting CD4+ CTL responses (Table 1).

During viral infections, the pivotal role of the immune sys-
tem, through the synergistic action of both innate and adaptive 
immune cells, is to prevent, control, and respond to several 
viropathogenic processes. Specific antiviral immunity has been 
traditionally associated with the T-cell compartment, and, for 
long time, direct cytolytic activity against virus-infected cells has 
been solely assigned to CD8+ CTL (73–75).

Historically, cytolytic CD8+ T cells have been recognized as 
the major contributors to the control of acute and chronic viral 
infections even though, in the last decade, many studies described 
the presence of activated CD4+ T cells in the peripheral blood of 
HIV-1-, CMV-, and EBV-infected patients (76–78). Indeed, given 
the fact that CD8+ CTL are often unable to efficiently control viral 
replication, the involvement of alternative immune pathways 
should not surprise. Moreover, different viral immune escape 
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TABLe 1 | vaccinations and immunotherapeutic approaches exploiting cytotoxic CD4+ T cell responses.

virus Host vaccinations and immunotherapeutic strategies Reference

IAV Human Epitope-based (IAV-derived CD8+ and CD4+ T cell epitopes) universal influenza vaccine (60)

CMV Human, in vitro model Recombinant CMV glycoprotein B subunit vaccine (61)
Mouse MCMV peptide vaccination in immunocompetent mice (62)
Mouse TCR transgenic mice able to recognize a MCMV-specific CD4+ T cell epitope within M25 protein (63)

HIV Rhesus macaques DNA vaccination from env- and nef-deleted simian-human immunodeficiency virus (64)
Human Phase III RV144 Thai trial; CD4+ T cell responses against the V2 region of the envelope protein (65)

EBV Mouse EBV-specific bulk CD4+ T cell cultures against a murine model of PTLD (66)
Human, in vitro model LMP2a RNA-transfected dendritic cells for the treatment of EBV-positive Hodgkin disease (67)
Human, in vitro model EBNA1-specific CD4+ T cells against EBV-carrying natural killer and T cell lines from patients with chronic 

active EBV infection
(68)

Human, in vitro model EBV latency II-derived peptides (EBNA1, LMP1, and LMP2) against EBV latency II malignancies (69)
Human, in vitro model HLA II LMP1-derived candidate peptides vaccination against natural killer lymphoma cells (70)
Human, in vitro model and mouse HLA II promiscuous peptide cocktail vaccine against EBV latency II malignancies (71)

HPV Human Long peptide vaccination against HPV-16 for vulvar intraepithelial neoplasia (72)

IAV, influenza A virus; CMV, cytomegalovirus; MCMV, murine cytomegalovirus; TCR, T-cell receptor; HIV, human immunodeficiency virus; EBV, Epstein–Barr virus; PTLD, 
posttransplant lymphoproliferative disease; LMP, latent membrane protein; EBNA, Epstein–Barr nuclear antigen; HPV, human papillomavirus.

FiGURe 2 | Relevant cytotoxic mechanisms exerted by CD4+ cytotoxic T lymphocytes (CD4+ CTL) against virus-infected cells. During viral infections, 
activated CD4+ CTL are able to specifically kill infected/dying targets, through the recognition of virus-derived peptides presented on MHC class II molecules. The 
figure displays the essential target cells from different organs and tissues, depending on viral tropism (i.e., cervical, respiratory and oropharyngeal epithelium, liver 
tissue), and highlights the main cytolytic granules and cytokines secreted by CD4+ CTL in response to each virus. Upon recognition of CD4-specific T cell 
epitopes, derived from immunodominant viral proteins such as nucleoprotein (NP) for IAV, lytic and latent proteins for Epstein–Barr virus (EBV), and E6/E7 for 
human papillomavirus (HPV), CD4+ CTL are able to kill infected cells through the release of high amounts of granzyme A and B, perforin, and interferon (IFN)γ and 
the degranulation of CD107a. The mechanism of action by which CD4+ CTL exert their cytotoxic activity against HPV-infected cells is still uncertain and requires 
further analysis.
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mechanisms have been described, including the ability to down-
modulate the expression of MHC class I molecules recognized 
by effector CD8+ T cells and the generation of mutated CD8+ 
epitopes in the HIV-1 setting (79, 80), where error-prone reverse 
transcription during viral replication produces “variant” epitopes. 
As a result, these immune escape mechanisms strongly impair 
CD8+ CTL recognition and promote disease progression (81). 
Thus, during viral infections, CD4+ CTL may act in concert with 
cytolytic CD8+ T cells, bearing thus some advantages in terms of 
infection control. Indeed, the simultaneous induction of CD4+ 
and CD8+ CTL increases the chance of killing virally infected 
target cells, thanks to the dual recognition through MHC class I 
and II. Moreover, the nature of the MHC class II structure allows 
for a greater diversity in the type and number of viral epitopes 
presented in comparison to MHC class I (82). In addition, several 
exceptions showed that the presentation of peptides in a MHC 
class II context is not strictly restricted to exogenous proteins  
(83, 84). Thus, CD4+ CTL play a pivotal role restraining viral 
infection with tropism for MHC class II-positive target cells, as 
infected lung alveolar or airway epithelial cells, EBV-transformed 
B cells, or HIV-1-infected human CD4+ T cells (26, 39, 50).

The therapeutic potential of CD4+ CTL may be exploited also 
for vaccination purposes against HIV-1 infection, since these 
effectors are able to efficiently recognize and kill infected APC 
like macrophages, which constitute long-lived viral reservoirs 
(82). Similarly, CD4+ CTL may indirectly attenuate influenza 
virus-induced morbidity through the killing of TNF-inducible 
nitric oxide synthase DC, the major injury-inducing cells during 
influenza virus infection, which harbor influenza virus antigen 
and express high levels of MHC class II (50).

Targeting professional APC also represents a regulatory capac-
ity attributed to CD4+ CTL to curtail the immune response, thus 
avoiding an excessive inflammatory reaction through the prim-
ing of naive T cells and the systemic spread of the pathogen (39, 
40, 51). In addition, the differentiation in cytotoxic cells prevents 
CD4+ T cells from becoming inflammatory Th1 or Th17 cells, 
thus limiting the excessive infiltration of systemically activated 
cytokine secreting cells, which may be responsible for tissue 
damage (39, 40). The elevated numbers of CD4+ CTL observed 
in chronic inflammatory conditions such as autoimmune and 
inflammatory diseases suggest their pathogenic role in these 
conditions; indeed, their amount is related to disease severity 
(51). However, their precise contribution in the pathogenesis of 
autoimmunity and inflammatory diseases and the nature of the 
antigen (self or virus-derived) that drives their specificity are yet 
to be completely understood (85).

For these reasons, new therapeutic strategies including vac-
cine approaches aim at the simultaneous induction of cytolytic 
CD4+ and CD8+ T cell responses, with the aim to increase the 
chance of killing virus-infected cells, due to the recognition of a 
wider spectrum of epitopes presented by both MHC class I and 
II molecules.

iNFLUeNZA viRUS iNFeCTiON

Influenza A virus and, at a lower extent, influenza B viruses 
are annually responsible for infections of the respiratory tract 

in about 5 million people worldwide, which can evolve to 
further complications and death in high-risk groups, includ-
ing immunocompromised subjects, children, and elderly (86). 
Although new preventive vaccines are developed every year that 
renew specific immune responses to influenza virus in infected 
individuals, the continuous viral evolution still represents an 
intriguing challenge to the development of highly effective vac-
cination strategies.

Influenza virus genes code for the two envelope proteins, 
namely hemagglutinin and neuraminidase, which mediate 
viral attachment, entry, and release from infected cells, and 
for several internal proteins involved in viral replication (87). 
Current vaccines are developed with the main purpose to 
generate humoral responses against membrane hemagglutinin 
and neuraminidase (88). These formulations generally contain 
selected dominant epitopes recognized by antibodies and, to 
a lesser extent, by specific T cells (89). Notably, individual’s 
selective immune pressure due to previous infections and 
due to the high-mutation rate of influenza virus genome, 
particularly in the antigenic sites of hemagglutinin and neu-
raminidase (90, 91), gives rise to new viral variants, which 
become able to evade pre-existing acquired immunity. In 
this context, humoral responses no longer provide efficient 
protection against infection with antigenically mismatched 
virus strains, since less than 3% of epitopes recognized by 
vaccine-induced antibodies are conserved (89). Conversely, the 
majority of IAV-specific T cell responses are directed against 
epitopes located in more conserved viral proteins, such as 
the internal nucleoprotein (NP) and the matrix (M)-1 protein 
(92, 93). Therefore, about 15% of IAV-derived T cell epitopes 
maintain almost identical sequences, rendering these proteins 
ideal targets for cytolytic T cells (94). On these grounds, in the 
last years, many efforts have been focused on the development 
of combined vaccine formulations, able to elicit both antibody 
and cellular responses and, interestingly, endorsing an even 
more direct contribution of CD4+ CTL to viral clearance and 
protection from reinfection.

It is well established that CD8+ CTLs play a crucial role in 
the response to influenza infection, as demonstrated in both 
mouse models and humans (95, 96), while the relationship 
between influenza-specific CD4+ T cells and disease protection 
and limitation was investigated only in recent years. In this 
respect, Wilkinson and colleagues recently found a pre-existing 
memory CD4+ T cell population in peripheral blood of healthy 
volunteers, which was able to recognize and respond to pep-
tides from NP and matrix protein of the influenza virus (97) 
(Figure 2). Moreover, phenotyping analysis showed that these 
cells may have cytolytic characteristics, as they stain positive for 
CD107a and actively produce IFNγ upon antigenic stimulation 
with influenza protein peptide pools (97), thus supporting their 
cytotoxic activity. These results were also in line with previous 
findings showing an increased frequency of CD4+ CTL in the 
circulation of healthy donors during viral infection (6). Further 
in  vivo studies elegantly conducted by Hua et  al. demonstrate 
that CD4+ T cells with cytotoxic potential are specifically 
induced at the site of infection during acute respiratory influenza 
(50). In particular, they examined the expression of granzyme B, 
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perforin, and IFNγ in CD4+ T cells from the lung and in draining 
mediastinal lymph nodes, showing the presence of cytolytic 
effector cells only at the site of infection, as further confirmed 
by the upregulation of CD107a in the same cells (Figure  2). 
Accordingly, a recent study demonstrated that granzyme B- and 
perforin-producing CD4+ T cells were able to recognize and 
kill influenza virus-infected cells at the site of infection (98). 
In addition, the authors found that the cooperation between 
IFN type I and IL-2 pathways drives the development of CD4+ 
T cells with cytotoxic potential in  vivo, mainly through the 
action of T-bet and Blimp-1 (50). Therefore, taking together, 
these data suggest that the presence of CD4+ CTL responses 
at the site of infection may limit virus shedding, replication, 
and illness severity. The evidence of pre-existing CD4+ T cell 
populations to influenza virus and their direct involvement in 
the in  vivo elimination of virus-infected cells during primary 
and secondary infections have prompted Savic and colleagues 
to the development of an epitope-based universal influenza vac-
cine (60) (Table 1). In their study, the researchers identified a 
library of IAV-derived CD8+ and CD4+ T-cell epitopes. Selected 
panels were then validated by monitoring T cell responses in a 
cohort of healthy donors, and high levels of specific responses 
were achieved when PBMCs were stimulated with core protein-
derived epitopes. As expected, the lowest detected responses 
were among the CD8+ T cells stimulated to the external viral 
protein-derived peptides. More interestingly, functional analysis 
revealed that the CD4+ T cell compartment was dominated 
by cells producing IFNγ/IL-2/TNF-α after stimulation with 
epitopes derived from either internal or external viral proteins, 
while CD8+ T cells were almost all single cytokine producers 
(60). This is particularly relevant since it has been demonstrated 
that triple cytokine-producing CD4+ T cells are functionally 
superior not only for their costimulatory and degranulation 
potential, which plays a crucial role in controlling infection 
by conferring protection from influenza through perforin-
mediated cytotoxicity (99), but also for the establishment of 
durable memory T cell responses (100). Interesting insights 
in the context of enhancing influenza virus vaccine strategies 
came from new understandings on the intrinsic mechanisms 
by which specific CD4+ effectors may lead to the generation of 
effective CD4+ memory T cells. In this regard, Devarajan and 
colleagues have recently hypothesized a two-step vaccination 
approach that elicits effective CD4+ cytotoxic responses, by 
initially inducing a strong and proficient activation of APC 
and later providing antigens to establish long-lasting cellular 
immunity (101). In particular, it was demonstrated that the 
peculiar inflammatory microenvironment of the respiratory 
epithelium during influenza virus infection strongly promotes 
the activation of APC secreting high levels of IL-6 and drives 
optimal T-cell priming directly at the site of infection (54, 98). 
In this context, the costimulation with CD8+ T cells and IL-2 
signaling occurring few days after initial priming may drive the 
efficient transition of these CD4+ effectors to memory cells, thus 
ensuring a long-lasting protection from secondary infections 
(101, 102). On these grounds, the authors emphasized the need 
to induce both multifunctional CD4+ and cytotoxic CD8+ T cell 
responses to IAV, to produce optimized universal vaccines.

CMv iNFeCTiON

Cytomegalovirus is a herpes virus that infects the majority of the 
human population, establishing a lifelong and largely asympto-
matic infection in immunocompetent people, while conversely 
causing severe disease in immunocompromised hosts (103). 
CMV can mediate direct effects when the virus is detected in 
patient’s peripheral blood or in organ biopsies and establishes the 
so-called CMV syndrome characterized by severe inflammatory 
status due to widespread tissue invasion (104).

During primary infection, the adaptive immune system plays 
a pivotal role in fighting virus replication, being able to control 
CMV latency after infection resolution (105). Interestingly, 
recent data demonstrated that the development of specific CD4+ 
T cell responses is tightly related to both latent and chronic 
CMV infection (106) and is crucial for protection against this 
virus (107). During CMV latent infection, CD4+ T cells are 
characterized by a peculiar CD27−/CD28− phenotype (108), the 
loss of IL-7Rα, expression of CD57 and KLRG1, and a decreased 
proliferative capacity, suggestive of a cytotoxic CD8+ T cells-like 
phenotype (109, 110). Indeed, increasing evidence suggests 
that CD4+ T cells are involved in the control of CMV infection 
through a direct cytotoxic activity (82), which was even found 
to precede CMV-specific antibody and CD8+ T cell responses 
in asymptomatic patients (107). Moreover, data showing virus 
persistence in the salivary glands of murine CMV (MCMV)-
infected mice upon the depletion of MCMV-specific CD4+ 
T cells further confirmed their central role in antiviral control 
(111). The relevance of CD4+ CTL at the sites of CMV infection 
was argued in pioneering work by van Leeuwen et al., in which 
the authors described that the expansion of CD4+CD28+ T cells 
was driven by the decrease of CMV viral load occurring early 
after primary infection (112). Furthermore, this CD4+ effector 
cell subpopulation was characterized by the expression of gran-
zyme B cytotoxic granules, whose production appeared further 
increased in CMV-seropositive renal transplant recipients pos-
sibly due to the chronic exposure to the virus (111).

Interesting insights about the acquisition of cytolytic potential 
by CD4+ T lymphocytes come from Casazza and colleagues, 
who investigated the contribution of these cells to the control 
of viral replication in a cohort of CMV-seropositive healthy 
donors (78). They detected strong and specific responses to 
CMV pp65-derived epitopes in almost all analyzed individuals. 
More interestingly, the frequency of CMV-specific CD4+ T cells 
appeared to be higher than those required to solely ensure the 
production of antibodies and functional CD8+ T cells, supporting 
their direct cytotoxic effect in antiviral response. Accordingly, 
through extensive phenotype analysis, the authors demonstrated 
that these effector cells produce granzyme A and B, perforin, 
MIP-1β, TNF-α, and IFNγ, even though no evidence of a direct 
link between surface mobilization of CD107a, perforin, and 
granzyme content and killing was observed (78). Similar results 
were also obtained by Chiu et al., who reported a polyfunctional 
phenotype for CMV-pp65-specific CD8+ and CD4+ T cells and 
higher CMV-specific IgG serum levels in association with cyto-
toxic activity and maturation of both cell subtypes during aging 
(113). Furthermore, it is known that CMV glycoprotein B (gB) 
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is efficiently presented by MHC class II molecules (114) and is 
one of the major candidates for a subunit vaccine approach (115) 
(Figure  2). In this regard, an interesting paper described the 
isolation of several gB-specific CD4+ T cell clones directed against 
three HLA-DR- and -DQ-restricted peptides from chronically 
CMV-infected individuals (61) (Table 1). Accordingly, Pachnio 
et al. found that gB-specific CD4+ T cell responses are character-
ized by a high production of IFNγ, TNF-α, and granzyme B (116) 
(Figure 2).

Among the latest epitope-based vaccination strategies in the 
CMV setting, relevant data emerged from the work of Benedict 
and colleagues, who explored the role of CD4+ CTLs in the 
context of virus-infected mice. They found that only 2 of 234 
screened epitopes were able to activate CD4+ T cells, produce 
high levels of granzyme B, and kill target cells. Moreover, the 
authors demonstrated that the vaccination of immunocompetent 
mice with the two selected peptides significantly reduced MCMV 
replication and provided protection from virus reinfection (62) 
(Table  1). More interestingly, direct CD4+ cytolytic activity 
was also observed in some organs (62). These results were also 
confirmed by Jeitziner et al., in which the authors generated TCR 
transgenic mice that are able to recognize a MCMV-specific CD4+ 
T cell epitope within the M25 protein (63) (Table 1). In particular, 
by analyzing virus-specific effector cells isolated during primary 
MCMV infection, they identified a monoclonal CD4+ T cell 
subpopulation exerting antiviral protective functions through 
an IFNγ-dependent mechanism. A recent study by Pachnio 
and colleagues demonstrated that chronically CMV-infected 
individuals present moderate percentages of virus-specific CD4+ 
T cells, increased expression of NKG2D, and low levels of PD-1. 
Finally, transcriptional profiling analysis highlighted a significant 
upregulation of cytolytic specific genes, in particular granzymes 
and perforin, and a distinctive secretome signature in virus-
specific CD4+ T cells (117).

Hiv iNFeCTiON

Human immunodeficiency virus 1 is essentially an infection of 
the immune system, which almost invariably results in an irre-
versible state of immunodeficiency (namely acquired immune 
deficiency syndrome) when left untreated. HIV-1 pathogenesis is 
characterized by the progressive infection and depletion of CD4+ 
T lymphocytes that normally coordinate the adaptive T and B 
cell response to defend the host from intracellular pathogens. 
Indeed, there were early signs that, in the acute HIV-1 infection, 
up to 60% of all activated memory CD4+ T cells are infected and 
subsequently depleted from all tissue compartments (118). Many 
studies well documented that HIV-1-specific CD8+ T cells are 
strong contributors to the control of viral replication and disease 
progression. In particular, robust and highly specific CD8+ T cell 
responses against HIV-1 have been long observed in infected 
subjects (119, 120), and the same effectors are also able to inhibit 
HIV-1 replication (121). Unfortunately, even though CD8+ T cell 
responses clearly occur during the acute phase of infection (122), 
the major responses are directed to epitopes within envelope 
proteins, which are among the most variable in the virus (123, 
124). Consequently, escape mutations in targeted epitopes can 

significantly impair CD8+ T cell ability to recognize and kill 
HIV-1-infected cells (125). Moreover, some acute phase epitopes 
may not be those targeted in chronic infection, when proteins 
may be novel or their function may be lost, as observed with the 
upregulation of both negative immunoregulatory molecules, such 
as PD-1, and transcription factors inhibiting cell proliferation 
and cytokine release (126, 127). Conversely, the peptide-binding 
modalities of MHC class II that characterize CD4+ T cells allow for 
much greater sequence diversity while maintaining the affinity of 
peptide-MHC interaction and epitope recognition by TCR, thus 
decreasing the ability of the virus to escape from HIV-1-specific 
CD4+ T cell responses (128). As a matter of fact, even though 
MHC class II epitopes may also be prone to immune escape (129), 
this phenomenon is less frequently observed.

On these grounds, growing evidence suggests that induction 
of cytotoxic CD4+ T cell responses might be relevant for the 
successful control of HIV-1 infection and for the development 
of highly efficient anti-HIV-1 vaccines (65) (Table 1). Recently, 
Johnson and colleagues demonstrated that HIV-1-specific cyto-
lytic CD4+ T cells have a distinct transcriptional and phenotypic 
signature compared to Th1 CD4+ cells (130). In particular, by 
analyzing the transcriptional profile of Gag-specific CD107a+ 
IFNγ+ CD4+ T cells with unsupervised hierarchical clustering, 
they found cytolytic effector features similar to HIV-1-specific 
CD8+ CTLs and NK cells. In contrast, Gag-specific Th1 CD4+ 
T cells displayed higher expression of several surface markers 
associated with helper CD4+ T cell functions. Moreover, the 
authors reported that surface expression of CD57+ in cytol-
ytic CD4+ T cells occurs early during acute HIV-1 infection, 
suggesting their involvement in the initial stages of HIV-1 
acquisition (130, 131). Meanwhile, relevant data obtained by 
Rosenberg et  al. supported the idea that the persistence of a 
perforin-positive CD4+ T cell population into all stages of 
chronic disease progression might be associated with a better 
control of viral replication (132, 133). On the other hand, sub-
sequent studies clearly demonstrated that high levels of HIV-1 
Gag-specific CD4+ CTL could be detected in long-term non-
progressors successfully controlling their infection (8, 134).  
Extensive analysis of HIV-1-specific CD4+ T cell responses 
revealed that, even though HIV-1 is characterized by a high 
selection pressure, immunodominant epitopes recognized by 
these effectors are mainly derived from Gag and Nef proteins 
(135), known to be mostly conserved along the natural history 
of infection. Accordingly, in  vivo studies conducted by Sacha 
and colleagues demonstrated that macaques able to control SIV 
infection were characterized by strong Gag- and Nef-specific 
CD4+ T cell responses (136). Notably, after in vitro long-term 
culture, these CD4+ T cells become unable to recognize and kill 
infected CD4+ T lymphocytes, while they still suppressed viral 
replication in long-lived reservoirs, especially macrophages 
(136–138), which can be thus considered as potential vaccine 
targets for these effectors (Figure 2). In this regard, many efforts 
have been spent in the last years to design prophylactic vaccine 
against HIV-1 that, beside specific CD8+, are also able to elicit 
effective CD4+ T cell responses. However, the use of CD4+ CTL-
based vaccine approaches in the HIV-1 setting still represents 
an unsolved issue. The main skepticism derives from the idea 
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that the activation and expansion of these cells could represent 
a double-edged sword, since it is well known that resting CD4+ 
T cells are preferential HIV-1 reservoirs. Indeed, the antigen-
specific CD4+ T cell response developing during primary HIV-1 
infection includes a high percentage of CD4+ CTL, which 
express CCR5 and therefore may be highly susceptible to HIV-1 
infection (8, 139). Moreover, vaccine-induced CD107a+ CD4+ 
T cells are selectively depleted following virus infection (64) 
(Table 1). Nevertheless, the only vaccination trial that recently 
showed some level of protection was the Phase III RV144 Thai 
trial (65) (Table 1). This vaccine showed moderate protection 
against HIV-1 infection and, more interestingly, revealed that 
most vaccinated HIV-negative individuals presented predomi-
nantly polyfunctional effector CD4+ T cell responses against the 
V2 region of the envelope protein (140, 141).

ePSTeiN-BARR viRUS iNFeCTiON

Epstein–Barr virus is a human γ-herpesvirus associated with 
the development of different forms of B cell and epithelial 
malignancies, which account for 1% of the total human cancers 
(142). In healthy and infected individuals, the life cycle of this 
virus is characterized by a continuously evolving relationship 
with host immune system. Indeed, EBV is a highly immuno-
genic virus as demonstrated by the strong response elicited at 
the time of primary infection, which successfully constrains the 
virus in a strictly latent, immunologically silent status, where 
only latent membrane protein (LMP) 2 and/or Epstein–Barr 
nuclear antigen (EBNA) 1 proteins are expressed. The immune 
system is then deputed lifelong to control the occasional 
cycles of “reactivation from latency-viral particle production-
reinfection” and also to restrain the oncogenic potential of 
the virus. Indeed, the emergence of EBV-related tumors is 
invariably linked with overt and systemic or more subtle and 
local impairments of the immune system (143). Therefore, to 
guarantee its own persistence and establish latency in memory 
B cells, EBV has evolved different strategies to evade both CD8+ 
and CD4+ T cell recognition (144). Besides the shutting down 
of the most immunogenic latent proteins and the production 
of the viral IL-10 homolog encoded by the BCRF-1 gene, the 
expression of the lytic proteins BNLF2a, BILF1, and BGLF5 
strongly impairs HLA class I presentation pathway, while the 
recognition by CD4+ T cells is targeted by the glycoprotein gp42, 
the lytic cycle inducer BZLF1 (145), and multiple miRNA (146). 
In particular, such miRNA display their action immediately 
after B cell infection by reducing the differentiation of naive 
CD4+ T cells into Th1 cells and the activation of CD4+ CTL 
effectors. These very recent findings emphasize the importance 
of the CD4+ T cell arm in the complex interplay between the 
virus and the host immune response. Indeed, while numerically 
subdominant (CD4+ T cell frequency is 10-fold lower than that 
of CD8+ T cells) (147), EBV-specific CD4+ T cells complement 
CD8+ T cell responses in terms of both lytic and latent antigen 
recognition and kinetics. Indeed, they respond to all classes 
of lytic antigens (148), while CD8+ T cells neglect late lytic 
antigens due to the action of immunoevasins. As regard latent 
proteins, CD4+ T cells preferentially recognize EBNA1 and LMP 

proteins (Figure 2), which provide only subdominant antigens, 
if any, to CD8+ T cells. Moreover, possibly as a result of the 
preferential antigen feeding pathway (149) that relies on the 
mature protein pool rather than newly synthesized proteins, 
CD4+ T cells recognition is quite delayed, but persistent.

In addition to the well-accepted helper activity, the potential 
importance of CD4+ CTL is suggested by their presence in EBV 
carriers, as demonstrated directly ex vivo by Appay et  al. (6). 
Even during infectious mononucleosis, circulating granzyme B+ 
CD4+ T cell are detected in the blood, and in sharp contrast with 
the CD8+ T cell compartment, their number does not correlate 
with symptom severity, thus suggesting a potential protective 
role (150). However, CD4+ T cells isolated from tonsils where 
EBV infection of naive B cells occurs are not directly cytotoxic 
but acquire this potential only in  vitro (151). The in  vivo rel-
evance of CD4+ CTL in the different phases of infection and in 
tumor development is rarely directly demonstrated and can be 
principally inferred from in  vitro experiments as well as from 
clinical results of immunotherapeutic interventions. Indeed, 
the majority of data relies on in vitro expansion of EBV-specific 
T  cells from PBMC of EBV-seropositive healthy donors, and 
the lytic activity is demonstrated in both short-term standard 
chromium release assays and long-term outgrowth inhibition 
studies. The cytotoxic potential of such CD4+ T cells appears to be 
mediated by the release of cytotoxic molecules, such as perforin, 
granzyme, and granulysin (66, 152), or by Fas/FasL interaction 
(153, 154), as demonstrated with the use of selective inhibitors 
of each pathway (Figure 2). Even long-term growth inhibition 
of target cells, which is more suggestive of an in vivo situation, 
depends on lytic activity: indeed, in most cases, it is insensitive 
to cyclosporin A, which blocks cytokine secretion that requires 
NFAT-dependent gene transcription, while leaving unaffected 
the cytotoxic potential.

CD4+ T cells endowed with cytolytic capacity have been 
described against both lytic and latent antigens. With regard to 
the former, immediate early, early, and late lytic phase antigens 
are equally recognized by these effectors. These antigens gain 
access to the MHC class II processing and presentation pathway 
primarily through receptor-mediated uptake (155–157). Indeed, 
release of virions even from few tumor cells undergoing lytic 
cycle can sensitize to killing neighboring cells with a very high 
efficiency (less than 1 virion/cell can induce recognition of target 
cells) (156). In particular, lymphoblastoid cell lines (LCL) can 
be regarded as a model for foci of replication in posttransplant 
lymphoproliferative disease (PTLD). Therefore, T cells specific 
for lytic phase antigens can limit the viral spreading and the de 
novo infection in healthy host and EBV-seronegative recipients 
of transplants from EBV-seropositive donors. In an adoptive 
immunotherapy setting, their efficacy can be increased with 
the concomitant use of lytic cycle inducers, like epigenetic and 
chemotherapeutic agents (158).

Among latency proteins, attention was primarily focused on 
CD4+ T cell responses to EBNA1, since this protein for a long 
time was regarded as a silent CD8+ T cell target (159) (Figure 2). 
This protein is expressed by all EBV-related malignancies and 
is the unique viral protein in type I latency tumors, like Burkitt 
lymphoma (BL). Interestingly, in EBV-positive healthy donors, 
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a CD4+ T cell response is constantly detected, and it is strongly 
skewed toward a Th1 phenotype, as assessed by the cytokine-
release pattern and by the presence of IgG1 EBNA1-specific 
antibodies (160, 161). Moreover, BL cell lines can be an in vitro 
target of the cytotoxic activity of EBNA1-specific CD4+ T cells 
(162), and a BL tumor in a mouse model could be eradicated 
in the total absence of CD8+ T lymphocytes, although without 
involving a direct cytotoxic activity (163). EBNA1-specific CD4+ 
T lymphocytes seem to have an important protective role in vivo, 
as inferred by their reduction or absence in PTLD patients (164), 
in some pediatric forms of BL (165), in EBV-related Hodgkin 
lymphoma (166), in NHL that develop in HIV patients (167), 
and in central nervous system lymphomas (168). Interestingly, 
Heller et al. (166) suggested that a delayed/reduced presence of 
EBNA1-specific antibody, as well as CD4+ T cells, observed in 
infectious mononucleosis patients (169, 170) can be one of the 
possible explanations for the increased risk to develop Hodgkin 
lymphoma after symptomatic acquisition of EBV infection. 
Conversely, in multiple sclerosis patients, a relevant presence of 
EBNA1-specific CD4+ T cells, partly cross-reacting with myelin 
antigens (171), has been recently described, even though a direct 
pathogenic role for cytotoxic activity of these cells has not been 
demonstrated yet either in multiple sclerosis (172) or other auto-
immune diseases (173, 174).

Other valuable targets of CD4+ T cell activity are represented 
by LMPs, LMP1 and LMP2 (77), and EBNA2 (175), due to their 
pivotal role in persistence and malignancy (Figure 2). In particu-
lar, EBNA2 is one of the first proteins produced after infection and 
before immortalization, and it is a transcriptional factor required 
for the initiation and maintenance of B cell growth and trans-
formation. In both cases, cytotoxicity displayed by CD4+ T cells 
is the key effector mechanism that restrains LCL outgrowth and 
B cell proliferation induced by EBV.

These encouraging preclinical data, and the results of a phase 
I/II clinical trial (176) demonstrating a correlation between the 
percentage of CD4+ T cells in the infusates and the clinical 
outcome, prompted the study of new protocols (67–69, 177) 
and the definition of MHC class II-restricted epitopes (70, 
71, 178, 179) to target with improved efficacy of distinct viral 
proteins for immunotherapeutic purposes (Table 1). These are 
of great value in the context of EBV-related tumors, which 
express a limited set of viral proteins (latency II and possibly 
latency I malignancies) and are characterized by a reduced 
immunogenicity; moreover, they may also contribute to solve 
the matter of specificity found using the classical protocol based 
on reactivation of EBV-specific T cells by LCL restimulation. As 
advanced by Long et  al. (180), in addition to lytic and latent 
antigens, CD4+ T cells could also target B cell-associated anti-
gens. It is worth noting that they generated CD4+ T cells through 
restimulation with mini-LCL instead of LCL: this excludes the 
reactivation of lytic cycle-specific T cells and potentially biases 
and overestimates the selection of autoantigen-specific T cells. 
By the way, the infusion of bulk cultures containing up to 
98% of CD4+ T cells of undefined specificity was carried out 
in patients without adverse events, thus indicating that such 
B cell-specific T cells, if present, likely target an antigen(s) 
overexpressed by tumor cells (176).

The use of polyfunctional CD4+ T lymphocytes that poten-
tially exert both helper and effector functions should be hence 
promoted in fighting EBV-associated malignancies, but not 
without keeping in mind some potential drawbacks. In particu-
lar, a lytic activity mediated by the Fas/FasL interaction could 
be responsible for a bystander killing (181), which can poten-
tially damage the tumor-surrounding tissues. Moreover, some 
epitopes appeared to preferentially elicit CD4+ T cells endowed 
with regulatory functions, as described for some LMP1 and 
EBNA1-derived epitopes (182). This might be detrimental and 
harmful, since it could turn off the activity of the infused and 
autologous T cells. Moreover, a subset of CD4+ T lymphocytes 
may sustain the primary infection of B lymphocytes or even 
induce the expansion of tumor B cells mainly through IL-4 and 
IL-13 release and CD40 engagement, as demonstrated in vitro 
(183) and in  vivo in hu/SCID mouse models (184). However, 
the B cell help activity seems to be exerted particularly by CD4+ 
T lymphocytes with a Th2 pattern of cytokine release and poor 
cytolytic activity.

Anyway, with few exceptions, e.g., the in vivo model involving 
the murine γHV68 infection in which the cytotoxic activity of 
M2-specific CD4+ T cells was demonstrated by in vivo cytotox-
icity assay (185), the demonstration of in  vivo lytic functions 
exerted by CD4+ T cells can be achieved only through indirect 
evidence, as previously reported by our group (66). By exploiting 
a clinically relevant protocol involving PBMC restimulation with 
LCL, we generated EBV-specific bulk CD4+ T cell cultures char-
acterized by an in vitro cytotoxic activity and a significant in vivo 
antitumor effect against a murine model of PTLD (Table 1). This 
result was apparently achieved without the cytokine-mediated 
recruitment of other effector cells, since neither the exogenous 
administration nor the blocking of CD8+ T cell-secreted IFNγ 
had any impact on LCL biology. Conversely, the therapeutic 
activity of CD4+ T cells appeared to critically depend on HLA 
class II-mediated interaction with target cells. Indeed, the decit-
abine-mediated partial recovery of HLA class II downmodula-
tion that characterizes LCL upon in vivo inoculation improved 
LCL recognition by CD4+ T cells and prolonged survival in 
drug-treated mice. Overall, the downmodulation of HLA class II  
is apparently limited only to the mouse model, as HLA-DR is 
consistently expressed by tumor cells at all stages of disease in 
human PTLD specimens (66). Therefore, in line of principle, 
CD4+ T cells could be efficiently administered to PTLD patients 
without any additional pharmacological treatment.

HePATiTiS B AND C viRUSeS

Hepatitis B virus (HBV) and HCV are two hepatotropic, 
non-cytopathic viruses, classified by the International Agency 
for Research on Cancer as carcinogens of Group 1 to humans 
(186). Indeed, chronic infection with HBV and HCV repre-
sents a major risk for the development of cirrhosis and finally 
hepatocellular carcinoma (HCC). In the long path from acute 
infection to overt tumor, which can take several decades, 
the cellular immune response appears to be a double-edged 
sword accounting for the clearance of the virus and even the 
spontaneous regression of HCC (187), but also for the extent 
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of liver cell damage when the infection cannot be resolved. 
In the tolerogenic milieu of the liver (188), the functional state 
of tumor infiltrating lymphocytes and in particular the balance 
between Treg and CTL (as assessed by Foxp3 and granzyme 
B immunohistochemical staining of tumor specimens) signifi-
cantly impact the prognosis of HCC cancer patients in terms 
of 5-year overall survival and disease-free survival (189). In 
this complex picture, the relevance of dissecting the potential 
role of CD4+ T cells is suggested by the sustained expression 
of HLA class II molecules in HBV-infected cells (190) and 
HCC and by the association of HLA-DR13 expression with a 
self-limited course of HBV infection (191–193). In particular, 
the protection mediated by HLA-DR13 molecule is linked to the 
effective presentation of hepatitis B core antigen (HBcAg) and 
the consequent induction of a vigorous proliferative antigen-
specific CD4+ T cell response (194) (Figure 2). It is commonly 
held that the role of CD4+ Th cells is protective with respect to 
HBV and HCV infections, as demonstrated in animal models 
(195, 196) and human beings (197–199). While the protective 
role of CD4+ T cells is consistently associated with a Th1 activity, 
the role of CD4+ CTL still remains controversial. In a cohort of 
76 patients with viral hepatitis (15 HBV, 22 HBV/hepatitis D 
virus, and 17 HCV), the frequency of perforin+ CD4+ T cells, as 
assessed directly ex vivo by flow cytometry, was highly variable 
(ranging from less than 1% to more than 25%) but consistently 
higher than in healthy controls (190). In particular, in HBV/
HDV coinfected individuals, this parameter correlates with 
elevated aspartate aminotransferase levels, diminished platelet 
count, and fibrogenesis in elderly individuals (190). In line 
with these findings, the frequency of perforin+ CD4+ T cells 
was found to decrease significantly only in two patients who 
cleared the virus spontaneously. In sharp contrast, Fu et al. (200) 
demonstrated that in HBV-related HCC, the loss of perforin 
and granzyme A and B-expressing CD4+ CTL was associated 
with high mortality rate and reduced survival time. Indeed, the 
number of circulating CD4+ CTL was consistently higher in 
HCC than in chronic HBV carriers and liver cirrhosis patients, 
but decreased as tumor progressed. Interestingly, based on the 
notion that responding T cells preferentially compartmentalize 
into the liver (201), the presence of CD4+ CTL was investigated 
in tumor specimens. Even in this case, the number of this 
cell subset was found to decrease when moving from cancer 
stage I to III, and the expression of the degranulation marker 
CD107a was also significantly reduced in the advanced stages 
of the disease, as a consequence of the direct action of local 
Treg cells. As demonstrated by another research group (202), 
cytotoxic activity of CD4+ T cells was also negatively regulated 
by Tim+ B cells through an IL10-mediated mechanism in HCC 
patients with history of chronic HBV infection. Indeed, these 
patients were characterized by a negative correlation between 
IL10-expressing B cells and granzyme A+/granzyme B+/per-
forin+ CD4+ CTL in the periphery. However, it is questioned 
whether these regulatory B cells suppress a CD4+ CTL-mediated 
effective antitumor response or rather protect the liver from 
a potential pathogenic role mediated by the same cell subset. 
While subject to a negative regulatory activity, CD4+ CTL 
themselves can also exert a regulatory role, as suggested by 

Cao and coworkers (203). They described the generation of 
HBcAg-specific HLA-DR13-restricted Th1 type CD4+ T cell 
clones endowed with in vitro lytic activity, from a subject who 
recovered from a previous acute HBV infection. Upon in vivo 
transfer in a hu-PBL-NOD/SCID mouse model, these T cell 
populations induced the drop of anti HBcAg-specific IgG 
and IgM, as the consequence of the lysis of HBcAg-binding 
or -specific B cells. This B cell population is detected at high 
frequency in both human and mice (204, 205), but its beneficial 
or detrimental role in the natural course of HBV infection 
remains to be determined. As suggested by the authors (203), 
if HBcAg-specific (or -binding) B cells and/or the produced 
antibodies would sustain the persistence of HBV infection, then 
the elimination of such B cells could promote viral clearance. 
A more direct therapeutic activity of CD4+ CTL was reported 
in a preclinical model of vaccination (206). The authors describe 
the suppression of tumor formation in mice vaccinated with 
DC fused with HCC cells and demonstrate that protection was 
mediated by the CD4+ T cells elicited, since it was completely 
abrogated by anti-CD4 antibodies. These T cells appeared 
to be endowed with a robust, albeit non-MHC-II restricted, 
cytotoxic activity involving the release of cytotoxic granule 
content. To the best of our knowledge, very few other articles 
investigated the cytotoxic potential of CD4+ T cells induced 
by vaccination strategies (207) or by in vitro ad hoc protocols 
(208). Indeed, the majority of papers focused the attention 
on the release of “classic” Th1 cytokines only (209–212), thus 
possibly underestimating the potential contribution of CD4+ 
CTL to the observed results.

HUMAN PAPiLLOMAviRUS (HPv)

Human papillomavirus is causally linked with the development 
of cancer of the anogenital region, mainly due to the presence 
of the two oncoproteins E6 and E7 that act by inhibiting the 
tumor suppression proteins p53 and pRb, respectively (213). 
Despite the numerous immune evasion strategies displayed 
by the virus, host immune response clears the infection in the 
majority of infected people (90%) and only a minor fraction 
of chronically infected individuals ultimately develop cancer 
(214). An important protective role in HPV clearance and 
control of its neoplastic consequences is mediated by CD4+ 
T cells (Figure 2). Their presence and fine antigen specificity, 
as well as their functional properties, have been thoroughly 
investigated especially in the context of HPV16 and HPV18 
infections, the two most widely diffused high-risk genotypes 
(214). As demonstrated in different reports (72, 215–226) and 
recapitulated in one of the largest prospective study involving 
women with HPV16- and 18-related cervical cancer (227), 
prevention/control of HPV-related malignancies appeared to be 
mediated in particular by Th1-polarized CD4+ T cell responses. 
On these grounds, it is tempting to speculate a similar role for 
also CD4+ CTL that may likely derive from this Th compart-
ment (54). However, almost all papers neglected to dissect this 
issue, and the assessment of their cytotoxic activity was far 
from being routinely performed. To the best of our knowledge, 
only Facchinetti et al. (228) described the generation of CD4+ 
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T cell lines from healthy people, which were endowed with 
cytolytic activity and recognized a naturally processed, HLA-
DR-restricted epitope derived from the E7 protein of HPV-18 
(Figure 2). Conversely, Grabowska et al. (221) failed to observe 
any cytotoxic activity in CD4+ T cells directed against E2, E5, 
E6, and E7 of HPV-16 in their cohort of healthy individuals. 
Interestingly, Garcia-Chagollan and colleagues (229) described 
an increased number of circulating NKG2D+ CD4+ T cells in 
CIN1 patients, with respect to healthy controls. This particu-
lar subset of CD4+ T cells was alternatively described to be 
characterized by cytotoxic and pro-inflammatory properties or 
regulatory activity (54, 230). In this study, the role of NKG2D+ 
CD4+ T cells was not conclusively established; however, the fact 
that almost all patients cleared their lesions without progressing 
to more advanced stages of disease at 1 year of follow-up can 
suggest a beneficial rather than a detrimental effect for these 
CD4+ T cells. Moreover, these patients showed increased levels 
of IL-15, a cytokine that promotes cytolytic activity of effector 
cells, in conjunction with a significant reduction of the anti-
inflammatory TGF-β (229).

CONCLUSiON

Although data accumulated so far are progressively increasing 
our understanding of the complex biology of CD4+ T cells, 
we are still quite far from being completely aware of the role, 
functions, and potentialities that cytotoxic CD4+ T lymphocytes 
may have in vivo. Available evidence supports the notion that 
these cells do not represent a mere laboratory artifact, but 
rather constitute a distinct differentiation status of CD4+ T lym-
phocytes. These important advances stimulate further studies 
focusing more specifically on the phenotypic and functional 
characterization of cytotoxic CD4+ T lymphocytes in various 
disease settings. A better knowledge of the microenvironmental 
and cellular factors that critically drive the differentiation of 
CD4+ T cells in cytotoxic effectors may provide new clues on 
how to manipulate the plasticity of these cells for therapeutic 

purposes. Of particular relevance will also be the assessment 
of their in  vivo contribution to the clearance of infected cells 
and the control of infection-driven tumors, both as single 
immune cell subpopulation and as effectors synergizing with 
CD8+ T lymphocytes and innate immunity cells. These studies 
will allow the rational background for the design of improved 
vaccines that will be able to better control infectious diseases 
through the activation of antigen-specific CD4+ T cells also 
endowed with cytotoxic properties. These strategies will be 
probably more effective in clearing virus-infected cells, due to 
the exploitation of a broader spectrum of epitopes presented 
by both MHC class I and II molecules. Boosting the immune 
responses mediated by cytolytic CD4+ T cells may be also of 
pivotal importance to improve the efficacy of immunotherapy 
against virus-driven tumors. In this setting, the selection of 
MHC class II epitopes able to promote the expansion and 
activity of CD4+ CTL may be helpful to optimize the set of 
viral antigens targeted by immunotherapeutic approaches. In 
perspective, therefore, CD4+ cytolytic effectors may become 
integral part of new therapeutic strategies for viral infections 
and virus-driven tumors.
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