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Human eosinophils represent approximately 1% of peripheral blood leukocytes. 
However, these cells have the propensity to leave the blood stream and migrate into 
inflamed tissues. Eosinophilic inflammation is present in a significant proportion of 
patients with severe asthma. Asthma is a chronic inflammatory disorder that affects 
more than 315 million people worldwide, with 10% having severe uncontrolled disease. 
Although the majority of patients can be efficiently treated, severe asthmatics continue 
to be uncontrolled and are at risk of exacerbations and even death. Interleukin-5 (IL-5) 
plays a fundamental role in eosinophil differentiation, maturation, activation and inhibition 
of apoptosis. Therefore, targeting IL-5 is an appealing approach to the treatment of 
patients with severe eosinophilic asthma. Reslizumab, a humanized anti-IL-5 monoclonal 
antibody, binds with high affinity to amino acids 89–92 of IL-5 that are critical for binding 
to IL-5 receptor α. Two phase III studies have demonstrated that reslizumab adminis-
tration in adult patients with severe asthma and eosinophilia (≥400 cells/μL) improved 
lung function, asthma control, and symptoms. Thus, the use of blood eosinophils as a 
baseline biomarker could help to select patients with severe uncontrolled asthma who 
are likely to achieve benefits in asthma control with reslizumab. In conclusion, targeted 
therapy with reslizumab represents one step closer to precision medicine in patients with 
severe eosinophilic asthma.
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inTRODUCTiOn

Bronchial asthma is a chronic heterogeneous inflammatory disorder characterized by recurrent 
symptoms of reversible airflow obstruction, bronchial hyperresponsiveness, and airway inflam-
mation (1, 2). It has been estimated that asthma affects more than 315 million people worldwide, 
with approximately 10% having severe or uncontrolled asthma (3, 4). In addition, the worldwide 

Abbreviations: ACQ, asthma control questionnaire; AQLQ, asthma quality of life questionnaire; ECP, eosinophil cationic 
protein; EDN, eosinophil-derived neurotoxin; EPX, eosinophil peroxidase; FDA, Food and Drug Agency; FEV1, forced expira-
tory volume in the 1st second; GM-CSF, granulocyte-macrophage colony-stimulating factor; ICS, inhaled glucocorticoids; ILC, 
innate lymphoid cells; IL-5, interleukin-5; IL-3, interleukin-3; LABA, long-acting β2-agonists; MBP, major basic protein; NK 
T cells, natural killer cells.
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prevalence of asthma continues to increase and is projected to 
reach more than 400 million by 2020 (5). Importantly, approxi-
mately 250,000 deaths can be attributed to asthma each year, 
making it a severe chronic lung disorder (6).

Asthma’s manifestations can range from mild to very severe. 
The majority of patients can be efficiently treated with different 
drugs administered orally and/or by specific devices [e.g., inhaled 
glucocorticoids (ICS)]. Patients with severe asthma require treat-
ment with high-dosage ICS or systemic glucocorticoids plus 
long-acting β2-agonists (GINA, accessed 2016). However, inhaled 
and systemic glucocorticoids can have multiple local (e.g., dys-
phonia and candidiasis) and systemic side effects (e.g., cataracts, 
osteoporosis, and adrenal suppression).

Despite the effectiveness of these treatments for most asthmat-
ics, many patients continue to be uncontrolled and are at risk for 
severe asthma exacerbations or even death. These patients expe-
rience a high disease burden including recurrent exacerbations 
and hospital admissions (7). Finally, the cost of asthma treatment 
increases with disease severity (8).

The old concept that asthma represents a single disease has 
been replaced with the belief that it instead represents a heteroge-
neous mix of overlapping disorders that result from the interplay 
between multiple environmental factors (e.g., allergens, superal-
lergens, viral and bacterial infections, etc.) that act in concert with 
hundreds of susceptibility genes (9–13).

Recently, it has been proposed that asthma can be classified 
according to two major endotypes. Endotype is a disease subtype 
defined by a distinct functional or pathological mechanism 
(14–16). “Th2-high” asthma is characterized by increased levels 
of type 2 inflammation, mainly mediated by eosinophils, mast 
cells, Th2 cells, group 2 innate lymphoid cells (ILC2s), and IgE-
producing B lymphocytes (1). Patients with Th2-high asthma 
have eosinophilia and other signs of type 2 inflammation. By 
contrast, “Th2-low” asthma is less well characterized and prob-
ably represents a mix of multiple endotypes involving subgroups 
of patients (1, 17, 18).

Approximately 5–10% of asthmatic patients have severe 
asthma that is poorly controlled by drugs including high-dosage 
ICS and/or systemic glucocorticoids. The mechanisms of gluco-
corticoid subsensitivity/insensitivity in severe asthma are largely 
unknown (19). Several mechanisms have been proposed to 
explain glucocorticoid resistance of a subset of severe asthmatics 
(20–28). Glucocorticoid subsensitive asthmatic patients with 
eosinophilic are likely to benefit from anti-interleukin-5 (IL-5)/
IL-5Rα therapies (19). As we move away from the traditional 
clinical description to include a multidimensional emphasis on 
cellular biology (endotypes and phenotypes), we increase our 
opportunity to provide targeted therapies, especially in more 
severe diseases (29). Accurate definition of asthma endotypes/
phenotypes is critical in selecting targets for therapies, providing 
basis for targeted treatment of asthma (30).

eOSinOPHiLS in ASTHMA

Approximately 5–10% of asthmatic patients have severe asthma 
that is poorly controlled by drugs including high-dosage of 
ICS and/or systemic glucocorticoids. The mechanisms of 

glucocorticoid subsensitivity or insensitivity in severe asthma are 
largely unknown (19).

Eosinophilic inflammation is present in a significant propor-
tion of patients with severe asthma (31) and is associated with 
exacerbations and decreased lung function (32). Moreover, 
progressive increase in sputum and blood eosinophils is accom-
panied with poor pharmacological asthma control (33).

There is compelling evidence that eosinophils and their 
mediators are critical effectors to severe eosinophilic asthma and 
eosinophilic granulomatosis with polyangiitis (EGPA) (34, 35). 
EGPA is a systemic vasculitis frequently occurring in patients 
with severe asthma and eosinophilia. EGPA patients often have 
severe respiratory involvement that requires treatment with oral 
glucocorticoids (36).

Due to their rarity (approximately 1% of peripheral blood 
leukocytes), eosinophils have been erroneously neglected for 
decades (37). During the last years, researchers of immediate 
hypersensitivity appreciated that these cells represent reposi-
tories of a wide spectrum of pro-inflammatory mediators such 
as several cationic proteins (major basic protein; eosinophil 
cationic protein; eosinophil peroxidase; and eosinophil-derived 
neurotoxin), cytokines/chemokines, and lipid mediators (35). 
Importantly, eosinophils have the capacity to adhere to 
activated endothelial cells, to leave the bloodstream and to 
concentrate at the site of allergic inflammation (38). These cells 
and their mediators are found in airway tissue and sputum 
of patients with asthma (39). In addition, human eosinophils 
play a major role in the modulation of the functions of a 
wide spectrum of cells of the innate and adaptive immune 
system, including subsets of lymphocytes, macrophages, mast 
cells, basophils, neutrophils, dendritic and plasma cells, and 
platelets (Figure  1).

iL-5 AnD iTS ReCePTOR

Interleukin-5 is the most important growth, differentiation, and 
activating factor for human eosinophils (35). This cytokine is a 
dimeric protein with a 4-helix bundle motif, and it acts on target 
cells by binding to its specific IL-5 receptor (IL-5R), which consists 
of an IL-5 receptor α (IL-5Rα) subunit (IL-5Rα) and a common 
receptor β subunit (βc) (40, 41). IL-5Rα specifically binds IL-5 
and induces the recruitment of βc to IL-5R (42). The βc subunit 
is a signal-transducing molecule shared with two receptors 
for monomeric cytokines, IL-3, and granulocyte-macrophage 
colony-stimulating (GM-CSF) (40). Figure  2 illustrates that 
IL-5 is mainly produced by ILC2, Th2 cells, mast cells, invariant 
natural killer cells (NK T cells), and eosinophils themselves (43). 
Although IL-5 is crucial for maturation and activation of human 
eosinophils (44), there is evidence that GM-CSF and IL-3 can 
function as eosinophil survival factors (45). Recent evidence indi-
cates that IL-5, along with GM-CSF and IL-3, mediates eosinophil 
cellular survival by NF-Kb-induced Bcl-xl, which inhibits apop-
tosis (46). Interestingly, substantial levels of eosinophils remain 
after IL-5 neutralization or genetic deletion, suggesting that there 
are alternative pathways for promoting eosinophilia (47). Finally, 
IL-3 triggers prolonged signaling through activation of ribosomal 
protein S6 in human eosinophils providing new insight into the 
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FigURe 1 | eosinophils and their mediators activate or modulate a plethora of cells of the innate and adaptive immune system. Major basic protein 
(MBP) activates human neutrophils. Eosinophils prime/activate human basophils and mast cells through the release of cytokines [interleukin-5 (IL-5), interleukin-5 
(IL-3), granulocyte-macrophage colony-stimulating (GM-CSF), NGF, and PGD2] or cationic proteins [eosinophil cationic protein (ECP), MBP, and eosinophil 
peroxidase (EPX)]. IL-4 and IL-13 favor M2 polarization of macrophages. EDN promotes the migration, maturation, and activation of dendritic cells (DCs). Eosinophils 
can act as antigen-presenting cells to initiate T cell responses and contribute to the recruitment of Th2 cells by producing the chemokines CCL17 and CCL22. 
These cells also favor T follicular helper (Tfh) cell maturation via the production of IL-6. Eosinophils promote B cell proliferation through an unknown mechanism. 
Eosinophils prime B cells and sustain plasma cells through the production of APRIL and IL-6. MBP and EPX induce platelet aggregation.
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mechanisms underlined differential activation of eosinophils by 
IL-5 and IL-3 (48).

Whereas IL-5 is crucial for supporting mature eosinophils, 
the signals that support earlier eosinophil lineage events are 
less defined. Recent evidence indicates that IL-33 is required for 
basal eosinophil homeostasis (49) suggesting that this cytokine, 
through activation of ILC2 and their production of IL-5, plays a 
key role in promoting eosinophilopoiesis in response to allergen 
exposure (50).

Based on the previous observations, during the last decades 
targeting IL-5 or IL-5Rα appeared an interesting approach to 
the treatment of patients with severe eosinophilic asthma and 
hypereosinophilic-associated disorders (35, 51). Two humanized 
monoclonal antibodies directed against IL-5 [mepolizumab 
(proposed trade name Nucala; GSK) and reslizumab (proposed 
trade name Cinqair; Teva)] have provided an opportunity 
to investigate the role of this pathway in defining therapy of 
severe eosinophilic asthma (44, 51). Moreover, benralizumab 
(MedImmune/AstraZeneca), a humanized monoclonal antibody 
directed against the α-chain of the IL-5R, present on eosinophils 
and basophils (52), demonstrated efficacy and safety in adult 
patients with severe eosinophilic asthma (53, 54).

Reslizumab, previously known as Sch 55700, is a human-
ized, neutralizing anti-IL-5 antibody. Sch 55700 was humanized 

using complementary determining region drafting technology 
from a rat monoclonal antibody with a Kd of 53  pM against 
human IL-5 (55). The humanized antibody (reslizumab) retains 
the potency of the parent antibody, blocks IL-5R binding, and 
inhibits IL-5-induced cell proliferation (56). Reslizumab binds 
to a small region corresponding to amino acids 89–92 of IL-5 
that are critical for binding to IL-5Rα (55) (Figure 2).

An initial multicenter study evaluated in a randomized, 
double-blind the effect of a single dose of i.v. reslizumab in a 
small group of severe asthmatics. The dose of 1 mg/kg produced 
a reduction in eosinophil counts but did not improve lung 
functions or symptom score (57). A subsequent multicenter, 
randomized, double-blind, and placebo-controlled study in 
poorly controlled asthmatics and sputum eosinophils ≥3% 
demonstrated that reslizumab (3  mg/kg i.v. every 4  weeks per 
four doses) reduced sputum eosinophils and improved airway 
function particularly in patients with nasal polyps (58). In two 
duplicated, multicenter, double-blind, parallel group, rand-
omized, and placebo-controlled trials, a large number of patients 
were treated with reslizumab (3 mg/kg i.v. every 4 weeks per 13 
doses). This monoclonal antibody reduced asthma exacerbations 
and improved FEV1 (59).

A phase III study further characterized the efficacy and safety 
of reslizumab (3  mg/kg i.v. every 4  weeks per four doses) in 
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FigURe 2 | interleukin-5 (iL-5) plays a fundamental role in the growth, maturation, and activation of human eosinophils. Group 2 innate lymphoid cell 
(ILC2), Th2 cells, mast cells, natural killer cells (NK T cells), and eosinophils themselves produce IL-5. This cytokine specifically binds to IL-5 receptor α (IL-5Rα) and 
recruits the βc subunit on the membrane of eosinophils. The βc subunit is the signal-transducing molecule shared with IL-3 and granulocyte-macrophage 
colony-stimulating (GM-CSF). This IL-5Rα/βc interaction leads to a series of biochemical events that control eosinophil differentiation and maturation in the bone 
marrow, cell migration to the site of allergic inflammation, the release of pro-inflammatory mediators, and inhibition of apoptosis. IL-3 and presumably GM-CSF, 
through binding to the βc of IL-5 receptor, can also function as eosinophil survival factors. Reslizumab binds with high affinity (Kd of approximately 50 pM) to amino 
acids 89–92 of human IL-5 that are critical for binding to IL-5Rα, resulting in inhibition of eosinophil maturation and activation.
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patients aged 12–75 years with asthma inadequately controlled 
by ICS and with a blood eosinophil count ≥400  cells/μL (60). 
Reslizumab improved lung function (FEV1), asthma control 
and symptoms, and quality of life (asthma control questionnaire 
and asthma quality of life questionnaire) and was well-tolerated. 
In another phase III study, the efficacy of reslizumab (3  mg/
kg i.v. every 4 weeks per four doses) was evaluated in patients 
with poorly controlled asthma, particularly those with blood 
eosinophils ≤400 cells/µL (61). Interestingly, in the latter group of 
patients, clinically meaningful effects on lung functions (FEV1) 
and symptoms were not seen in patients unselected for baseline 
eosinophils.

The two latter studies emphasize the importance of select-
ing patients based on the number of eosinophils (≥400  μL) 
in peripheral blood. Thus, the use of blood eosinophils as a 
baseline biomarker could help to select patients who are likely to 
achieve more benefits in asthma control with reslizumab. Raised 
blood eosinophil count has recently been described as a useful 
biomarker to assess patients with eosinophilic asthma (53, 54, 
60–64) and as a predictor of response to glucocorticoids (65). 
However, it should be emphasized that blood eosinophil counts 
do not accurately predict sputum eosinophils in severe asthmat-
ics (66). Moreover, there is no correlation between sputum and 
blood eosinophil counts in severe glucocorticoid-dependent 
asthmatics (67).

In March 2016, the Food and Drug Administration concluded 
that reslizumab has an adequate safety profile and demonstrates 

the efficacy in treating severe eosinophilic asthma in adults. The 
approved dosage regimen is 3 mg/kg i.v. over 20–50 min every 
4 weeks for patients aged ≥18 years.

COnCLUDing ReMARKS

Several studies have demonstrated that the i.v. administration 
of reslizumab is well-tolerated in adult patients with severe 
eosinophilic asthma up to 1 year. Recent evidences demonstrate 
that eosinophils play a role in cancer rejection (68, 69) and that 
several hematologic and tissue cancers can be associated with 
eosinophilia (70). In addition, it has been suggested that “targeted 
anti-eosinophilic strategies may unmask or even accelerate pro-
gression” of certain tumors in few patients with hypereosinophilic 
syndrome (71). Therefore, future surveillance and “real-life” stud-
ies will be needed to further confirm the safety of reslizumab in 
long-term treatment of patients with severe eosinophilic asthma. 
Recent studies have demonstrated the safety and efficacy of two 
monoclonal antibodies anti-IL-5—mepolizumab (63, 64) and 
reslizumab (59–61)—and of anti-IL-5 Ra (53, 54) in the treat-
ment of adult patients with severe eosinophilic asthma. Different 
inclusion criteria (e.g., blood eosinophil count ≥300 vs ≥400/mL) 
and routes of administration (s.c. vs i.v.) of anti IL-5/anti-IL-5 
Ra preclude a quantitative comparison of the results obtained in 
different trials.

A major advance in the development of a precision medicine 
approach for the treatment of severe asthma is the ability to select 
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the appropriate patients. Ideally, patients should be selected by 
an easily measured biomarker. The studies with reslizumab treat-
ment for severe eosinophilic asthma demonstrate that the blood 
eosinophil count (≥400  μL) appears closely associated with a 
clinical response in adult patients (59–61). Therefore, the age of 
precision medicine has arrived for the subset of severe asthmat-
ics with an eosinophil-driven phenotype using anti-IL-5 therapy 
with reslizumab [(72) (posted online)].

Future studies should evaluate the safety and efficacy of resli-
zumab in children and in patients with other eosinophil-driven 
diseases. Preliminary studies in patients with nasal polyps (73) 
and in children and adolescents with eosinophilic esophagitis 
(74) demonstrated that reslizumab reduced tissue eosinophils 
without improvement in symptoms. Additional studies should 
investigate the optimal dose and strategy of reslizumab treat-
ment in these and other eosinophil-driven diseases (e.g., atopic 
dermatitis and EGPA).

Future studies should also evaluate the outcome of patients 
with severe eosinophilic asthma after discontinuation of 
reslizumab therapy. A preliminary study reported that ces-
sation of mepolizumab in patients with eosinophilic asthma 
resulted in a rapid increase of blood eosinophils followed by 
gradual increase in asthma symptoms and exacerbations (75). 

This  interesting observation emphasizes the importance of 
maintaining suppression of eosinophilic inflammation in 
severe asthmatics.

Targeted therapy with reslizumab appears to be effective and 
safe in the treatment of adults with severe eosinophilic asthma 
and represents one step closer to precision medicine.
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