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DNA methylation is established by DNA methyltransferases and is a key epigenetic mark. 
Ten-eleven translocation (TET) proteins are enzymes that oxidize 5-methylcytosine (5mC) 
to 5-hydroxymethylcytosine (5hmC) and further oxidization products (oxi-mCs), which 
indirectly promote DNA demethylation. Here, we provide an overview of the effect of TET 
proteins and altered DNA modification status in T and B cell development and function. 
We summarize current advances in our understanding of the role of TET proteins and 
5hmC in T and B cells in both physiological and pathological contexts. We describe 
how TET proteins and 5hmC regulate DNA modification, chromatin accessibility, gene 
expression, and transcriptional networks and discuss potential underlying mechanisms 
and open questions in the field.

Keywords: TeT proteins, 5hmC, T cells, B cells, development, immune gene regulation, chromatin accessibility, 
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Emerging Themes of TET protein function

 1. TET enzymes generate oxi-mC and indirectly mediate DNA demethylation
 2. Loss of TET function is associated with lineage dysregulation and cancer
 3. Numerous transcription factors bind TET proteins directly
 4. TET enzymes facilitate enhancer accessibility and may regulate enhancer function

iNTRODUCTiON

Until recently, the only known modified base in DNA was 5-methylcytosine (5mC), an epigenetic 
mark established by the DNA methyltransferases (DNMTs) DNMT1, DNMT3a, and DNMT3b 
(1) (Figure 1). In mammalian cells, the majority of 5mC is found at symmetrically methylated 
CpGs (2); DNA replication results in replacement of 5mC on the newly synthesized strand by 
unmodified C to yield hemimethylated CpGs (1). The “maintenance” DNMT complex, DNMT1–
UHRF1, recognizes hemimethylated CpGs and efficiently restores symmetrical CpG methylation 
at most genomic locations, consistent with the notion that in cells with unimpaired DNMT activity, 
DNA methylation is generally a stable and heritable epigenetic mark (1) (Figure 1, left). DNA 
methylation ensures genome stability by suppressing transposon reactivation (1); but the extent 
to which DNA methylation has a direct causative role in gene regulation is currently controversial 
(3, 4). Genome-wide bisulfite sequencing in several cell types has established that the promoters of 
the most highly expressed genes show the lowest levels of CpG methylation and, conversely, that 
dense CpG methylation of promoters is associated with low gene expression (2, 5, 6). Whether 
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FiGURe 1 | Pathways of DNA methylation and demethylation mediated by DNA methyltransferase (DNMT) and ten-eleven translocation (TeT) 
proteins. (A) DNMT1, DNMT3a, and DNMT3b establish DNA methylation, primarily at CpG dinucleotides in DNA. (B) TET proteins oxidize 5mC to 5hmC.  
(C) During DNA replication, unmodified C is incorporated into the newly synthesized strand of DNA, but the hemimethylated structure is recognized by UHRF1 in the 
DNMT1/UHRF1 complex and symmetrical CpG methylation is restored by DNMT1. (D) 5hmC is also diluted by DNA replication, but hemi-hydroxymethylated CpGs 
are not recognized by the DNMT1/UHRF1 complex. (e) Further rounds of DNA replication result in progressive DNA demethylation.
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this association implies causality, and if so in which direction, 
is unclear: there is considerable evidence that DNA methyla-
tion follows rather than “instructs” gene expression (3, 4, 7) as 
further discussed below.

The discovery that ten-eleven translocation (TET) proteins 
are 5-methylcytosine oxidases revolutionized our understand-
ing of DNA cytosine modification, by providing plausible 
biochemical mechanisms for the reversal of DNA methylation 
(8–11). TET proteins are 2-oxoglutarate- and Fe(II)-dependent 
dioxygenases that catalyze the oxidation of the methyl group of 
5mC to 5hmC as well as the further oxidation products 5-for-
mylcytosine (5fC) and 5-carboxylcytosine (5caC) in DNA (12, 
13) (Figure  2). TET enzymes can act as mediators of “active” 
(replication-independent) DNA demethylation, achieved 
through excision of 5fC and 5caC by thymine DNA glycosylase 
(TDG) followed by replacement with an unmethylated cytosine 
through base excision repair (13–15) (Figures  1 and 2). In 
most systems that have been investigated so far, however, TDG-
mediated 5fC/5caC excision does not seem to be the major route 
of DNA demethylation: rather, the predominant mechanism 
involves TET-mediated conversion of 5mC to 5hmC followed by  
passive replication-dependent dilution of 5hmC (16, 17) 
(Figures  1 and 2). This process occurs because the DNMT1–
UHRF1 complex does not recognize hemi-hydroxymethylated 
CpGs (10, 18).

To evaluate DNA modification status, most studies have used 
bisulfite-mediated deamination of unmodified C to uracil, which 

is read as T after PCR amplification (19). This method does 
not distinguish 5mC from 5hmC (20), nor does it discriminate 
among unmodified C, 5fC, and 5caC (10, 21, 22). Despite the fact 
that 5hmC comprises only a small fraction of 5mC (Figure 2), it 
is regulated in a considerably more dynamic fashion (23). In all 
future analyses, it will be necessary to specify DNA modification 
status (5mC, 5hmC, or 5mC + 5hmC if not distinguished), and 
to employ methods such as oxidative bisulfite sequencing (24) or 
TAB-seq (25) [reviewed in Ref. (10, 22)] that can quantitatively 
measure both 5mC and 5hmC (26–28).

GeNeRAL FeATUReS OF TeT 
PROTeiNS AND 5hmC

The Mammalian TeT Proteins
Representatives of the TET/JBP superfamily exist in every meta-
zoan organism using DNA methylation, consistent with a con-
served role in the regulation of DNA methylation (29). The three 
mammalian TET proteins, TET1, TET2, and TET3 (Figure 3), 
arose from a common ancestral gene that underwent triplication 
in jawed vertebrates (10, 29, 30). TET1 and TET3 both possess 
an N-terminal CXXC DNA binding domain, which recognizes 
unmethylated CpGs (29), but TET2 has lost its CXXC domain 
due to a chromosomal inversion, resulting in the formation of a 
separate gene known as CXXC4 or IDAX (8, 29, 30) (Figure 3). 
TET1 is highly expressed in embryonic stem (ES) cells and its 
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FiGURe 2 | DNA demethylation pathways controlled by ten-eleven translocation (TeT) proteins. DNA cytosine methylation is established by DNA 
methyltransferases (DNMTs). TET proteins oxidize 5mC to 5-hydroxymethylcytosine (5hmC), which is a relatively stable modification. 5-methylcytosine (5mC) is 
passively diluted via DNA replication as cells divide, but symmetrical methylation is restored by the maintenance methyltransferase complex DNMT1/UHRF1. 5hmC 
is also passively diluted as a function of cell division, and this results in DNA demethylation (see Figure 1). DNA demethylation can also occur via further oxidization 
of 5hmC by TET proteins to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Both 5fC and 5caC can be excised by thymine DNA glycosylase (TDG), resulting 
in their replacement with unmodified cytosine through base excision repair.

FiGURe 3 | Schematic representation of the domain structure of the 
three mammalian ten-eleven translocation (TeT) proteins TeT1, TeT2, 
and TeT3. TET1 and TET3 possess an N-terminal CXXC domain that 
recognizes unmethylated CpGs in DNA. The CXXC domain of the primordial 
TET2 gene became separated from the catalytic domain due to 
chromosomal inversion during evolution, and the CXXC domain evolved to 
become a separate protein, CXXC4 or IDAX. The catalytic regions of all three 
TET proteins are located at the C-terminus.
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expression drops following differentiation of ES cells to embry-
oid bodies (9, 31). TET1 is also highly expressed in primordial 
germ cells (16, 32). TET2 is expressed at lower levels than TET1 
in ES cells and its expression first drops and then increases upon 

differentiation; it is expressed in numerous differentiated organs 
and cell types in the adult (10, 11). TET3 is highly expressed in 
oocytes and zygotes (33), and loss of TET3 in mice results in 
perinatal lethality (10, 11).

Levels and Distribution of oxi-mC
TET function in cells can be assessed by measuring 5hmC levels 
in nuclear DNA, using mass spectrometry or DNA dot blot when 
cell populations are involved, or by immunocytochemistry or 
flow cytometry at the single-cell level. 5hmC is present at higher 
levels in neurons than in other cell types (34) and is abundant in 
Purkinje neurons where it comprises ~40% of the level of 5mC 
(35). ES cells also have high levels of 5hmC, varying between 5 
and 10% of the levels of 5mC. In contrast, 5hmC is present at 
only 1% of the total level of 5mC in some immune populations 
(36). 5fC and 5caC are even less abundant, regardless of cell type 
(12). Notably, 5hmC as well as the less abundant 5fC are stable 
epigenetic marks, and all three oxi-mC bases are thought to be 
capable of recruiting specific readers (37–39). The biological 
importance of oxi-mC recognition by these putative readers has 
not yet been explored.

Enrichment of 5hmC is observed in the gene body of very 
highly expressed genes as well as in active enhancers in ES cells 
(40–42), neural cells (37), hematopoietic stem/progenitor cells 
(HSPCs) (43), T cells (44, 45), and B cells (46). Notably, 5hmC 
is depleted from the transcription start site (TSS) of highly tran-
scribed genes. Consistent with its deposition in the gene body, 
the genome-wide distribution of 5hmC correlates with that of 
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BOX 1 | Techniques for 5hmC analysis.

Low throughput: restriction enzyme and PCR
Sequencing based:
1. Enrichment-based:

 i. hMeDIP (54)
 ii. CMS-IP (40, 55)
 iii. T4-BGT-based enrichment

GLIB (40, 56)
hMeSeal (57)

 iv. JBP1-seq (58)
2. Base resolution

 i. oxidative bisulfide sequencing (oxBS) (24)
 ii. RRHP (59)
 iii. PvuRts1I (60)
 iv. Aba-seq (61)
 v. TAB-seq (25)
 vi. HELP-GT (62)
 vii. SMRT (63)

3. Other variations
 i. Low input/single cell (64, 65)
 ii. oxBS-array (66)
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histone 3 lysine 36 trimethylation (H3K36me3), and polymerase 
II (Pol II) in thymocytes, emphasizing its positive correlation 
with transcriptional elongation (44).

Recruitment of TeT Proteins to DNA
Ten-eleven translocation proteins are likely to be recruited to the 
DNA by transcription factors. Recent research in ES cells sug-
gested that TET1 is initially recruited to the DNA then interacts 
with SALL4A, which subsequently recruits TET2; it is TET2 in this 
context that is suggested to play the dominant oxi-mC-producing 
role (47). Whether other synergistic interactions like this one 
take place in immune cells remains to be shown. Moreover, PU.1 
has been shown to interact with TET2 and can bind genes that 
undergo DNA demethylation (48). EBF1 can also interact with 
and thus recruit TET2 to specific loci (49). Another transcription 
factor, WT1, can interact with TET2 and mediate the recruitment 
of TET2 to genes resulting in their upregulated expression (50). In 
addition to these interactions of TET proteins with transcription 
factors that positively regulate gene expression, TET2 is reported 
to interact with IkBζ, which recruits it to the IL-6 locus (51);  
TET2 in turn interacts with and recruits HDAC2 mediating the 
repression of IL-6 (51).

5hmC Levels Correlate Positively with 
Gene expression
The emergence of genome-wide methods to map 5hmC (Box 1) 
has allowed the assessment of 5hmC distribution during T cell 
development and lineage specification (44), as well as during 
in vitro polarization of naïve CD4+ T cells toward T helper subsets 
and induced T regulatory cells (iTregs) (44, 45, 52). It is clear 
from these and other studies that 5hmC is enriched in the gene 

bodies of very highly expressed genes as well as at the most active 
enhancers (44, 45). Once again, the direction of causality is not 
clear: 5hmC may travel with the SET methyltransferase complex 
(53) and thereby with RNA Pol II, thus passively depositing 5hmC 
at transcribed regions. Alternatively, its presence in transcribed 
regions may facilitate Pol II elongation. These possibilities are 
not mutually exclusive; one can envision a positive feedback loop 
where initial transcription through the locus allows 5hmC depo-
sition by TET proteins, after which the deposited 5hmC increases 
chromatin accessibility (see below), thus facilitating subsequent 
cycles of Pol II-mediated transcription. To distinguish these pos-
sibilities, it will be necessary to perform kinetic analyses compar-
ing the rate of change in 5hmC levels and in gene transcription 
following acute deletion of one or more TET genes, as well as 
after restoration of catalytically active and inactive TET proteins. 
Biochemical experiments quantifying in  vitro transcription on 
chromatinized DNA templates will also be needed to pin down 
how 5hmC in gene bodies affects Pol II-mediated transcriptional 
initiation and elongation.

5hmC Distribution Corrselates with 
Chromatin Accessibility
Studies of TET-deficient mice have also revealed a strong associa-
tion of 5hmC distribution with accessible regions in chromatin. 
Among regions identified as differentially accessible in wild 
type (WT) versus Tet2/3-deficient (Tet2/3 DKO) invariant NKT 
(iNKT) cells (67) and B cells (46), the regions that lost acces-
sibility in DKO cells compared to WT were those enriched for 
5hmC in WT cells. These results suggest a regulatory role of 
TET proteins in maintaining chromatin accessibility and thus 
allowing the recruitment of transcription factors that can execute 
lineage-specific transcription programs. Once again, the direc-
tion of causality needs to be worked out: is 5hmC deposited at 
accessible regions because TET is recruited to those regions by 
transcription factors, or does the presence of 5hmC intrinsically 
increase chromatin accessibility? Again, these possibilities are 
not mutually exclusive: kinetic and biochemical analyses, asking 
whether changes in chromatin accessibility occur after acute abla-
tion or restoration of TET function, will be necessary to establish 
possible causal relationships by defining the kinetic sequence of 
events.

The effects of TeT Loss-of-Function 
Are Most Apparent in Rapidly 
Proliferating Cells
In both myeloid-lineage precursors (68) and during lymphoid 
differentiation (46, 67), the most striking consequences of TET 
loss-of-function are observed in cells undergoing rapid prolifera-
tion. This has also been observed for other epigenetic marks such 
as H3K27me3, the product of the PRC2 complex (69, 70). The 
simplest explanation is that these epigenetic marks are stable 
and are primarily lost as a consequence of DNA replication, as 
formally established for 5hmC (18, 71). Under these conditions, 
inactivation of proteins that control the generation or deposition 
of these epigenetic marks is not sufficient to erase the marks from 
the genome. Rather their functions are revealed through passive 
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FiGURe 4 | Suggested model for how loss of TeT2 and TeT3 affects immune cell biology. (Left) In a wild-type precursor cell, TET2 and TET3 facilitate DNA 
demethylation and support the execution of a cell-specific gene expression program resulting in correct lineage specification and controlled cell proliferation. (Right) 
In Tet2/3 DKO precursor cells, the gene expression program is profoundly altered with consequent lineage skewing, aberrant proliferation and malignant 
transformation.
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dilution of the marks during subsequent waves of proliferation, 
especially in the absence of proteins that can reestablish them de 
novo at the genomic loci that they control.

TeT Loss-of-Function and the 
Dysregulation of Cell Lineage 
Specification Programmes
As expected from the positive correlation of 5hmC levels with 
gene expression, 5hmC is enriched in the gene bodies of key 
lineage-specifying factors—including Th-POK, T-bet, Runx3, 
Gata3, RORγt, Foxp3, and Bcl6 (45, 52)—in the cell types and 
at the developmental stages where these factors are most highly 
expressed (44). Similarly, 5hmC is enriched in the transcribed 
regions of genes encoding key cytokines important for immune 
responses, such as IL-4, IFNγ, and IL-17, specifically in the 
T cell subsets that secrete these cytokines (45). Similar findings 
were reported in human CD4 T cells during their differentia-
tion (72, 73). Moreover, 5hmC-enriched regions in human CD4 
T cells are significantly enriched for genetic variants associated 
with T cell diseases such as diabetes and multiple sclerosis, as 
well as with regions involved in T cell-specific chromosomal 
interactions (72). 5hmC deposition is also associated with dem-
ethylation of the Cd4 locus (74) as well as the Pdcd1 (encoding 
PD-1) promoter (75).

These correlations explain the critical roles of TET proteins 
in the regulation of developmental choices in both T and B 
cell lineages (46, 67, 76) (Figure  4). As discussed below, we 

have used mice lacking Tet2 and Tet3, the two TET proteins 
most highly expressed in differentiated cells, to examine 
the role of profound TET loss-of-function in T and B cell 
subsets. Consistent with passive replication-dependent dilu-
tion of 5hmC, lineage skewing is most apparent at and after 
developmental stages characterized by rapid proliferation, when 
5hmC is most efficiently diluted. At such developmental stages, 
TET proteins regulate the expression of genes encoding key 
transcription factors that shape the fate of the cells in which 
they are expressed, including T-bet and ThPOK in T cells and 
IRF4/8 in B cells (46, 67) (Figures  5 and 6). By affecting the 
expression levels of these factors, loss of TET function also 
indirectly affects the regulatory networks in which these factors 
participate, resulting in amplification of the effects and further 
deregulation of cell type-specific gene expression programs.

Lack of Tet2 and Tet3 results in entrapment of T and B cells 
in an immature state characterized by aberrant expression of 
genes that control proliferation and defective maturation. In 
these Tet2/3 DKO mice, the hyperproliferation of immature cell 
types results in malignant transformation and the emergence of 
cancers, as discussed in more detail below (Figure 5).

ROLe OF DNMTs iN T AND B CeLLS
T Cells
The role of DNMTs in T cells has been extensively investi-
gated. Cre-mediated deletion of Dnmt1 in double-negative 
(CD4–CD8–, DN) thymocytes using LckCre revealed a role for 
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FiGURe 5 | (Left) TeT2 and TeT3 demethylate the Tbx21 and Zbtb7b loci, a process associated with increased expression of T-bet and ThPOK, 
respectively, in wild-type invariant NKT (iNKT) precursor cells. T-bet and ThPOK suppress Rorc (encoding RORγt) expression. (Right) in Tet2/3 DKO iNKT 
precursor cells, the Tbx21 and Zbtb7b loci remain methylated and Tbet and ThPOK are expressed at low levels. As a result, RORγt is expressed and Tet2/3 DKO 
iNKT cells are skewed toward the NKT17 lineage.

FiGURe 6 | Model for ten-eleven translocation (TeT)-mediated regulation of igκ enhancers. B cells undergo V(D)J rearrangement of immunoglobulin (Ig) to 
diversify the B cell receptor repertoire during development. While Ig heavy chain genes (IgH) are rearranged primarily at the pro-B cell stage, the Ig light chain genes 
Igκ and Igλ are rearranged at around the pre-B cell stage. Prior to Igκ and Igλ rearrangement, the pioneer transcription factor PU.1 associates with numerous 
enhancers including the 3′ and distal Igκ enhancers despite a “closed” chromatin state (left). Subsequently, PU.1, and potentially E2A recruit Tet2 and Tet3, which 
facilitate 5hmC deposition and/or DNA demethylation with an associated increase in chromatin accessibility of the enhancers, thus presumably facilitating the 
binding of additional transcription factors (middle). In the absence of Tet2 and Tet3 (right), the enhancers show increased DNA methylation and decreased chromatin 
accessibility compared to their wild-type counterparts. In addition to directly regulating Igκ enhancers, TET2/3 regulate the expression of IRF4 and IRF8 (not shown), 
two transcription factors that are important for Igκ rearrangement (top).
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Dnmt1 in survival of αβ T cells as well as lineage specification 
of γδ T cells during thymic development, whereas deletion at the 
double-positive (CD4+ CD8+, DP) stage using CD4Cre resulted 
in decreased proliferation but increased cytokine production by 
naïve T cells (77). Cre-mediated deletion of Dnmt1 in activated 
CD8+ T cells using Granzyme B-Cre resulted in decreased 
expansion of antigen-specific CD8 T cells upon viral infection 
and moderately affected their differentiation to effector and 
memory CD8 T cells (78). Loss of Dnmt3a in CD4+ T cells 
resulted in a slight increase in ectopic cytokine expression and 
lineage plasticity (79). Moreover, T cell-specific deletion of 
Dnmt3a resulted in skewing of CD8 T cells toward memory 
precursors and a decrease of effector CD8+ subsets upon viral 
infection (80). In all cases, there is a strong negative correlation 
of DNA methylation (5mC) at promoters with gene expression. 
For instance, Cd4 is sequentially turned on and off in thymocytes 
depending on the developmental stage, in a manner that is 
likely to be epigenetically controlled (74, 81). Similarly, as Lck 
transcription is upregulated, CpGs in exon 1 through intron 2 
become progressively demethylated (82). Likewise, demethyla-
tion within the transcribed sequences of Il4 and Ifng correlates 
with high expression levels of these cytokines in Th2 and Th1 
cells, respectively (83).

Notably, detailed analyses of DNA demethylation support 
the notion that DNA demethylation follows gene transcription. 
For instance, the Il4 promoter was shown to be demethylated in 
naïve T cells and to remain demethylated in Th1 cells, and there 
was no additional demethylation during the initial few days of 
Th2 differentiation, despite the emergence of fully differentiated 
Th2 cells capable of producing IL-4 (84). In contrast, in Th2 
cells that had been maintained for many weeks, demethylation 
extended from the IL-4 promoter deeply into the gene body and 
the cells produced high levels of IL-4 (84). Similar conclusions 
can be drawn from a study of two conserved regions in the 
Pdcd1 locus, which encodes the inhibitory receptor PD-1 (85). 
Both regions were methylated in naïve CD8+ cells, where the 
Pdcd1 gene is not expressed; upon acute viral infection, both 
regions transiently lost methylation in effector CD8+ cells that 
express PD-1 and partially regained methylation when PD-1 
was silenced in memory CD8+ T cells (85). Both regions 
also remained unmethylated in PD-1-expressing “exhausted” 
CD8+ T cells that are unresponsive to further stimulation with 
antigen (85); these cells emerge during chronic viral infection 
as the result of a negative feedback mechanism stemming from 
prolonged T cell receptor (TCR) stimulation (86). However, the 
levels of DNA demethylation did not correlate quantitatively 
with gene expression, since equivalent demethylation was 
observed in exhausted cells in which PD-1 expression spanned 
a relatively wide range (85). Together these studies indicate that 
the extent of DNA demethylation correlates qualitatively, but 
not kinetically or quantitatively, with the level of gene expres-
sion, supporting the hypothesis that DNA demethylation does 
not “instruct” gene transcription (3, 4).

With the advent of high-throughput sequencing, many groups 
have obtained genome-wide DNA methylation maps for various 
mouse and human T cell types. Analysis of changes in DNA 
methylation during human thymic development using Infinium 

Human Methylation 450 Bead Chips revealed that DNA dem-
ethylation was more frequent than de novo DNA methylation, 
and DNA demethylation more strongly correlated with gain of 
gene expression (87). Moreover, immunoprecipitation of 5mC-
enriched DNA fragments followed by genome-wide sequencing 
(MEDIP-seq) of naïve mouse CD8 cells and CD8 effector T cells 
at day 8 post acute lymphocytic choriomeningitis virus infection 
showed that gain of DNA methylation in promoter regions cor-
related negatively with gene expression (88).

T Regulatory Cells (Tregs)
The transcription factor Foxp3 is essential for the development 
and function of Tregs (89–91). Foxp3 expression during Treg 
cell differentiation is regulated by three conserved non-coding 
sequence (CNS) elements located at the Foxp3 gene locus (92–94). 
Of these, CNS2 was originally identified as a Treg-specific dem-
ethylated region (TSDR) (95) that is fully methylated in naïve T 
cells and differentiated T cell subsets, but demethylated in Tregs. 
An unusual feature of CNS2 is that its methylation status regulates 
the stability of Foxp3 expression rather than the initial level of 
expression (92–94). A few more TSDRs were also reported within 
genes that are important for Treg cell differentiation and function, 
such as Ctla4, Il2ra (Cd25), Ikzf4, and Tnfrs18 (96).

Early findings emphasized the role of DNA methylation in 
the control of Foxp3 expression. Inhibition of DNA methylation 
by the DNMT inhibitor 5-azacytidine (97, 98), or genetic dele-
tion of the gene encoding Dnmt1 in mice (99), eliminated the 
requirement for TGFβ for the generation of iTregs and promoted 
Foxp3 expression in thymic and peripheral Foxp3-negative T 
cell populations in response to TCR stimulation alone. At least 
two methyl-binding proteins, Mbd2 and MeCP2, have been 
reported to have a role in maintaining Foxp3 expression and 
Treg suppressive function (100, 101). Both proteins bind CNS2 
but their functions appear to be different: deficiency of Mbd2 
results, somewhat paradoxically, in increased methylation of 
CNS2 (100) whereas deficiency of MeCP2 was reported to result 
in decreased histone 3 (H3) acetylation (101). In a subsequent 
section, we discuss the role of TET proteins in regulating the 
methylation status of CNS1, CNS2, and other TSDRs (26, 102, 
103).

B Cells
B cells undergo dynamic changes in DNA modification status 
during their development, with an estimated 30% of all CpGs 
exhibiting changes at distinct genomic regions depending on 
developmental stage (104). Ablation of the gene encoding the 
maintenance methyltransferase Dnmt1 completely halted early 
B cell development (105), but the de novo methyltransferases 
Dnmt3a and Dnmt3b were dispensable for B cell development 
in conditional Mb1Cre Dnmt3a/b-deficient mice, although the 
B cell receptor repertoire was skewed toward increased usage 
of proximal Vκ genes (106). Thus, maintenance of global DNA 
methylation is essential for B cell development, while de novo 
methylation is important for proper immunoglobulin (Ig) gene 
rearrangement. Moreover, during their development in the bone 
marrow, B cells selectively express and rearrange only one of 
the two alleles encoding Ig heavy and light chains, respectively, 
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a process termed “allelic exclusion.” Monoallelic expression of 
the Igκ chain correlates with preferential demethylation of the 
rearranged allele (107).

After antigen stimulation and T cell help, naïve B cells become 
germinal center (GC) B cells. In contrast to bone marrow B cells, 
GC B cells undergo global DNA demethylation mostly at het-
erochromatic regions and re-methylation at polycomb-repressed 
regions marked by histone 3 lysine 27 (H3K27) methylation in 
humans (104). However, consistent with increased expression of 
Dnmt1 during GC B cell differentiation, hypomorphic Dnmt1 
mice failed to generate GCs, suggesting that maintenance of a 
specific DNA methylation pattern is critical (108). Similarly, dif-
ferentiation from naïve B cells to plasma cells is also accompanied 
by large scale DNA demethylation, with around 10% of CpGs 
exhibiting significant changes (109), and inhibition of DNA 
methylation by 5-azacytidine increased the percentage of plasma 
cells in a manner dependent on cell division. DNA demethylation 
at these regions correlated with binding of transcription factors 
NFκB and AP-1 at early stages of B to plasma cell differentiation 
and binding of IRF and Oct-2 at later stages, suggesting that 
demethylation was secondarily mediated through transcription 
factor binding, possibly through recruitment of TET proteins as 
further discussed below.

TeT PROTeiNS AFFeCT MULTiPLe 
ASPeCTS OF HeMATOPOieTiC AND 
iMMUNe CeLL DeveLOPMeNT AND 
FUNCTiON

The effects of individual and combined TET gene deletions in 
immune/hematopoietic cell populations have been assessed in 
several studies. The overall conclusion is that combined deletion 
of at least two TET genes is required for profound phenotypic 
effects. Mice lacking individual TET enzymes (Tet1, Tet2, or Tet3) 
display mild overall phenotypes that in most cases only become 
apparent after many months to more than one year. In contrast, 
double deletion of Tet2 and Tet3, the two TET proteins most 
highly expressed in differentiated tissues, has far more deleterious 
effects, which often become obvious within a few weeks.

Myeloid-Lineage Cells
Tet2-deficient macrophages and dendritic cells produce more 
IL-6 in response to stimulation, rendering Tet2-deficient mice 
more susceptible than WT mice to endotoxin-induced shock 
and DSS-induced colitis (51). However, most studies on Tet2 
loss-of-function mutations have focused on the tumor sup-
pressor function of Tet2. Tet2-deficient mice show increased 
numbers of hematopoietic stem/progenitor cells (HSPCs) and 
increased self-renewal in vitro (110). Some Tet2-deficient strains 
display progressive defects in myelopoiesis over a time course 
of 20  weeks, culminating in a myeloid neoplasia reminiscent 
of human CMML (chronic myelomonocytic leukemia) (111). 
Tet3-deficient mice show a mild dysregulation of HSPC prolif-
eration, but they do not develop leukemia, except occasionally 
with low penetrance and very long latency (112). In contrast, 
acute inducible deletion of both Tet2 and Tet3 in hematopoietic 

stem cells resulted in the rapid emergence of an aggressive 
myeloid leukemia with 100% penetrance in only 4 weeks (68). 
Curiously, however, mice lacking Tet1 alone, or both Tet1 and 
Tet2, developed B  cell rather than myeloid leukemias with 
relatively long latency (12–15 months) (113). Thus, Tet1 loss-
of-function predisposes to B cell malignancies with long latency, 
whereas Tet2 and Tet3 act together to suppress myeloid leuke-
mogenesis. Plausible scenarios are that Tet1 is poorly expressed 
in differentiated cells (21), is required for the progression of 
myeloid leukemia, or both. Another possible explanation is 
that Tet1 and Tet2 have distinct functions, whereas Tet2 and 
Tet3 have at least partially overlapping roles. Indeed, Tet1 has 
a major role in 5hmC deposition at promoter/TSS regions in 
mouse embryonic stem (mES) cells, whereas Tet2 and Tet3 seem 
to act predominantly at distal enhancers (44, 46, 67, 76, 114).

T Cells
Tet2 modulates cytokine gene expression during CD4+ T cell 
differentiation, and the observed phenotypes correlate with 
aberrant modification (impaired demethylation) of known or 
putative enhancer elements in genes encoding relevant cytokines 
and transcription factors (45, 102). Deletion of both Tet2 and 
Tet3 in T cells (26) resulted in a dramatic lymphoproliferative 
disease that was lethal by 8 weeks (67); the causes included the 
uncontrolled, antigen-driven expansion of a normally minor 
subpopulation of T cells known as iNKT cells (67), as well as 
impaired Treg function due to unstable Foxp3 expression (26). 
These phenotypes were detectable, but much less apparent, in 
mice with individual loss of Tet2 or Tet3 alone (67).

Invariant NKT cells are selected in the thymus by recog-
nition of lipids through antigen presentation via CD1d, an 
MHC I-like molecule (115, 116). iNKT cells can potently 
secrete cytokines and can act as first responders in infec-
tions. They can be classified based on the expression of key 
lineage-specifying transcription factors: NKT1, NKT2, and 
NKT17 cells express T-bet, Gata3, and RORγt, respectively 
(117, 118). An alternative classification of iNKT cells is based 
on expression of surface markers (115): stage 0 precursors 
are CD24+ and do not express CD44 or NK1.1; stage 1 iNKT 
cells downregulate CD24 and are CD44−NK1.1−; stage 2 iNKT 
cells are CD44+ NK1.1–; and stage 3 cells upregulate NK1.1 to 
become CD44+NK1.1+. iNKT cell subsets are heterogeneous 
and transcriptionally very different, reflecting their distinct 
effector functions (119–121).

Tet2 and Tet3 act together to control iNKT cell expansion 
and cell lineage specification (67). Tet2/3 T-DKO mice showed 
an impressive expansion of iNKT cells even at very young ages. 
The increased absolute numbers of iNKT cells in Tet2/3 DKO 
mice and the concomitant increase of IL-4 secretion gave rise to 
innate-like CD8 T cells (67). Further analysis revealed skewing 
of the Tet2/3 DKO iNKT cells toward the NKT17 lineage, as 
judged by upregulation of RORγt and increased secretion of 
IL-17 (67). In cells lacking Tet2 and Tet3, the genes encoding 
Tbet and ThPOK did not gain 5hmC, remained methylated, 
and did not achieve the high expression levels observed in 
WT counterparts (67) (Figure  4). This resulted in higher 
expression of RORγt and skewing of the Tet2/3 DKO iNKT 
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cells to the NKT17 lineage, whereas NKT2 and NKT1 lineages 
were underrepresented (67). Examination of iNKT subsets 
(117, 119)—stage 0 precursors, NK1.1− and NKT1+ subsets— 
demonstrated that concomitant loss of Tet2 and Tet3 resulted 
not only in altered numbers of iNKT cells but also profoundly 
influenced gene expression programs and thus the identity and 
function of each subset (67). NKT1 cells were not only fewer 
in number, but their identity was greatly altered. In addition 
to their effector function, Tet2/3 DKO iNKT cells also exhibit 
increased proliferative capacity, a property that can explain 
their in  vivo expansion (67), associated with upregulation of 
genes such as Myc and Lef1 that control iNKT cell proliferation 
in NKT2, NKT17, and even in NKT1 cells where Lef1 expres-
sion should have been turned off (119, 120, 122).

T Regulatory Cells
Mice with combined disruption of the Tet2 and Tet3 genes medi-
ated by CD4Cre displayed unstable Foxp3 expression, concomi-
tantly with DNA hypermethylation in CNS1, CNS2, and other 
TSDRs (Figure 7A) (26). Although Tet2 and Tet3 are the major 
TET proteins expressed in differentiated tissues and cell types, 
including lymph nodes and spleen (21), combined deletion of 
Tet1 and Tet2 also resulted in CNS2 hypermethylation, impaired 
Treg cell differentiation and function, and autoimmune disease 
(102). This study also reported that hydrogen sulfide (H2S) was 
required for Treg cell differentiation and function by promoting 
the expression of Tet1 and Tet2, which were recruited to the 
Foxp3 locus by TGFβ-activated Smad3 and IL2-activated Stat5 
to maintain Foxp3 CNS2 demethylation and Treg-cell-associated 
immune homeostasis (102). It is likely that all three TET proteins 

play important roles in maintaining TSDR demethylation and 
Treg stability/function.

In a small molecule screen performed in mES cells, vitamin 
C was identified as a component of cell culture media required 
for germline gene induction and shown to act by increasing 
TET activity and consequently promoting DNA demethylation 
at germline gene promoters (123). Consistent with this report, 
vitamin C potentiated TET-mediated demethylation of TSDRs 
and increased the stability of Foxp3 expression in differentiat-
ing iTregs (Figure 7B) (26, 103). Administration of sulfinpyra-
zone, an inhibitor of a vitamin C transporter, confirmed that 
CNS2 demethylation and the in vivo generation of peripheral 
Tregs were dependent on TETs and vitamin C (103). Vitamin 
C had the same effects on iTregs differentiated from human 
peripheral blood T cells; and both human and mouse iTregs 
generated in the presence of vitamin C showed suppressor 
activity comparable to that observed in Tregs isolated ex vivo 
(26). Collectively, these findings suggest that vitamin C and 
other small molecule activators of TET protein function might 
be valuable tools to stabilize in vitro-generated iTregs for clini-
cal applications.

B Cells
Similar to iNKT cells (67), pro-B cells preferentially express Tet2, 
Tet3, and, to a much lesser extent, Tet1. We and others have 
shown that Tet2 and Tet3 are required for early B cell develop-
ment: deletion of both the Tet2 and Tet3 genes in early B cells with 
Mb1Cre resulted in a developmental arrest at the pro-B to pre-B 
stage, at least partly reflecting impaired Igκ rearrangement (46, 
76). TET proteins regulate multiple aspects of B cell development 
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at this stage, potentially by regulating the accessibility of key 
enhancers at the chromatin level (46). Our evidence is consist-
ent with a model in which “pioneer” transcription factors such 
as PU.1 initially bind to enhancers with a “closed” chromatin 
conformation; subsequent recruitment of TET proteins to these 
regions followed by TET-dependent 5hmC deposition and/or 
DNA demethylation then facilitates chromatin remodeling at 
the Igκ and other enhancers required for Igκ rearrangement. In 
addition, TET proteins regulate the expression of IRF4/8, two 
transcription factors important for inducing Igκ rearrangement. 
Importantly, the observed phenotypic changes in Tet2/3-deficient 
B cells were reversible and dependent on TET catalytic activity, as 
re-expression of the active WT but not a mutant inactive TET2 
catalytic domain partly restored Igκ enhancer accessibility and 
rearrangement (Figure 6).

TeT LOSS-OF-FUNCTiON AND CANCeR

Both TET1 and TET2 are implicated in cancer: TET1 is an 
MLL partner in cases of acute myeloid and lymphoid leukemias 
(124) and has been reported to function as an oncogene in 
MLL-rearranged leukemias (125) as well as a tumor suppressor in 
other contexts [reviewed in Ref. (126, 127)]. In contrast, TET2 is 
clearly a tumor suppressor in all hematopoietic cell types reported 
so far, since deletions and loss-of-function mutations in the TET2 
gene are strongly associated with myelodysplastic syndromes, 
myeloproliferative neoplasms, and myeloid leukemias as well as 
lymphoid malignancies (126, 127). In both myeloid and lym-
phoid malignancies, TET2 mutations occur in somatic cells, not 
in the germ line, and “second hit” mutations in other genes are 
typically required for progression to a fully malignant phenotype 
(126, 127). Frequent mutations in TET2, and sporadic mutations 
in TET3, have also been noted in peripheral T cell lymphoma 
(PTCL), including angioimmunoblastic T cell lymphoma and 
PTCL-NOS (PTCL, not otherwise specified) (128–130), and the 
malignant T cells often bear NK cell markers, thus resembling 
NKT cells (130). TET3 is rarely mutated in human cancers, 
but loss of TET function—as judged by low 5hmC levels—is 
frequently observed in many types of cancers as discussed below 
(126, 127).

Diverse Human Cancers Show TeT  
Loss-of-Function without TeT 
Coding Region Mutations
A large fraction of myeloid malignancies without TET2 (or 
other TET) mutations displayed low 5hmC levels, pointing to 
profound loss of TET enzymatic activity (36, 127). Low 5hmC 
levels in the absence of TET coding region mutations have also 
been documented in breast cancer, melanoma, and other can-
cers (126, 127). The underlying mechanisms include decreased 
TET mRNA/protein expression due to promoter methylation, 
microRNA upregulation, or increased activity of E3 ubiquitin 
ligases; global inhibition of TET function, for instance by the 
“oncometabolite” 2-hydroxyglutarate produced by dominant 
recurrent mutations in IDH1 and IDH2, predominantly in the 
context of glioblastoma and myeloid leukemias [reviewed in 

Ref. (131)]; or aberrant regulation of the nuclear-cytoplasmic 
localization of TET proteins (especially TET3) [reviewed in Ref. 
(127)]. Because TET proteins are utilizing molecular oxygen 
(132), 2-oxoglutarate (a product of the Krebs cycle) and reduced 
iron (Fe(II)) as substrates and co-factors (9, 10), TET enzymatic 
activity is likely to be sensitive to many signals including hypoxia, 
metabolic state (2-oxo-glutarate levels), Fe2+ availability, and the 
redox environment (127).

TeT Deficiency in T Cells Results in an 
Antigen-Driven, Transmissible iNKT 
Cell Lymphoma
As noted in the previous section, combined deficiency of Tet2 and 
Tet3 in T cells is associated with dramatic iNKT cell expansion 
as well as impaired T regulatory function (67). The iNKT expan-
sion is driven by antigen recognition and not by Treg deficiency: 
transfer of small numbers of purified Tet2/3 DKO iNKT cells into 
healthy non-irradiated congenic recipient mice led to further 
expansion and the emergence of an iNKT cell lymphoma even in 
the presence of an intact immune system, whereas the cells did 
not expand upon transfer into similar recipient mice that lacked 
CD1d, the MHC Class I-like protein that presents lipid antigens 
to iNKT cells (67).

The iNKT cell lymphomas developing in Tet2/3 DKO mice 
display several features of the PTCL observed in p53−/− mice 
(133). Although most p53−/− mice develop thymic T cell lym-
phomas that may or may not spread to other organs, about 21% 
of these mice develop PTCL characterized by splenomegaly and 
hepatomegaly without thymic involvement. These p53−/− PTCL 
resemble the iNKT cell lymphomas of Tet2/3 DKO mice in many 
respects: staining with CD1d-αGalactosyl-Ceramide tetramers, 
expression of TCR chains bearing the invariant Vα14-Jα18 rear-
rangement, and upregulation of PLZF, LEF1, and Myc (67, 133). 
In both mouse strains, iNKT cell expansion driven by TCR stimu-
lation was observed upon transfer of purified Tet2/3 DKO and 
p53−/− iNKT cells to WT but not CD1d-deficient mice (67, 133). 
Consistent with antigen-dependent expansion, development 
of iNKT cell PTCL in p53-deficient mice was accelerated by 
repeated injections with heat-killed bacteria expressing glycolipid 
antigens, and diminished by treatment of mice with anti-CD1d 
or cyclosporin A, a compound that interferes with TCR signaling 
by inhibiting the calcineurin/NFAT pathway (133). Connecting 
these observations, the myeloid leukemias developing after acute 
Tet2/3 deletion with Mx1Cre and polyI:polyC show impaired 
DNA repair (68); moreover, 5hmC was shown to be deposited at 
sites of DNA damage in x-irradiated HeLa cells (134). Whether 
and how cells with profound TET loss-of-function develop 
defects in p53-dependent or other DNA damage sensing path-
ways remains to be explored.

TeT Proteins and B Cell Malignancy
In addition to regulating B cell development, TET proteins are 
essential tumor suppressors in B cells. Although TET2 deletions 
and loss-of-function mutations are more frequent in myeloid 
malignancies, they were observed in approximately 2% of various 
B cell malignancies, including a total 5.7% of patients diagnosed 
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TABLe 1 | Summary of immune phenotypes in Tet mutant mice.

T and B cell phenotypes in ten-eleven translocation (TeT)-deficient mice

Genotype Phenotype Reference

Tet2fl/fl Cd2Cre: deletion of Tet2 in hematopoietic cells  – Reduced secretion of signature cytokines under in vitro polarization 
toward helper lineages

 – Reduced in vivo secretion of cytokines

Ichiyama et al. (45)

Tet2−/−: germline deletion of Tet2  – Normal T cell and B cell development Ko et al. (110)

Tet1−/−: germline deletion of Tet1  – Enhanced stem cell proliferation
 – Pro-B-cells show enhanced DNA damage
 – B cell lymphocytosis

Cimmino et al. (136)

Tet1fl//fl Tet2fl//fl Mx1Cre: interferon-inducible deletion of Tet1 
and Tet2 in hematopoietic cells

 – B-ALL emergence Zhao et al. (113)

Tet2+/−Tet3fl//fl CD4Cre and Tet2fl//fl Tet3fl//fl CD4Cre mice: 
germline deletion of Tet2 plusTet3 deletion in T cells 
(beginning at the DP thymocyte stage) or simultaneous 
deletion of Tet2 and Tet3 in T cells (beginning at the DP 
thymocyte stage)

 – Death due to lymphoproliferative disease at 8 weeks old
 – Reduced number of peripheral T regulatory cells and decreased 

stability of Foxp3 expression due to increased methylation of the 
CNS2 intronic enhancer of the Foxp3 locus

 – Crucial role of vitamin C for TET activity
 – Invariant NKT cells (iNKT) cell lineage skewing and expansion
 – Tet2/3 DKO iNKT cells can mediate a CD1d-restricted iNKT cell 

lymphoma

Yue et al. (26)
Tsagaratou et al. (67)

Tet2−/−Tet3fl//fl Mb1Cre: germline deletion of Tet2 and deletion 
of Tet3 early in the B cell lineage

 – Blockage from pro-B to pre-B
 – Decreased number of CD19+B220+ B cells in spleen (8–11 weeks old)
 – Increased number of IgM– IgD– B cells in spleen (8–11 weeks old)
 – Myeloid expansion in spleen
 – B cell malignancy at 20 weeks

Lio et al. (46)

Tet2fl//fl Tet3fl//fl Mb1Cre: simultaneous deletion of Tet2 and 
Tet3 early in the B cell lineage (6- to 8-week-old mice)

 – Blockage from pro-B to pre-B
 – Normal number of splenic follicular B cells with more proximal Vκ 

usage
 – Increased number of IgM– IgD– B cells in spleen
 – Decreased splenic marginal zone B cells and peritoneal B1 cells
 – Decreased T-dependent antibody response
 – Myeloid expansion in spleen

Orlanski et al. (76)

Tet1−/− Tet2 fl//fl CD4Cre: deletion of Tet1 in the whole 
organism plus deletion of Tet2 in T cells (DP stage)

 – Impaired Treg development and function Yang et al. (102)

Tet2fl//fl LckCre and Tet2 fl//fl CD4Cre: T cell-specific deletion 
of Tet2

 – Impaired CNS2 demethylation of the Foxp3 locus, role of vitamin C in 
promoting TET activity

 Sasidharan Nair et al. 
(103)

with diffuse large B cell lymphoma (135). Tet1-deficient mouse 
B cell progenitors showed increased self-renewal in  vitro 
and  the  mice developed B cell lymphomas at an advanced age 
(18–24  months) (136). Consistent with these mouse genetic 
studies, the TET1 promoter was shown to be hypermethylated 
and TET1 expression was repressed in human patients with 
non-Hodgkin B cell lymphoma (136). Intriguingly, whereas 
Tet2-deficient mice develop myeloid leukemia, dual Tet1/Tet2 
deficiency resulted instead in the development of B cell lymphoma 
with delayed disease progression (12–15 months) compared to 
Tet2 deficiency alone (113). As discussed above, Tet1 behaves as a 
weak tumor suppressor in B cells but may be weakly oncogenic in 
HSPC, where it promotes the development of myeloid leukemia 
in the absence of Tet2. An alternative hypothesis, not mutually 
exclusive, is that TET2 mutations predispose to multiple types 
of hematopoietic cancers, with myeloid leukemia is the most 
prominent and rapidly occurring.

In our own studies, mice with combined early deletion of 
Tet2 and Tet3 in developing B cells using Mb1-Cre developed 

progressive B cell lymphoma and succumbed to disease within 
5–6 months of age, an earlier onset compared to 15–20 months 
observed in Tet1/2-deficient mice (46, 113). TET3 mutations are 
rarely found in human hematological cancers (137), but never-
theless, these results clearly demonstrate the function of TET pro-
teins in preventing B cell and other hematopoietic malignancies.

OPeN QUeSTiONS AND FUTURe 
DiReCTiONS

Extensive research in immune cells and other cell types over 
the last several years has shed light on the in vivo functions of 
TET proteins, revealing a profound influence of these proteins 
on immune development and function (summarized in Table 1). 
However, many questions remain to be answered.

Although the genomic distribution of 5hmC and other 
oxi-mC have been determined in different cell types, it has not 
yet been possible to define the genomic regions at which TET2 
and TET3 exert their effects in each cell type of interest. This 
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has primarily been due to the lack of commercially available 
antibodies that are suitable for chromatin immunoprecipitation. 
Thus, it has not been possible to distinguish overlapping versus 
non-overlapping functions of the TET2 and TET3 is cells lacking 
both proteins.

It is also not clear to what extent the catalytic activity of TET 
enzymes is needed for their diverse functions, as implied by the 
complex phenotypes of gene-disrupted mice. The interaction 
of TET1 with the co-repressor SIN3A in ES cells (138) and of 
TET2 with HDAC in macrophages (51) may confer functions that 
depend on protein–protein interactions and the stabilization of 
larger protein complexes rather than on TET catalytic activity. 
Further research is needed to shed light on these possibilities.

Another open question in the field is how TET proteins exert 
their tumor suppressive functions. Among the various possibili-
ties are loss of proliferation control; dysregulated expression of 
cell cycle-related genes, tumor suppressors or oncogenes such 
as Myc; accumulation of DNA breaks; and loss of genomic 
integrity (46, 67, 68, 136). Unraveling which of these events is 
a direct consequence of TET loss and which is indirect will be 
a challenging task. To illustrate, although loss of TET function 
has been associated with increased DNA breaks in several 

systems (68, 134, 136), it is not yet established whether TET 
proteins directly participate in genome stability, for instance, by 
recruiting DNA repair factors via 5hmC recognition or through 
direct protein–protein interactions. Future mechanistic studies 
that incorporate a kinetic component will be needed to com-
pare the relative time course of TET gene deletion and loss of 
5hmC from the genome, with the time course of the diverse 
consequences of TET loss-of-function that have been observed 
in different cell types.
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