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The inflammasome is an important multiprotein complex that functions during inflamma-
tory immune responses. The activation of inflammasome will lead to the autoactivation 
of caspase-1 and subsequent cleavage of proIL-1β and proIL-18, which are key sources 
of inflammatory manifestations. Recently, the roles of inflammasomes in cancers have 
been extensively explored, especially in inflammation-induced cancers. In different 
and specific contexts, inflammasomes exhibit distinct and even contrasting effects in 
cancer development. In some cases, inflammasomes initiate carcinogenesis through 
the extrinsic pathway and maintain the malignant cancer microenvironment through 
the intrinsic pathway. On the contrary, inflammasomes also exert anticancer effects by 
specialized programmed cell death called pyroptosis and immune regulatory functions. 
The phases and compartments in which inflammasomes are activated strongly influence 
the final immune effects. We systemically summarize the functions of inflammasomes in 
inflammation-induced cancers, especially in gastrointestinal and skin cancers. Besides, 
information about the current therapeutic use of inflammasome-related products and 
potential future developing directions are also introduced.
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iNTRODUCTiON

Inflammation occurs as a defensive response when a body with vessel system is exposed to invad-
ing pathogens as well as physical and chemical hazards. The immune reactions within the body 
consist of innate and adaptive immune responses (1). Innate immune system has emerged along the 
evolution of prokaryotes, including tissue barriers, innate immune cells as well as molecules. Unlike 
adaptive immune system, innate immune system rarely produces immunological memory. Instead, 
it acts as the first defensive line in a fundamental and unsophisticated way. More importantly, it can 
sense danger signals and pass them on by intercellular interactions and cytokines (2, 3). Meanwhile, 
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some multiprotein complexes are formed to facilitate the immune 
responses, for example, apoptosomes and inflammasomes (4, 5).

The recognition of pathogenic components is critical to initi-
ate the host defense system, which requires pattern-recognition 
receptors (PRRs) (2). Ligands for PRRs are more common and 
with minor variation, such as lipopolysaccharide (LPS) and 
heat shock proteins, which are accordingly named pathogen-
associated molecular patterns (PAMPs) and damage-associated 
molecular patterns (DAMPs). Among PRR families, NOD-like 
receptor (NLR) draws intensive attention for its crucial modulat-
ing function to organize a multiprotein complex termed inflam-
masome (6, 7). The NLR is generally comprised of a central 
nucleotide-binding and oligomerization domain (NACHT) with 
dNTPase function, which contributes to conformational changes 
and autoactivation. In the amino terminus, flanking to NACHT 
domains, caspase recruitment domain (CARD), pyrin (PYD), 
baculovirus IAP repeat (BIR), or leucine-rich repeat (LRR) is 
present and sometimes they coexist (1, 8). The CARD interacts 
with the initiator caspase-1 and activates the executioners 
through downstream signaling pathways. PYD belongs to death 
fold domain superfamily, which is identified as a proapoptotic 
mediator and function through homotypic interactions. The 
special motif BIR facilitates the recruitment of adaptor proteins 
and downstream effectors while LRR, a motif located in the 
carboxyl-terminus, can sense intracellular PAMPs and DAMPs, 
similar to its role in toll-like receptors (TLRs).

BASiC iNTRODUCTiON OF 
iNFLAMMASOMe FAMiLY

Classification
Inflammasome is a multiprotein complex mainly functioning 
as a platform for the activation of inflammatory caspases which 
then lead to the maturation of proinflammatory cytokines such 
as interleukin-1β (IL-1β) and interleukin-18 (IL-18). In addition 
to proinflammtory cytokines, inflammasome also triggers the 
secretion of a myriad of leaderless proteins to coordinate cell 
proliferation and tissue repair (9, 10).

Platform proteins, adaptor proteins, and effector proteins are 
three key elements assembling inflammasomes. The classifica-
tion basically depends on the platform proteins, which in turn 
determine the presence of adaptor proteins and the architecture 
of the intact multiprotein complex. The platform proteins mainly 
consist of NLR family as well as HIN-200 protein absent in mela-
noma 2 (AIM2), whose full name is hematopoietic IFN-inducible 
nuclear antigens with 200 amino acid repeats (1). NLR family can 
be divided into three subtypes by polygenetic analysis, including 
NODs, NLRPs, and IPAFs. Four NLRs proteins, NLRP1, NLRP3, 
NLRP6, and NLRC4, have been characterized in genetic in vivo 
experiments with immune-deficient mice (11). Interestingly, 
NLRP3 and NLRP6 do not have CARD domains. Hence, they 
cannot recruit the initiator caspases directly, which calls for the 
adaptor protein, apoptosis-associated speck-like protein contain-
ing a CARD (ASC), to complete the inflammatory responses (1). 
ASC is essential for the assembly and the activation of inflammas-
omes with CARD or PYD through homologous interactions. The 

NLRC4 inflammasomes with and without ASC are engaged in 
different pathways and cellular events, respectively, which affirms 
the regulatory functions of ASC (12). AIM2 is comprised of PYD 
and HIN-200 domains (9). With PYD, AIM2 can recruit ASC to 
complete the assembly of inflammasomes.

Major Mechanisms of inflammasome 
Activation
As discussed above, the structures of inflammasomes vary from 
one to one and therefore the patterns of inflammasome activa-
tion differ. Here, we will introduce the major mechanisms of 
inflammasome activation and enroll the latest discoveries and 
breakthroughs in this field.

NLRP1 Inflammasome
As the first identified inflammasome, NLRP1 recognizes lethal 
toxin released by Bacillus anthracis, Toxoplasma gondii, muramyl 
dipeptide (MDP) as well as the imbalance of ATP within host 
cells (13–16). Anthrax lethal toxin is a bipartite macromolecule 
complex comprised of two proteins. One is protective antigen 
(PA) and the other is lethal factor (LF) (16). To protect the active 
component LF from degradation, PA oligomerizes to open up 
a pore on the cell membrane and transport LF inside. LF is a 
zinc-dependent metalloprotease cleaving the mitogen-activated 
protein kinase kinase to hinder MAPK signaling pathway, which 
eventually results in multisystemic dysfunction (16). The protease 
property of LF is essential to initiate the activation. In the direct 
model, LF cleaves the N-terminal region of NLRP1B, releasing 
NLRP1B from the inactivated state (14, 16). The cleaved NLRP1B 
recruits caspase-1 through CARD domains. Proximal caspase-1 
dimerizes and leads to subsequent maturation of proinflam-
matory cytokines. In the indirect model, the target of LF is an 
unknown host factor X which suppresses the function of NLRP1B 
(14, 16). After the host factor X is processed by LF, the following 
procedures proceed step by step.

The studies on another important ligand bacterial MDP have 
been carried out with human NLRP1. It was shown that only 
when MDP, ATP, and NLRP1 were combined with procaspase-1, 
cleaved caspase-1 was detectable in the system (15). It suggests 
that the interaction between bacterial MDP and NLRP1 allow 
NLRP1 to combine with ATP. NLRP1 mutation study has verified 
NLRP1 can sense the altered ATP level as metabolic disturbance 
and can be activated spontaneously (17). Certainly, more experi-
ments are supposed to be conducted to clarify the details in the 
activation of NLRP1 inflammasome.

NLRP3 Inflammasome
NLRP3 inflammasome is one of the best-studied inflammas-
omes. NLRP3 responds to various activators, a spectrum from 
microorganisms as well as their derived products, endogenous 
danger signals to environmental insults. First, NLRP3 can be 
activated by Sendai virus, Influenza virus, Adenovirus, Candida 
albicans, Saccharomyces cerevisiae, Staphylococcus aureus, and 
even bacterial pore-forming toxins (18–22). DAMPs like extra-
cellular ATP, hyaluronan, and monosodium urate (MSU) are also 
ligands for NLRP3 (23, 24). What’s more, amyloid-β can induce 
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the activation of NLRP3 inflammasome in Alzheimer’s patients, 
which makes NLRP3 inflammasome a hot research target in 
neurodegenerative diseases (25, 26). Other irritants like silica and 
asbestos are regarded as environmental insults related to NLRP3 
inflammasome activation (24).

Based on the experimental evidence, there are three hypotheses 
to explain the mechanisms of NLRP3 inflammasome activation. 
Upon physiological status, NLRP3 is under the auto-suppression 
with internal interaction between NACHT domains and LRRs. 
When activators like PAMPs or DAMPs enter the cytoplasm, 
the auto-suppressive condition is reversed (27). Conformational 
transformations and recruitments of caspases occur subsequently. 
An important hypothesis for the activation of NLRP3 inflamma-
some is the channel and pore-forming model. As is mentioned 
above, extracellular ATP is a classic activator for NLRP3 inflam-
masome. It binds to P2X7, an ATP-gated ion channel protein (28), 
to allow K+ efflux and to facilitate the pore formation mediated 
by a gap junction protein pannexin-1 (29–31). With or without 
other bacterial pore-forming toxins, the pannexin-1 hemichannel 
enhances K+ efflux and allows extracellular DAMPs and PAMPs 
to get inside the cell (32). However, for some agonists with big 
size, like MSU crystals and asbestos, they cannot be transported 
through the pores. Big size irritants were hard to digest by phago-
cytosis due to the size and properties. Insufficient clearance of 
particles results in phagosome disintergration and lysosomal rup-
ture. The damaged lysosome is unable to remain intact and the 
leakage occurs (33, 34). Cathepsin B is one of the most important 
proteolytic proteins released by ruptured lysosomes. It is believed 
NLRP3 is auto-inhibited by protease sensitive proteins under 
the steady status. When ectopic cathepsin B acts on inhibitory 
proteins, NLRP3 is reversed from the inhibition. This is called 
lysosomal rupture model or proteolytic cascade (33). In support 
of this theory, reduced level of activated NLRP3 was found in 
human cells that were cultivated with cathepsin B inhibitors. 
However, it was found cathepsin B inhibitors might function 
through off-target effects whose real target is NALP1 (35). Thus 
the accuracy of this theory remains debatable.

If there is a common pathway where different stimuli converge, 
it is explainable why different pathogens and environmental 
insults can induce similar immune responses. Fortunately, the 
reactive oxygen species (ROS) model has been delivered (36). It 
is believed the production of ROS enhanced by activators can be 
sensed by NLRP3 directly or indirectly, which leads to its activa-
tion (37, 38). This hypothesis is supported by abundant experi-
mental evidence. During the maturation of caspase-1, typical 
ROS scavengers like N-acetyl or P22 (phox) subunit of NADPH 
oxidase were downregulated (39). Under the resting status, intra-
cytoplasmic thioredoxin-interacting protein (TXNIP) binds to 
its constitutive inhibitor oxidoreductase thioredoxin (TRX) (40). 
When DAMPs and PAMPs are transported inside the cell, ROS 
accumulates, which leads to the disassociation of TXNIP–TRX 
dimers. Free TXNIP will bind to the corresponding domain in 
NLRP3, triggering the activation (40). Nevertheless, in another 
research, the absence of TXNIP did not hinder the activation 
completely, which implies that other regulatory pathways may be 
involved. Also, some stimuli related to the production of ROS, 
for example, ligands for TLRs, sometimes cannot initiate the 

activation of NLRP3 inflammasome directly (41, 42). It suggests 
ROS alone may not be sufficient to accomplish the entire activa-
tion. Moreover, overproduction of ROS will impair caspase-1 
competence by oxidation and glutathionylation. Hence, in order 
to realize a sound immune response, the production and clear-
ance of ROS should be regulated strictly.

Here, we summarize three mainstream mechanisms of NLRP3 
inflammasome activation (the channel and pore-forming model, 
the lysosomal rupture model, and the ROS model) in Figure 1. 
However, the fact is that different models may function simul-
taneously during the activation with different extent. Therefore, 
an integrated model has emerged. Nowadays, with increasing 
experimental evidence, the integrated theory has been being well 
acknowledged.

NLRC4 Inflammasome
NLRC4 inflammasome has been reported to induce caspase-1 
proteolysis and caspase-1-dependent cell death in macrophages 
(43). So far, many activators for NLRC4 have been identified, 
such as flagellin from Salmonella typhimurium, Pseudomonas 
aeruginosa, Legionella pneumophila, and Shigella flexneri (43–47). 
In fact, bacterial secretion systems are very important to process 
and transport the sensitive ligands into cytosol. There are mainly 
two types of secretion systems in this immune event. One is 
type III for S. typhimurium and P. aeruginosa (45, 46) while the 
other is type IV for L. pneumophila (44). Not only flagellin, some 
needle proteins and inner rod proteins can be also injected inside 
(48). However, little evidence demonstrated the direct binding 
between those ligands and NLRC4. For a long time, flagellin is 
regarded as an essential factor to trigger the activation of NLRC4. 
Interestingly, some bacteria like S. flexneri without flagellin can 
still be sensed by NLRC4 (47). ASC is dispensable for NLRC4 
(49). But in the presence of ASC, the production of IL-1β and 
IL-18 are enhanced in  vivo. In macrophages infected with S. 
typhimurium, ASC binds to another ASC and NLRC4 platform 
protein by homologous interaction (27). Caspase-1, caspase-7, 
and caspase-8 are recruited into the interspace forming by the 
NLRC4 inner ring and ASC outside bases (27).

AIM2 Inflammasome
Absent in melanoma 2 inflammasome is the first identified non-
NLR family inflammasome (50). AIM2 belongs to PYHIN family 
whose members are featured by PYD and HIN-200 proteins (1). 
HIN-200 family proteins recognize nucleic acids as activators 
(51). Unlike NLRP3 inflammasome, AIM2 does not own a CARD, 
which calls for the assistance of ASC to recruit caspase-1. HIN-
200 can sense the cytosolic double-strand DNA from bacterial 
or viral origins as well as the self-DNA from apoptotic cells (51, 
52). Once DNA binds to HIN-200 domain, AIM2 will undergo 
conformational changes that subsequently contribute to ASC and 
caspase recruitments.

effects of inflammasome Responses
Initiation of Inflammation
Different activated inflammasomes will lead to a common pro-
cess: the activation of caspase-1. As a result, mature IL-1β and 
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IL-18 will be released. IL-1β is a critical inflammatory cytokine 
which causes fever of host, activates lymphocytes, and results 
in local infiltration of neutrophils (53). When IL-1β binds to its 
receptors, NF-κB and MAPK pathways will be activated, which 
in turn liberates genes of proinflammatory cytokines from the 
inhibited state (54). AP-1 and its downstream pathways are also 
regulated by IL-1β (55). Similar to NF-κB and MAPK, AP-1 also 
upregulates the secretion of chemokines, adherence molecules, 
and proinflammatory cytokines. TLR-related pathways regulate 
the activity of inflammation. The experimental system is habitu-
ally primed by TLR ligands such as LPS or proinflammatory 
cytokines such as TNF before the activation (56). Although, the 
activation of caspase-1 may also complete without the priming 
of TNF or LPS, the level of mature IL-1β is pretty low (11, 56, 
57). TLR recognition leads to the expression of proinflammatory 
cytokines like proIL-1β that are induced by LPS or TNF through 
NF-κB pathway. In one word, TLR pathways prepare the raw 
ingredients and inflammasome-dependent caspase-1 exerts the 
cleavage and produces the mature IL-1β.

Another important interleukin cleaved by caspase-1 is proIL-
18. Although IL-18 does not cause profound body temperature 
alteration, it promotes the release of IFN-γ which facilitates the 
polarization of Th1 subpopulation (58). Analogously, IL-18 also 
leads to the release of proinflammatory cytokines, chemokines, 
and synthesis of NO to initiate inflammation (59). What’s more, 
IL-18 induces the production of Fas ligands for critical apoptosis 
in immunosurveillance (60).

Pyroptosis
Pyroptosis was first reported by Zychlinsky and his colleagues in 
macrophages infected with Shigella flexneri (61). It was initially 
recognized as apoptosis. But later, it was confirmed as a lytic form 
of cell death and revised as caspase-1-dependent cell death or 
another name: pyroptosis (62, 63).

Pyroptosis possesses its own characteristics distinguished from 
apoptosis. First, pyroptosis is a process of inflammatory cell death 
accompanied with the release of cytosolic contents while apop-
tosis rarely leads to inflammation and infiltration of neutrophils 
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(64). In apoptosis, the initiator caspases (capase-2/-8/-9/-10) are 
activated to cleave the effector caspases (caspase-3/-6/-7) (64). 
By contrast, upon pyroptosis, it is caspase-1/-4/-5/-11 that is 
activated to function. In most cases, functions of the initiator 
and the effector are integrated in identical caspases. Second, the 
integrity of the cell membrane is disrupted in pyroptosis while 
the cell membrane remains intact in apoptosis (65). Third, DNA 
chromatin condensation occurs in both apoptosis and pyroptosis, 
but nuclear fragmentation is not prominent in pyroptosis and 
therefore DNA laddering test usually turns out negative (62). 
However, TUNEL assay is positive in pyroptosis (66). Unlike 
apoptosis, nucleus stays intact in pyroptosis and the cleavage of 
ICAD, the inhibitor of caspase-activated DNase, is not present 
(65, 67).

Activation of caspase-1/-4/-5/-11 will lead to the formation of 
pores on the cell membrane, which is the final event in pyroptosis. 
In recent years, Shao with his colleagues endeavored to reveal 
secrets in the final step of pyroptosis: how the pore is formed and 
how it damages the cells. They identified gasdermin D (Gsdmd) 
as the caspase substrate associated with the membrane damage 
(68). Gsdmd-deficient cells cannot undergo pyroptosis even 
stimulated by LPS or other canonical inflammasome agonists. 
The experimental results indicated gasdermin-N domains of 
gasdermin protein such as GSDMD, GSDMA3, and GSDMA 
can combine with membrane lipids like phosphoinositides and 
cardiolipin to conduct the pore-forming activity in cells (69). 
The findings will deepen our understandings of inflammasome-
mediated responses.

iNFLAMMASOMe, iNFLAMMATiON, AND 
CANCeR

Convergence of intrinsic and extrinsic 
Pathway
Introduction of Intrinsic and Extrinsic Pathway
In a traditional perspective, inflammation is a defensive process 
against infections and tumors. However, the relationship between 
inflammation and cancer is more complicated. In fact, inflamma-
tion, especially with the participation of inflammasomes, plays 
a key role in carcinogenesis as well as the promotion of cancer.

Many cancers are linked with chronic inflammation, for 
instance, gastric cancer from Helicobacter pylori-induced 
gastritis, hepatocarcinoma from hepatitis B virus (HBV), or 
hepatitis C virus (HCV) infection and colorectal cancer from 
ulcerative colitis (UC) (70, 71). The activation of inflammasomes 
has been documented in many human cancers and the role of 
inflammasome-related cytokines like IL-1β is also implicated in 
in vivo experiments.

The connection between inflammation and cancer can be 
divided into two paradigms: inflammation-induced carcinogen-
esis, also known as the extrinsic pathway, and cancer-associated 
inflammation, which is also called the intrinsic pathway (72). 
Inflammation-induced carcinogenesis is generally initiated by the 
extrinsic pathway (Figure 2). When cancer is emerged, cancerous 
cells will activate the intrinsic pathway, realizing the convergence 
of intrinsic and extrinsic pathway to accelerate the promotion and 

metastasis of cancer. During the development of cancer, there are 
four types of inflammation probably involved. They are chronic 
inflammation caused by infections or autoimmune reactions, 
inflammation caused by environmental and dietary exposure, 
therapy-induced inflammation, and cancer-associated inflamma-
tion (73). The former two are attributed to the extrinsic pathway. 
Chronic inflammation, particularly, is a classic predisposing 
factor for carcinogenesis.

When an inflammasome is activated in face of microbial or 
environmental insults, it leads to the release of IL-1β and IL-18. 
Such proinflammatory cytokines continue to attract a myriad 
of immune cells (e.g., neutrophils, leukocytes, macrophages, 
and monocytes) to organize a local immune network, which 
is enhanced by many cytokines, chemokines, and interactions 
among immune cells. When inflammation is initiated and 
promoted, the damage to cells and tissues also arises. Now, we 
will specifically introduce how the extrinsic pathway initiates 
inflammation-induced carcinogenesis in the following five sec-
tions (Figure 2).

Carcinogenic Effects of ROS/Reactive Nitrogen 
Species (RNS)
Under the influence of inflammatory cytokines, the inflamed 
tissues generate ROS and RNS which are toxic to DNA and con-
tribute to DNA damage (74). When DNA damage occurs where 
oncogenes or cancer suppressor genes are localized, it will result 
in the unlock of oncogenes as well as loss-of-function mutations 
of some cancer suppressor genes (75). Proteins, lipids, and nucleic 
acids are also likely to be oxidized directly under the high oxida-
tive stress. Moreover, ROS can induce DNA double-strand breaks 
or DNA cross-links, which leads to replication mistakes. ROS/
RNS also facilitates carcinogenesis indirectly by the modifica-
tion of intermediate metabolic products which mostly are also 
reactive species. ROS/RNS can modify metabolic products with 
carbonylation, S-nitrotyrosylation, disulfide formation, or other 
chemical approaches (72). Such modified products will affect 
bioactivators like enzymes to alter the cellular or biochemical 
processes. Lipid peroxidation product 4-hydroxy-2-non-enal 
is able to cause DNA-adducts and inactivate important cancer 
suppressor genes like PTEN and STK11 (76, 77).

Genomic Instability in Carcinogenesis
Genomic instability in inflamed tissues is usually observed in 
inflammation-induced cancers. The most common genomic 
abnormalities are microsatellite instability and telomere 
changes (78, 79). Genomic instability tends to occur before 
the inactivation of cancer suppressor genes such as TP53 (80). 
So it may be the first genetic event that establishes the basis of 
carcinogenesis. Microsatellite instability is implicated in many 
inflammation-cancer transformation models. The proportion 
of detectable microsatellite instability reaches about 50% in UC 
patients (81).

Telomere length is a marked distinction between cancerous 
cells and normal cells. Chronic inflammation may accelerate 
telomere shortening to induce genomic instability. It was shown 
that telomere volume expressed a linear correlation with telomere 
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length in gastric carcinoma cells with H. pylori infection (82). It 
suggests carcinogenesis may occur if telomeres are shortened to 
a critical length. Thus the shortened telomere may be a potential 
biomarker for carcinogenesis in gastric cancers. Also, shortened 
telomeres are noticed in colon biopsies from UC compared with 
nearby tissues (83).

Damaged DNA Repair Systems in Carcinogenesis
Chronic inflammation can impair DNA repair systems to enhance 
carcinogenesis. As is mentioned, inflammation could dam-
age DNA by ROS/RNS directly or through other intermediate 
oxidative reactive species. Once damage is detected, DNA repair 
systems will be initiated automatically to correct genetic errors. 
There are three types of DNA repair systems: base excision repair 
(BER), nucleotide excision repair (NER), and DNA mismatch 
repair (MMR). The anticancer effect of BER is demonstrated 
in dextran sulfate sodium (DSS)-induced colon tumor. AAG, 
known as alkyladenine DNA glycosylase, is responsible for BER 
and able to reverse the colon carcinogenesis (84). Furthermore, 
Aag-deficient animals infected with H. pylori exhibited severe 
gastric damage even without the existence of precancerous 

lesions (84). However, adaptive induction of BER system may 
lead to microsatellite instability that facilitates carcinogenesis  
(85, 86). In this regard, the effect of BER on carcinogenesis 
remains controversial.

High oxidative stress of chronic inflammation also inhibits 
DNA repair systems. Activated neutrophil-derived myeloper-
oxidase (MPO) represses the NER pathway in inflamed tissues 
(87). What’s more, the MPO-processed product hypochlorous 
acid (HOCl) has similar effects (87). In LPS-induced acute lung 
injury model, the expression of NER-associated genes like Xpa 
and Xpf was decreased (88).

Mismatch repair system is also related to microsatellite 
instability. There are two key genes in MMR system: hMSH2 
and hMLH1 (89, 90). The proteins they encode interact with 
different homologous proteins to conduct repair activity. 
When inflammatory condition was mimicked by activated 
neutrophils, colon epithelial cells with different mismatch 
abnormalities responded differently. Colon epithelial cells 
expressing hMSH2 displayed G2/M arrest while those do not 
express hMSH2, p53, or p21 continued the cell cycle (91). Mlh1 
knockout mice displayed higher proportion of colon cancer 
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after the administration of DSS. In colon cancerous tissues, the 
level of p53 and iNOS was increased and more oxidative DNA 
damage accumulated (92).

Altered Signaling Pathways to Blame: NF-κB and 
STAT3
When deficient repair systems cannot mend the DNA damage, 
molecular signaling pathways will be altered as well. Among 
countless molecular pathways associated with carcinogenesis, 
NF-κB and STAT3 are most fundamental ones that are con-
stitutively activated in cancerous cells. NF-κB and STAT3 are 
critical communicating knots to maintain the malignant state. 
Their target genes are in charge of diverse dimensions of cell life: 
proliferation, survival, apoptosis, and damage repair (93).

NF-κB consists of a bundle of signal-responsive transcription 
factors including RelA, c-Rel, RelB, NF-κB1, and NF-κB2 (94). 
With extracellular stimuli, IκB kinase complex will be phospho-
rylated and degraded, which releases NF-κB dimer into nucleus 
to modulate inflammatory and cell survival genes (95, 96). The 
activation of NF-κB pathway will produce abundant unprocessed 
cytokines as ingredients for inflammasome-mediated cleavage. 
The role of inflammasome with NF-κB in cancers has been 
demonstrated in several experiments. In the murine model of 
colitis-associated colorectal cancer (CAC), genetic ablation 
of Ikkb results in reduced tumor incidence and size due to the 
decreased release of cytokines (71). Although NF-κB pathway 
is a main target in lung cancer, NF-κB inhibitor does not really 
work out in its treatment. One reasonable explanation is myeloid 
inhibition of NF-κB strengthens the process of proIL-1β by 
neutrophils and IL-1β signaling in turn promotes the prolifera-
tion of lung epithelial cells to attenuate treatment efficacy (97). If 
interleukin-1 receptor (IL-1R) antagonist bortezomib is added, 
tumor formation and growth will be restricted in vivo. Another 
underlying relationship between IL-1β and NF-κB has been also 
clarified in colon cancer studies. The expression levels of IL-1β, 
NF-κB (RelA), and miR-181a in colon cancer tissues are higher 
than those in normal tissues. Experiments have confirmed IL-1β 
stimulates the expression of miR-181a via NF-κB pathway. 
Increased miR-181a inhibits PTEN to enhance the proliferation 
of colon cancer cells (98).

Inflammasome effectors may also activate NF-κB target genes 
directly. Activated inflammasomes lead to the autoactivation of 
caspase-1 and sequentially arouse caspase-3/-7 as apoptotic or 
non-apoptotic mediators. It was reported caspase-7 was activated 
by caspase-1 and translocated to the nucleus after the stimulation 
of LPS. In this way, caspase-7 cleaved PARP1 which is localized 
at the promoters for a subset of NF-κB target genes. It suggests 
inflammasome-dependent caspase activation can regulate the 
expression of proinflammatory genes through the cleavage of 
PARP1 (99).

Inflammasome components like ASC can also interact with 
NF-κB components. Recent evidence implies that ASC has an 
inflammasome-independent function to activate MAP kinase 
and NF-κB pathway and eventually enhance the production of 
non-inflammasome cytokines and chemokines (100).

Apart from induction of proinflammatory cytokines, 
chemokines (e.g., IL-8), and adhesion molecules (e.g.,VCAM 

and ICAM), NF-κB also exerts effects on antiapoptotic genes like 
Birc2, Birc3, Xiap, Bcl2, Bcl3, Bcl2l1, cell cycle regulatory protein 
like cyclin D1 as well as proangiogenic factors like VEGF. Also, 
NF-κB may downregulate apoptosis-associated genes like TP53, 
BAX, and BAD (73).

STAT3 is a member of signal transducer and activator of 
transcription family which stays inactive without stimuli (101). 
The activation of STAT3 mainly relies on JAK family members. 
Once critical tyrosine residues are phosphorylated, STAT3 will 
undergo dimerization and activate a wide array of target genes 
(102). Activated STAT3 has been demonstrated in cellular 
components of cancer microenvironment. Murine models with 
the depletion of the suppressor of cytokine signaling-3, which 
is an endogenous inhibitor of JAK–STAT pathway, displayed 
more colonic crypt formation and increased size of colon tumor 
after continuous administration of DSS (103). Neoplastic cells 
and immune cells produce a broad species of cytokines such as 
IL-6, IL-22, IL-23, and EGF due to the activated STAT3 signaling 
(104, 105). Besides, the expression of corresponding receptors on 
membrane surface like EGFR and IL-23R increases as well (106). 
STAT3 also interacts with other pro-carcinogenesis genes like 
Kras, Src, and Abl1 whose gene products enhance STAT3 activ-
ity in return (107–109). NF-κB and STAT3 function as primary 
molecular pathways and invite more signaling pathways to join 
the cross talk, bridging the genetic alterations with phenotype 
manifestations.

Pathological Focus on Host Defensive System
In addition to inflammation-derived damage to the genetic 
materials, host defense also plays a role in inflammation-induced 
cancers. This theory was delivered from CAC. There is a huge 
amount of commensal flora inhabiting in intestines and colons, 
which is not pathogenic in physiological condition. However, 
when intestinal epithelium is unable to remain intact from 
physical, chemical, or microbial insults, the flora will activate 
NF-κB pathway in macrophages through TLRs. Influenced by 
proinflammatory factors like prostaglandins, chemokines, and 
interleukins, the genes tend to mutate. Meanwhile, survival sig-
nals are strongly enhanced in transformed epithelial cells. What’s 
more, incomplete integrity of epithelium increases the intestinal 
exposure to microbial products which may be carcinogenic and 
sequentially promotes neoplastic transformation. Hence, favora-
ble host defense is required for anti-carcinogenesis (110).

Formation of Cancer Microenvironment
Once premalignant or naïve tumor cells emerge, the tumor itself 
may initiate cancer-associated inflammation. Cancer-associated 
inflammation is a classic representative of the intrinsic path-
way to organize inflammatory microenvironment for cancers 
(Figure  3). Cancer microenvironment is critical for epithelial-
to-mesenchymal transition, angiogenesis, and metastasis. 
Inflammatory environment also enhances cancerous resistance 
against immune attacks.

Immune Cells in Cancer Microenvironment
In cancer microenvironment, immune cells exhibit both pro-
cancer and anticancer effects. However, especially in chronic 
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inflammation scenario, they show preference in cancer growth 
and promotion. Tumor-associated macrophages (TAMs) are 
prime regulators of cancer-associated inflammation (111). 
Patients with the presence of TAMs are associated with unfa-
vorable prognosis due to their immune suppression functions. 
Alteration of immune cell polarization has also been reported in 
inflammation-induced cancers (112). In terms of T helper cells 
involved, there are two important types of immune responses 
attracting attention. M1 macrophages usually activate Th1 cells to 
evoke cellular immunity and shows cytotoxicity while M2 mac-
rophages tend to function with Th2 cells and lead to immunosup-
pression, angiogenesis, and tissue remodeling activities. Th2 is 
associated with an array of cytokines like IL-4, IL-5, IL-9, IL-10, 
IL-13, and TGF-β. In inflammation-induced cancers, M2 type 
immune response is enhanced, which is known as Th1 versus Th2 
switch (111, 112). In circumstance of HBV or HCV infection, a 
Th2 dominant microenvironment favors persistent inflammation 
and embraces the transformation from acute hepatitis to chronic 
liver disease, even hepatocarcinoma (113, 114). However, Th1 
immune response claims the predominance in H. pylori infection, 

in which IFN-γ is believed to induce precancerous gastric atrophy, 
metaplasia, and dysplasia in mice (115).

Another important immune cell involved in suppression 
of anticancer immunity is myeloid-derived suppressor cell 
(MDSC). MDSCs are a population of immature myeloid-derived 
immune cells with potential of differentiation. MDSCs are easy 
to be detected in patients with high risk of metastasis (116–118). 
The activity of MDSCs is regulated by inflammation. Evidence 
showed COX-2 inhibitors were able to reduce the accumulation 
of MDSCs in Fas-overexpressing tumors (119). Correspondingly, 
intratumoral inflammation endows MDSCs the resistant property 
against apoptotic toxicity of Fas/FasL. MDSCs are recruited and 
regulated by multiple inflammatory mediators such as IL-1β, IL-6, 
and PGE2, which are released by tumor cells and stromal cells in 
an autocrine or paracrine fashion. In Il1r-deficient murine model, 
the recruitment of MDSCs and tumor progression was repressed 
and the cancer-associated inflammation in local inflamed tissues 
was also attenuated. As expected, persistent absence of IL-1R 
antagonist led to opposite results (120). Like MDSCs, regulatory 
T cells are also crucial for immunosuppression. They are featured 
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by the high expression levels of multiple immune-checkpoint 
receptors, such as cytotoxic T-lymphocyte-associated antigen 4 
and programmed cell death protein 1 (121). It was shown regula-
tory T cells can suppress the endogenous interactions between 
T  cells and tumor-antigen-presenting dendritic cells (DCs) in 
tertiary lymphoid structures to dampen the elimination of tumor 
cells. In this regard, regulatory T cells can be important therapeu-
tic targets in cancer microenvironment (122).

Non-Cellular Immune Mediators in Cancer 
Microenvironment
Interleukin-1β, as an important inflammasome-processed prod-
uct, plays a complicated role in cancer microenvironment. Unlike 
IL-1α, IL-1β is compartmentalized in extracellular environment 
after cleavage. IL-1β is an important mediator linking innate 
and adaptive immune responses. IL-1β promotes the polariza-
tion of IFN-γ-secreting CD8+ T cells and induces generation of 
IL-17-producing γδT cells (123–125). It was shown dying tumor 
cells failed to prime IFN-γ-secreting CD8+ cells in the absence 
of functional IL-1 receptors (123). γδT cells are critical immune 
cell population in innate immune responses. γδT cells are capable 
of recognizing tumor-associated antigens to conduct anticancer 
activities (125). However, recent studies are inclined to interpret 
IL-1β as a pro-cancer factor due to its immunosuppressive and 
chemoresistant properties. The role of IL-1β in cancer invasion 
was clarified in B16 murine melanoma models. Apte and his 
colleagues injected melanoma cells into C57BL/6 wild-type, Il1a, 
and Il1b knockout mice, respectively. It turned out carcinogenesis 
was reduced by 50% in Il1a knockout group compared with 
wild-type groups. Interestingly, there was no tumor formed in 
Il1b knockout group, which highlighted the important role of 
IL-1 especially IL-1β in carcinogenesis and cancer invasion of 
B16 melanoma (126). Besides, the polymorphism of IL-1 (IL-1B-
31*C/-511*T and IL-1RN*2/2*) is associated with the reduced 
production of gastric acid and gastratrophia with infection of 
H. pylori (127). Chronic infection with HCV is more likely to 
proceed into hepatocarcinoma with variable polymorphism of 
IL-1 and when it comes to pancreatic carcinoma, the prognosis 
is worse (128, 129).

The activation of IL-1/IL-1R signaling pathway enlists multi-
ple mediators to join the inflammation, such as IL-6, IL-8, TNF-α, 
and their soluble receptors. IL-6 is an important downstream 
target gene of NF-κB. Once NF-κB is activated, the expression 
of IL-6 will be increased. Since IL-6 is a strong inducer of STAT3 
pathway, downstream genes of STAT3 will also be activated 
sequentially. The IL-6–STAT3 signaling axis maintains the intra-
tumoral inflammation and promotes tumor growth. IL-6 released 
by senescent cells can be sustained and enhanced in autocrine 
manner while IL-6 promotes the proliferation of surrounding 
tumor cells in paracrine manner. Bcl-XL and cyclin D1 equip 
tumor cells with chemoresistance and meanwhile the release of 
VEGF promotes angiogenesis to guarantee the nutritional supply 
for tumor cells (72, 130).

In addition to IL-1β, IL-18 is also secreted in inflam-
matory responses and exerts anti-carcinogenesis effects in 
colorectal inflammation. The competition between pro- and 

anticancer cytokines will finally determine the property of cancer 
microenvironment.

Anticancer effects of inflammasomes
Apart from pro-cancer effects, anticancer effects of inflam-
masomes are also recorded. First, inflammasome can remove 
the tumor cells by specialized cell death which is introduced 
as pyroptosis. As is known, cancerous cells are equipped with 
the capacity to escape from programmed cell death and get 
into an immortal phase. Therefore, it is reasonable to speculate 
pyroptosis is suppressed in carcinogenesis (131). It was reported 
Caspase1-deficient and Nlrc4-deficient colon epithelial cells were 
more resistant to programmed cell death and exhibited increased 
tumor load compared with wild types (132, 133). It suggests the 
underlying association between dampened cell-autonomous 
elimination and local carcinogenesis.

Inflammasome-dependent anticancer effects are more 
profound when combined with chemotherapies. Immunogenic 
cell death is highlighted in inflammasome anticancer effects 
(131). It is a post-tumor effect, which is initiated by tumor-
derived molecules but amplified by inflammasomes and other 
relevant immune cells. When therapeutic approaches damage 
primary tumor cells, they induce autophagy of tumor cells 
and lead to the leak of ATP into extracellular space (134, 135). 
ATP, as an endogenous ligand, can bind to P2Y2 receptors on 
macrophages, resulting in tumor infiltration (136). Meanwhile 
it can also bind to P2RX7 receptors on DCs to activate NLRP3 
inflammasome (123). Then IL-1β and IL-18 are released and 
they work together to promote γδT  cell-induced secretion of 
IL-17, which recruits IFN-γ-producing CD8+ αβ T cells (131). 
As a result, IFN-γ finally damages therapy-resistant tumor 
cells. According to this mechanism, any deficiency within the 
stimulating axis will attenuate immunogenic cell death. For 
example, tumor cells which express CD39, a nucleotide-metab-
olizing enzyme, cannot trigger sufficient anticancer responses. 
It can be rescued by the administration of extracellular ATPase 
inhibitors (131). The same situation applies to the deficiency 
of P2RX7 receptors or use of any specific P2RX7 neutralizing 
antibody (124, 125). Another study found that tumor-derived 
autophagosomes, which is also known as defective ribosomal 
products in blebs (Dribbles), can induce the maturation of 
DCs and the secretion of proinflammatory cytokines in TLR 
and NLRP3 inflammasome-dependent manner (137). It was 
proved to show tumor suppression effects as a therapeutic vac-
cine in several preclinical cancer models (137). In the model of 
colorectal cancer metastasis in liver, the activation of NLRP3 
inflammasome is able to suppress the metastasis by priming 
natural killer (NK) cells to enhance immunosurveillance. The 
maturation of NK cells requires IL-18 which can be provided 
in inflammasome-dependent responses. Primed NK  cells will 
express Fas ligands on the cellular surface. Once FasL binds to 
Fas receptor on colon carcinoma cells, apoptosis is started and 
the cellular components released from apoptotic tumor cells can 
trigger Kupffer cells again (138).

Caspase1-deficient and Nlrc4-deficient mice showed reduced 
apoptosis and enhanced carcinogenesis in CAC models. 
Interestingly, caspase-1 and NLRC4 mediated direct regulation 
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of cell proliferation instead of inflammatory modification (132). 
It suggests dominant functions of inflammasomes are different in 
hematopoietic and non-hematopoietic compartments. In a model 
of multistage chemically induced squamous cell carcinoma, lack 
of ASC and caspase-1 led to earlier onset and more papillomas. 
Disabled inflammasomes resulted in a shift of T cell subsets. For 
example, CD4+CD25+Foxp3+ T cells were increased. Additionally, 
the expression level of IL-1β and IL-18 were reduced in tumor 
lesions (139). In a study of ingenol mebutate treatment for skin 
cancer, the relapse rate of cancer was profoundly increased in 
Myd88-deficient mice and C57BL/6 mice treated with anakinra 
compared with control groups. Both deficiencies led to impaired 
production of IL-1 accompanied with less infiltrated neutrophils. 
It was implicated IL-1, either IL-1β or IL-α can enhance tumor 
regression effects of ingenol mebutate through recruiting neutro-
phils and prolonging their lives (140).

Absent in melanoma 2 is another important component of 
inflammasomes involved in carcinogenesis, cancer progression, 
and cancer metastasis. It functions in both inflammasome-
dependent and inflammasome-independent manner. Studies 
showed the expression of AIM2 was downregulated in hepa-
tocrcinoma and the absence of AIM2 was more susceptible to 
cancer progression (141). Deeper investigations elucidated 
mTOR–S6K1 pathway is the regulating target of AIM2. Loss 
of AIM2 leads to overactivation of mTOR–S6K1 pathway and 
cancerous cells show uncontrolled proliferation and enhanced 
invasion in progression (141). AIM2 is also associated with 
lower risk of colorectal cancer. A possible explanation is AIM2 
limits Akt phosphorylation through interaction with DNA-
dependent protein kinases to regulate the life cycle of epithelial 
cells (142). Besides, tumor-initiating stem cells with aberrant 
Wnt pathway replicated rapidly in Aim2-deficient models and 
dysbiotic gut mirobiota has further worsened the situation (143). 
However, inflammasome-dependent secretion of proinflamma-
tory cytokines was normal. Therefore, AIM2 can also regulate 
stem cells proliferation against cancer in an inflammasome-
independent manner.

Furthermore, the roles of inflammasome are also dem-
onstrated in genetic analysis. IL-1β rs-1143643, NLRP1 
rs-11651270, NLRP3 rs-10754558, and IL-18 rs-1834481 are 
associated with protection against persistent human papillo-
mavirus (HPV) infection or HPV-related cervical cancer (144). 
It further validates anticancer effects of inflammasomes in a 
genetic perspective.

TRANSFORMATiON BeTweeN 
iNFLAMMATiON AND CANCeRS: 
ReLevANT DiSeASeS

Inflammation-induced cancer is a classic example to study how 
inflammasomes influence inflammation and cancers. In this part, 
we revisit previously published experiments and reveal immune 
roles of inflammasomes in typical inflammation-induced 
cancers, especially gastrointestinal and skin cancers (Table  1). 
Furthermore, temporal and spatial differences of immune 
effects by inflammasomes are also addressed in specific cancers 
(Table 2).

Helicobacter pylori and Gastric Cancer
Helicobacter pylori are Gram-negative bacteria associated with 
peptic ulcers and chronic gastritis which may progress into 
neoplasm. It is quite common that H. pylori coexist with the 
human body, mostly colonizing on gastric mucosa. From H. 
pylori-related chronic gastritis to gastric cancer is a classic exam-
ple of inflammation-cancer transformation initiated by microbial 
infections (145).

Helicobacter pylori are equipped with chemical substances 
and virulent particles to maintain their special niche on stomach, 
such as urease enzymes, vacuolating toxin A (Vac A), cytotoxin-
associated gene pathogenicity island (cagPAI), and other outer 
membrane proteins, some of which act as oncoproteins during 
carcinogenesis directly or indirectly (146). During the develop-
ment of chronic gastritis, profoundly elevated level of IL-1β is 
detected and recognized as a critical immunopathological change 
in gastric carcinogenesis. The alteration of IL-1β is inflamma-
some dependent. It was confirmed H. pylori stimuli can induce 
caspase-1-mediated cleavage of proIL-1β and proIL-18 with the 
help of NLR family members such as NLRP3, NLRC4, NLRP6, 
NLRP7, and NLRP12 (145, 147, 148). K+ efflux, phagocytosis, and 
production of ROS are three typical triggers for the activation of 
NLRP3 inflammasome. These phenomena were captured in cells 
under the treatment with live bacteria or Helicobacter extracts 
like p58 unit of Vac A (148). There is another study conducted 
in murine bone marrow-derived dendritic cells demonstrating a 
TLR-2-/NOD-2-mediated activation in cagPAI-dependent fash-
ion. It was shown infected Nod2−/−, Tlr2−/−, and double deficient 
murine DCs showed significant reduction of NLRP3 activation 
(149). Encoded by cagPAI, T4SS is a type IV secretion system 
for transporting CagA protein into gastric epithelial cells, which 
provides the second signal for the assembly of inflammasome. 
CagA can induce the reduction of IκB activation and subse-
quently lowers the threshold of NF-κB to enhance inflammation 
(150). On the other hand, the incidence of precancerous dysplasia 
in DSS-treated transgenic mice is increased, implicating the 
enhanced carcinogenesis in stomach (150). Therefore, oncopro-
tein CagA contributes to mutual enhancement of inflammation 
and carcinogenesis with the infection of H. pylori.

Interleukin-1β and IL-18 are two critical effectors related to 
the prognosis. H. pylori evolve to escape from immune attacks, 
which results in persistent inflammation and persistent high 
level of IL-1β. IL-1β is able to suppress acid secretion and 
develop hypoacidity gastric environment. Combined with other 
cytokines like TNF-α, it leads to loss of parietal cells, subsequent 
gastric atrophy, metaplasia, and eventually gastric cancer (151, 
152). What’s more, IL-1β can reinforce gastric carcinoma growth 
through ERK1/2 kinase signaling, as the result of the activation 
of CREB and C/EBPβ (153).

Interleukin-1β is also involved in gastric carcinogenesis by 
epigenetic modulations. MUC-1 is a cellular surface mucin 
which is expressed in epithelial cells to maintain the integrity of 
gastric mucosa. In Muc1-deficient mice infected with H. pylori, 
high level of IL-1β will increase the activity of methyltransferase 
and results in aberrant methylation of trefoil factor-2 (Tff2) gene, 
which further impairs the integrity of mucosa (154, 155). As a 
result, dysplasia may occur. Apart from Tff2 and Fmr1, Hprt and 
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TABLe 2 | Temporal and spatial differences of inflammasome effects.

inflammasome 
components

Compartments or phases effects or activating requirements Reference

Compartmental 
differences

NLRP6 inflammasome in 
CAC

Hematopoietic compartment More important for host defense despite relatively lower expression 
compared with epithelium

(182)

NLRC4 inflammasome in 
CAC

Non-hematopoietic compartment Important for anticancer effects (131)

ASC in skin cancer Absence in myeloid cells Anticancer effects (201)
Absence in keratinocytes Increased susceptibility of skin cancer

Phasic 
differences

Interleukin-18 in CAC Early stage Enhanced colitis-induced proliferation (188, 189)
Later stage Suppression of proliferation

The secretion of interleukin-
1β in melanoma

Early stage IL-1R signal and a costimulator (203)
Intermediate stage Only IL-1R signal
Late stage Autonomous secretion in an positive cycle

Silence of ASC in melanoma Primary melanoma Reduced cell death and increased cell viability (210)
Metastatic melanoma Anticancer effects

TABLe 1 | Main roles of inflammasomes in inflammation-induced cancers.

inflammation-
induced 
cancers

inflammasome 
components or 
murine models

Outcomes Possible mechanisms Reference

Gastric cancer Interleukin-1β (IL-1β) Loss of parietal cells, gastric atrophy, metaplasia, 
carcinogenesis, and cancer growth

 (a) Hypoacidity gastric environment with suppressed 
acid secretion

 (b) Epigenetic silence of tumor suppressor genes
 (c) Differentiation of T helper cell immune responses

(149–156)

Interleukin-18 (IL-18) Prevention of excessive inflammatory responses Suppressed Th17 responses (156)

Colitis and colon 
cancer

Nlrp3-deficient mouse (a) Increased susceptibility of dextran sulfate sodium-
induced colitis and colorectal carcinogenesis

 (b) Milder colitis-related symptoms

(a) Reduced secretion of IL-18 and β-defensin
 (b) Reduced secretion of IL-1β and infiltration of 

immune cells

(164–166, 
178, 181)
(167–169)

NAIP/NLRC4 
inflammasome

Protective enteric immune responses and tumor 
suppression

Increased secretion of IL-18 and maintenance of 
epithelial integrity

(170)

Nlrc4-deficient mouse  (a) Increased tumor load unrelated to inflammation
 (b) Dysbiosis and microbiota translocation

 (a) Increased epithelial proliferation and reduced 
apoptosis

 (b) Absence of discriminators for gastrointestinal 
bacteria

(131, 169, 
170, 184)

Nlrp6-deficient mouse Microbiota difference and increased susceptibility of 
CAC

 (a) Dysregulation of gastrointestinal microbiota
 (b) Alteration of Notch and Wnt pathways

(168, 182, 
183)

IL-1β Enhanced carcinogenesis when negative regulation 
is absent

Not characterized (184)

IL-18 Protective effects against colitis while overexpression 
leads to chronicity

Not characterized (161, 178)

Biphasic effects in CAC Consistent with biphasic effects of IFN-γ (187–189)

Skin cancer NLRP1/NLRP3 
inflammasome

Sunburn-like inflammation Activated inflammatory cascade (198, 199)

Caspase-1 Removal of cancerous cells and suppressed 
carcinogenesis

Caspase-1-dependent apoptosis (196)

Myeloid cell-specific 
ASC depletion

Protective effects against carcinogenesis Not characterized (201)

Keratinocyte-specific 
ASC depletion

Increased susceptibility of carcinogenesis Regulation of keratinocyte proliferation through p53

Melanoma Inhibition of NLRP3 
inflammasome

Suppressed migration of melanoma Reduced secretion of IL-1β and IL-18 (206)

IL-1β Increased metastasis potential of melanoma Silence of differentiation factors in melanoma (208)
ASC Biphasic effects in primary and metastatic melanoma Consistent with the secretory features of IL-1β in 

melanoma
(210)
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other tumor suppressor genes are also epigenetically silent in 
gastric carcinogenesis (156). MUC-1 is a negative regulator in 
the activation of NLRP3 inflammasome. Ng and his colleagues 

confirmed the existence of MUC-1 in immune cells and also 
found MUC-1 can downregulate the TLR/NF-κB pathways and 
the expression of NLRP3 (157). Therefore, both MUC-1 and 
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NLRP3 can be potential targets for blocking gastric dysplasia and 
carcinogenesis.

While IL-1β triggers differentiation of H. pylori-specific 
Th1 and Th2 cells, which are responsible for immunopathol-
ogy, another cytokine IL-18 prevents excessive inflammatory 
responses to keep the balance between proinflammatory and 
anti-inflammatory responses. Il18−/− mice displayed severe 
immunopathology due to uncontrolled Th17 responses (158). As 
expected, deficiency of IL-1R showed remissive immunopathol-
ogy and less preneoplastic lesions with reduced Th1 and Th17 
responses, though bacteria colonization is higher (158).

Genetic polymorphism also reflects associations between 
inflammasomes and inflammation-cancer transformation. For 
example, −511C>T, −31T>C, and +3954C>T gene types of 
Il1b and Il1rn are at higher risk of gastric cancer with H. pylori 
infection (151, 159). Recent gene expression analyses reported 
that CARD-rs11672725, NLRP-rs10754558, NLRP3-rs4612666, 
NLRP12-rs199475867, and NLRX1-rs10790286 are sig-
nificantly associated with gastric cancers (160), which again 
emphasize the importance of NLR signaling pathway in gastric 
carcinogenesis.

Colitis and Colon Cancer
Gastrointestinal inflammatory diseases are quite variable and 
complicated for clinical physicians, among which inflammatory 
bowel disease (IBD) has close associations with inflammasomes. 
IBD consists of ulcerative colitis (UC) and Crohn’s disease (CD) 
(161). The mechanism of IBD is still a mystery. Clinicians prefer 
to identify IBD as a result of dysregulation of innate and adaptive 
immune responses, predisposed by dysbacteriosis in guts and 
other environmental conditions (161). Genetic susceptibility of 
the host also contributes to its pathogenesis. Both UC and CD 
can cause abdominal pain, bloody diarrhea, and weight loss and 
are present as chronically persistent inflammation. UC and CD 
are mainly distinguished by clinical, endoscopic, and histological 
criteria. Inflammation is restricted within the mucosal layer in 
UC especially in rectum and extends continuously to other seg-
ments of colons (162). Unlike UC, inflammation is transmural 
and presents as skip lesion which is discontinued at any part of 
colons in CD, typically in distal ileum (163). Since inflammatory 
regions are different, the formation of crypt abscess is common in 
UC patients while formation of granulomas, fissures, and fistulas 
is more observable in CD (162, 163).

Recent studies showed inflammasomes and their components 
play a regulatory role in IBD. Independent research groups 
confirmed that Nlrp3-deficient mice were more susceptible to 
DSS-induced colitis and relevant symptoms like weigh loss were 
more severe (164, 165). It was observed that Nlrp3-deficient mice 
showed delayed epithelial renewal and impaired epithelial repair. 
It may explain the worse clinical presentations in such models 
(164). NLRP3-mediated IL-18 production was also reduced, 
which disturbs the intestinal homeostasis (166). However, the pro-
tective role of NLRP3 was questioned by other opposite research 
results. It was reported that Nlrp3-null mice exhibited milder 
colitis-related symptoms after treatment with DSS, probably due 
to the reduced secretion of IL-1β (167). This phenomenon was 
confirmed by another research group (168). Such contradiction 

may be explained by different microbiota in different strain of 
mice as baseline bias (169).

Apart from NLRP3, NAIP/NLRC4 is also crucial in main-
tenance of the integrity of intestinal epithelium (170). NAIP/
NLRC4 can respond to Gram-negative bacteria such as Salmonella 
Typhimurium and Citrobacter rodentium as well as bacterial 
components like type III secretion system (TTSS) and flagella 
(171–173). The exposure to acute carcinogens can also be sensed. 
Intestinal epithelial cells will activate NAIP–NLRC4–caspase-1 
axis which increases the secretion of IL-18 to activate protective 
gut immune responses (170).

A little different from inflammasomes mentioned above, 
NLRP6 functions as a regulator of gastrointestinal microbiota. 
Nlrp6-deficient mice harbored quite different gut microbiota from 
wild-type mice, characterized by an increase of Anaerobic taxa, 
Prevotellaceae, and TM7 but the reduction of Lactobacillus (168). 
Interestingly, the colitogenic microbiota in Nlrp6-deficient can be 
transferred to wild-type mice by cohousing (168). However, this 
finding is restricted to Nlrp6-deficient mice, which does not apply 
to other inflammasomes such as NLRC4 or AIM2 (169).

Increased IL-1β was noticed in the hematopoietic cells in 
lamina propia as well as epithelium in IBD patients, which is asso-
ciated with the severity of the disease and prognosis (174, 175). 
Treatment with IL-1 blocking agents showed rescuing effects 
(176, 177). IL-18 shows protective effects in DSS-induced colitis 
models. It was found that administration of recombinant IL-18 
could rescue Caspase1-deficient B6 mice from DSS-induced 
epithelial injury, although the secretion of IL-1β and IL-18 were 
both impaired in this model (178). However, overexpression of 
IL-18 may allow colitis to enter a chronic phase (161). In active 
CD patients, the secretion of IL-18 is reduced in epithelium but 
increased in macrophages. This shift of the secretion in different 
cells may influence the progression of the disease (161).

Colitis-associated colorectal cancer (CAC) is the most 
severe complication of IBD (179). Researchers redesigned an 
azoxymethane (AOM)/DSS model to study CAC. In this model, 
experiment animals are injected with carcinogen AOM plus 
two to three rounds of DSS treatments (180). Using this model, 
the role of inflammasomes in CAC is getting characterized. It 
was shown Nlrp3/Caspase1-deficient mice exhibited increased 
susceptibility of colorectal carcinogenesis when chronic inflam-
mation was enhanced in AOM/DSS model (165, 178). What’s 
more, colitis-associated adenomatous polyps were observed in 
Caspase1-deficient mice while absent in Nlrp3-deficient mice 
(133). And the extent of protective effects relatively relied on the 
concentration of DSS used. Another protective mechanism was 
indirectly proved by impaired β-defensin production in Nlrp3-
deficient models, which will in turn change the composition of 
microbiota in guts (181). However, some groups got contradic-
tory results that Nlrp3-deficient mice treated with DSS exhibited 
attenuated colitis and reduced infiltration of immune cells (169). 
The role of NLRP3 in CAC still needs more elucidations.

Later studies demonstrated the role of NLRC4 and NLRP6 
in CAC. Although the expression of NLRP6 is higher in epithe-
lium and lower in hematopoietic cells, the NLRP6 activated in 
hematopoietic compartment is more important for host defense 
against the CAC development (182). In Nlrp6-deficient murine 
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models, alteration in Notch and Wnt pathways was noticed (183). 
Although Nlrp6-deficient mice grew normally, they developed 
crypt hyperplasia spontaneously, accompanied with altered 
crypt-to-villus ratio in distal ileum and enlargement of Peyer’s 
patches (161). All these pathological presentations increased the 
susceptibility of CAC. The deficiency of Nlrp6 will lead to the 
alteration of microbiota composition in guts as well (170). With 
the reduced secretion of IL-18, the progression of CAC will be 
accelerated. It was confirmed Nlrp6-deficient mice with AOM/
DSS treatment were more susceptible to colorectal carcinogen-
esis than the wild types (168, 182). The roles of NLRC4 in CAC 
still remain controversial. Although NLRC4 was implicated to 
have effects of tumor suppression, another two groups argued 
that NLRC4 has no roles or even a negative role in anticancer 
immune responses (133, 165). Moreover, Nlrc4-deficient mice of 
AOM/DSS models exhibited increased tumor load but unrelated 
to inflammation. It was associated with the increased epithelial 
proliferation and reduced apoptosis of tumor cells (133). Unlike 
NLRP6, NLRC4 is more important for anticancer responses in 
non-hemapoietic compartments (133). NLRC4 is also a dis-
criminator of commensal and pathogenic bacteria in guts, which 
requires macrophage responses. Therefore, deficiency of Nlrc4 
can result in dysbiosis and microbiota translocation as well (169, 
170, 184).

Colorectal carcinogenesis is also associated with dysregulation 
of inflammasome-related cytokines. In Nlrp3/Nlrp6-deficient 
murine models of AOM/DSS, markedly decreased production 
of IL-18 were observed (164, 165, 182). In accordance with this 
result, increased number of tumors was observed in Il18/Il18r-
deficient mice (185). Deficiency of any downstream mediator 
in IL-18 pathway like MYD88 is more susceptible to intestinal 
hyperproliferation and carcinogenesis (186). Additionally, 
administration of recombinant IL-18 can induce remission in 
colitis-associated injuries and suppress the progression of colorec-
tal tumor in Nlrp3/Caspase1-deficient mice (166). Reduction of 
IL-18 secretion is always accompanied with an increase of other 
proinflammatory cytokines, chemokines, and enzymes such as 
IL-6, TNF-α, MIP1, MIP2, and MMPs (187). The cytokines like 
IL-6 and TNF-α may activate pro-tumor pathways like STAT3 to 
promote cellular proliferation and thereby initiate carcinogenesis 
(187). Other factors like ROS, RNS, and COX-2 also contributes 
to the formation and maintenance of cancer microenvironment 
(187). The biphasic roles of IL-18 in CAC are reported. In detail, 
IL-18 can enhance colitis-induced proliferation at the early stage 
but suppress the proliferation at late stage (188). This property is 
consistent with the biphasic effect of IFN-γ on DSS-associated 
colitis (189). As an inducer of IFN-γ, IL-18 increases the expres-
sion of IFN-γ and then IFN-γ will activate several intrinsic 
cellular pathways such as JAK–STAT (187). Phosphorylation of 
JAK1 and JAK2 will subsequently promote the phosphorylation 
and nuclear translocation of STAT1. In nucleus, STAT1 binds to 
IFN-γ responsive elements, which are genes in charge of prolif-
eration, differentiation, and cellular death. Therefore, IL-18–IFN-
γ–STAT1 axis activation is characterized in carcinogenesis within 
the colon (166). It was supported by the observation that admin-
istration of IFN-γ or IL-18 can rescue reduced phosphorylated 
STAT1 in Capapse1-deficient mice of AOM/DSS models (166).

A recent study revealed that keratin 8, an important filament 
protein in epithelial cells protected intestinal homeostasis against 
cellular stress. It was shown the activation of procaspase-1 was 
increased in Krt8-null mice, which leads to the elevated level of 
IL-18. IL-18 can inhibit the generation of IL-22BP. Therefore, IL-22 
is increased in cells, which results in activation of STAT3 cascade 
(190). The role of AIM2 was also observed in IL-18–IL-22–STAT3 
axis. In a steady state, AIM2 inflammasome activation leads to 
the secretion of IL-18 and activate STAT3 in a similar way. Both 
IL-18 and STAT3 pathway can positively regulate the expression 
of antimicrobial peptides Reg3β and Reg3γ to prevent dysbiosis. 
Therefore, the absence of Aim2 will result in the dampened 
production of IL-18 and the decreased expression of Reg3β and 
Reg3γ (191). However in Aim2-deficient mice with DSS-induced 
colitis, IL-18 is enhanced through other mechanisms, which 
subsequently lead to sustained activation of STAT3 and Akt 
pathways. The overexpression of Reg3β and Reg3γ will in turn 
maintain the activated state of STAT3 and Akt, contributing to 
dysregulated crypt formation and increased susceptibility of CAC 
(191). IL-18-enhanced release of proinflammatory cytokines is 
able to maintain local inflammation and inhibits the transloca-
tion of microbiota but activates resident myleiod cells as well as 
epithelial cells. Proinflammatory cytokines released by such cells 
tend to be tumorigenic.

Unlike IL-18, IL-1β is not quite relevant to CAC. Il1r-deficient 
mice showed similar number of adenomatous polyps compared 
with wild-type littermates (184). However, excessive IL-1β also 
promotes the formation of adenomatus polyp and colorectal 
carcinogenesis with AOM/DSS when negative regulation is 
deficient in IL-1 signaling (184). NLRP12 and PYHIN family 
inflammasomes also show enteric immune regulatory effects in 
intestinal diseases (161, 192). Non-canonical caspases such as 
caspase-4 and caspase-11 are also involved in direct recognition 
of pathogens and the maintenance of gastrointestinal homeosta-
sis (170). The unique NLR family member NLRX1, which does 
not assemble into an inflammasome, has been recently proven to 
function as an intrinsic tumor suppressor in intestinal epithelial 
cells (193).

Sunburn and Skin Cancer
Skin constitutes a critical external barrier against microbial and 
non-microbial insults. The outer part of skin, known as epider-
mis, protects human body by natural stratification. Ultraviolet 
radiation B (UVB) irradiation is the most common cause for 
sterile skin lesions (194). Long duration or high volume exposure 
of UVB will result in inflammatory cutaneous responses, which 
are likely to progress into skin cancer. Repeated UVB irradiation 
may alter the characteristics of basal cells and disturb the balance 
between proliferation, terminal differentiation, and apoptosis 
within suprabasal layers. UVB irradiation can lead to DNA 
double-strand breaks and impair DNA repair systems (194, 195). 
When DNA mutations accumulate over the threshold, cutaneous 
carcinogenesis is started.

Ultraviolet radiation B irradiation-induced inflammation, 
or called sunburn-like inflammation, was featured with the 
increased expression of caspase-1 in mice (196). Also, proIL-1 
and proIL-18 have been detected. It revealed the involvement of 
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inflammasomes (197). Later experiments verified the activation 
of inflammasomes in skin-derived keratinocytes. Actually, in 
human keratinocytes, proIL-1α/-1β and IL-1Ra are constitutively 
expressed (198). However, mature proinflammatory cytokines 
will not be released without stimuli. Small interfering RNA 
experiments showed that NLRP3 inflammasome is the main 
mediator responsible for the UVB irradiation-induced secretion 
of IL-1β, although NLRP1 takes a part as well (198). Strangely, 
the common triggers of NLRP3 inflammasome such as K+efflux 
and extracellular ATP fail to induce the secretion of IL-1β in 
keratinocytes (198, 199). Instead, release of intracellular stored 
Ca2+ arouses the activation. The activation of inflammasomes 
promotes the inflammatory cascade, which is responsible for the 
sunburn inflammation. Also, cutaneous coexposure of two strong 
carcinogens: arsenic and UVB irradiation led to more severe 
epidermal hyperplasia and DNA damage in mice (200). With the 
analysis of protein expression and cytokine profiling, it confirmed 
the activation of inflammasomes and the increased expression 
of proinflammatory cytokines especially IL-1β in coexposure 
murine models (200). Inhibition of IL-1β signaling pathway can 
relieve the symptoms and protect cells from carcinogenesis.

As an important component in cutaneous inflammatory 
responses, caspase-1 also functions independently of inflammas-
omes. It was noticed that UVB irradiation induced keratinocyte 
apoptosis was profoundly later than the activation of inflam-
masomes (196). What’s more, the antiapoptotic molecule Bap31 
has been identified as a putative substrate for caspase-1 through 
proteomic techniques (196). Caspase-1-dependent apoptosis 
of damaged keratinocytes may be an important way to remove 
cancerous cells and block the carcinogenesis.

The role of adaptor ASC has been also demonstrated. Asc-
deficient mice especially with the absence in myeloid cells 
exhibited protective effects in tumor development, similar to the 
phenotype in Nlrp3/Caspase1-deficient mice (201). However, 
lack of Asc in keratinocytes was more susceptible to skin cancer 
comparing with control groups (201). It highlights the functional 
difference of ASC in different cellular compartments. ASC is 
regarded as a tumor suppressor in keratinocytes as its gene is 
downregulated in cancerous tissues like squamous skin carci-
noma while its expression is normal in psoriatic lesions (202). 
Recently, the mechanism of ASC’s anticancer effects was demon-
strated in HaCaT cells. When HaCaT cells were treated with UVB 
irradiation, the interaction between ASC and p53 was discovered 
in UVB dose-dependent manner, which led to phosphorylation 
of p53 and activation of downstream genes (201). It provides a 
possible explanation for regulatory effects of ASC on keratinocyte 
proliferation, which makes ASC a potential therapeutic target and 
carcinogenesis monitoring biomarker.

Melanoma
Melanoma is another aggressive form of skin cancer. Relationship 
between inflammation and melanoma has been highlighted in 
recent researches, especially when the roles of inflammasomes 
are being explored.

Two important ATP-dependent iron channels, P2X7 and 
PANX1 are involved in melanomagenesis and tumor progression 
(203). P2X7 as well as PANX1 is known as typical activators to 

NLRP3 inflammasome (203). Furthermore, P2X7 also plays a 
role in stem cell growth and influences cell fate in different ways 
(204, 205). Opening of P2X7/PANX1 activates the assembly of 
NLRP3 inflammasome and results in the release of proinflamma-
tory mediators. Inhibition of NLRP3 inflammasome by thymo-
quinone resulted in reduced secretion of IL-1β and IL-18 with the 
suppressed the migration of melanoma (206). The level of IL-1β 
is correlated with metastasis potential of melanoma (207). IL-1β 
treatment on melanoma cells led to a significant reduction in 
mRNA expression of microphthalmia-associated transcription 
factor (MITF-M) (208). The silence of MITF-M would result in 
dysregulation of gp100 and tyrosinase, which are both important 
differentiation factors in melanoma (208). As a result, melanoma 
expressed less anti-melanoma antigens and became “invisible” in 
immunosurveillance.

Moreover, the secretion of IL-1β is also phase-dependent in 
melanoma (203). In the early stage, two elements are needed for 
activation: IL-1R signal and a costimulator, for example, MDP. 
In the intermediate stage, IL-1R signal is enough to trigger the 
activation while in the late stage the synthesis and secretion of 
IL-1β requires no external signals but instead continues in auto-
active manner. Autonomous release of IL-1β will in turn enhance 
the secretion of IL-1β itself, resulting in a positive loop. Hence, 
inflammasome–caspase-1–IL-1β axis can be targeted for develop-
ment of anticancer drugs. For example, epigallocatechi-3-gallate 
from green tea can suppress melanoma growth by inhibiting 
inflammasome components and the secretion of IL-1β, which can 
be abolished by silencing the expression of NLRP1 (209). Unlike 
IL-1β, IL-18 is pretty low in melanoma cells, even undetectable. 
The role of IL-18 in melanoma progression awaits discoveries 
(209).

Inactivation of ASC by hypermethylation has been observed 
in many malignancies like lung, prostate, and breast cancer. The 
expression of ASC is downregulated in metastatic melanoma as 
well (210). Despite overexpression of ASC did not quite influence 
the progression of melanoma, silence of ASC by short hairpin RNA 
demonstrated tumor suppressing effects in metastatic melanoma. 
However, silence of ASC in different phases exerts different effects 
(210). When ASC was silenced in primary melanoma, it led to 
reduced cell death and increased cell viability. Melanomagenesis 
is likely to occur due to enhanced phosphorylation of IκB kinase 
and the activation of NF-κB pathway. On the contrary, silence 
of ASC in metastatic melanoma led to suppression of NF-κB 
pathway as well as carcinogenesis. Therefore, correlated to the 
secreting features of IL-1β, ASC also exhibits a dual role in 
different phases (210). In primary melanoma, the secretion of 
IL-1β needs abundant external stimuli. ASC relatively inhibits 
NF-κB pathway and melanomagenesis. However, in metastatic 
melanoma, the secretion of IL-1β is in autonomous manner, ASC 
promotes melanomagenesis through enhanced activation of 
NF-κB pathway. It is speculated that the decreased level of ASC 
in metastatic melanoma leads to extrinsic competition over lim-
ited ASC among different pathways, which results in enhanced 
inflammasome-dependent secretion of IL-1β and autoactivation 
of NF-κB pathway.

Genetic analysis also reveals the correlation between inflam-
masomes and melanoma. In a Swedish case–control study, 
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NLRP3-rs35829419 and NLRP-rs12150220 are associated with 
nodular melanoma (211). NLRP3-rs35839419 is identified as a 
gain-of-function SNP because the level of IL-1β in this SNP tends 
to be elevated (211). Melanoma patients with such SNP showed 
resistance against T lymphocytes.

Inflammasome components can also function independently 
of inflammasomes. For examples, TAMs, IFN-γ-producing 
CD4+ and CD8+ T  lymphocytes are responsible for NLRC4-
induced cancer suppression, which provides a new direction in 
inflammasome-component-related studies (212).

Other Cancers
Oncogenic viruses are important biological insults linking 
inflammation to cancer. Kaposi’s sarcoma-associated herpes 
virus and Epstein–Barr virus (EBV) can activate IFI16 inflam-
masome, a member of ALR family, which is able to detect viral 
DNA in the cytoplasm as well as in the nucleus (213). EBV is 
associated with the incidence of Burkitt’s lymphoma, Hodgkin’s 
lymphoma, and nasopharyngeal carcinoma (213). The expression 
of NLRP3, AIM2, and RIG-I inflammasomes was increased in 
EBV-associated cancerous tissues (214). EBV genomic DNA 
and EBV-encoded small RNAs are able to activate AIM2 and 
RIG-I and induced the secretion of IL-1β (214). The anticancer 
effects depend on the immunostimulatory neutrophils (214). 
The infiltration of TAMs improves prognosis in patients with 
EBV-induced nasopharyngeal carcinoma (214). To overcome 
the immune responses, EBV miRNA can bind to 3′-untranslated 
region in NLRP3, which is also the binding site of miRNA-223. 
By this way, EBV miRNA can induce a miRNA-223-like effect 
to inhibit the accumulation of NLRP3 and the production of 
IL-1β (215). Moreover, EBV miRNA can be transported through 
exosomes to dampen NLRP3 inflammasome functions in the 
surrounding healthy cells (215).

Another typical example of oncogenic viruses is HPV. 
Similarly, inflammasome components like IFI16, AIM2, IL-1β, 
and caspase-1 are upregulated in HPV-infected tissues (216, 217). 
And interestingly HPV16 E6 protein is able to decompose proIL-
18 in proteasome-dependent manner, which is recognized as an 
evolutionary escaping strategy of HPV (218). The activation of 
inflammasome benefits the clearance of viruses and the regres-
sion of carcinogenesis.

The role of NLRP3 inflammasome in hepatitis virus infec-
tion has also been characterized. The proliferation of HCV in 
host cells results in the production of ROS, which subsequently 
activates NLRP3 inflammasome (219). Increased level of IL-18 in 
peripheral blood provided protection against expansion of infec-
tion, which is applied to both HCV and HBV infection (220). 
The expression of AIM in peripheral blood mononuclear cells was 
enhanced in acute hepatitis B compared with chronic hepatitis B 
(221). It suggests impaired clearance of viruses and suppressed 
immune responses is associated with chronic infection of hepati-
tis B. The expression of NLRP3 inflammasome components was 
also significantly decreased in hepatocarcinoma, implicating a 
negative correlation with hepatocarcinoma progression (222).

Human T-cell leukemia virus type 1 (HTLV-1) retrovirus is asso-
ciated with severe adult T-cell leukemia (223). Recently, genetic 
analysis revealed the association between NLRP3 inflammasome 

and HTLV-1 infection. Based on data from northeastern Brazilian 
population, scientists confirmed NLRP3-rs10754558 G/G is less 
susceptible to HTLV-1 infection (224). Other polymorphism 
in NLRP1 and NLRP3 were also reported in HTLV-1 infected 
patients (224).

Men, especially senile men are at high risk of prostatitis and 
prostate cancer. A 5-year follow-up study pointed out nearly 20% 
of prostate cancer develops from chronic inflammation (225). 
Studies show serum IL-18 is much higher in prostate cancer 
biopsies compared with healthy controls and benign prostatic 
hyperplasia (226). Also, the expression of AIM2 is significantly 
reduced, although IFN treatment can partly improve it (227). 
Similar to AIM2, ASC is constitutively downregulated in prostate 
cancer specimens due to hypermethylation of the gene promoter 
(228). The role of caspase-1 in prostate cancer is contradictive. 
Caspase-1 is also downregulated in prostate cancer which is 
speculated to prolong the cancerous cell life span (229). On the 
other hand, since anti-androgen treatment led to anticancer 
effects in early stage prostate cancer and suppression of caspase-1 
at the same time, it is possible that caspase-1 plays a pro-cancer 
role in the secretion of proinflammatory cytokines to facilitate 
cancer aggressive invasion (230, 231). In a word, dominance of the 
dual effects of caspase-1 may depend on the stage of cancers and 
specific cellular compartments in which it functions. Therefore, it 
is not hard to conclude that inflammasomes play important and 
complicated roles in inflammation-induced cancers (Figure 4).

CONCLUSiON AND PeRSPeCTiveS

Inflammasomes provide us with a brand new platform to explore 
the secrets of inflammation. Diverse types of inflammasomes 
reflect strong adaptability and flexibility of the human body to 
respond to complicated life activities. The roles of inflammasomes 
in inflammation-induced cancers are intricate. In one way, it can 
promote carcinogenesis through the extrinsic pathway and facili-
tate the progression and metastasis of cancer by vicious cancer 
microenvironment. On the other hand, proper inflammation and 
pyroptosis mediated by inflammasomes are necessary for proper 
control of tumor development. Meanwhile, inflammasomes and 
their components are important regulators for internal homeo-
stasis, protecting healthy tissues against cancers. Inflammasome 
is a double-edged sword in cancers. Inflammasomes and their 
components may exhibit very distinct effects in different diseases, 
even different stages of exactly one disease. When it refers to a 
specific disease, experimental results should be interpreted 
individually, especially when clinical outcomes are concerned. 
The phase-dependent effects of inflammasomes and their com-
ponents need to be paid more attention to in the future studies.

Inflammasome components have the potential to be biomark-
ers in malignancies, demonstrating the dynamic development of 
carcinogenesis as well as metastasis. The ideal biomarkers are 
supposed to have profound correlation with cancers and easy to 
be detected during early stage. Accordingly, the adaptor protein 
ASC and certain inflammasome proteins like NLRP3 are con-
siderable candidates (232, 233). Several studies implicated the 
alteration of IL-1β along the development of various cancers and 
proposed IL-1β in saliva as a predicting biomarker for cancer 
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progression (234). It was shown IL-1β is easier to be detected 
in saliva compared with serum. The use of saliva biomarker has 
been practiced in many cancers like breast cancer, pancreatic 
cancer, and salivary gland cancer (234). Anyway, the operability 
and specificity of inflammasome biomarkers need more con-
siderations and assessments before they are applied to clinical 
practice.

Inflammasome-related therapy has become an emerging test 
field for cancer treatments recently. Several molecules targeting 
caspase-1 or IL-1β pathway have been developed. Some of them 
have already got access to clinical trials. Anakinra, a gene-recom-
binant antagonist of IL-1R, improves the prognosis of patients 
with melanoma (235). In bacteria-mediated cancer therapy, 
attenuated Salmonella activates anticancer defense of the host 
through NLRP3 inflammasome activation, which is triggered by 
the damage signals and intercellular interaction with macrophages 
(236). Inhibitors of inflammasomes and their products are also 
used to attenuate therapeutic side effects of chemotherapies. 

IL-1β inhibitors can alleviate bleomycin-induced lung injury and 
the cardiotoxicity caused by anthracycline (237, 238). Blocking of 
IL-1 pathway is also useful in pain management of osteolytic can-
cer metastasis (239, 240). Inflammasome and its products pave 
a new way in the era of immunotherapy for cancers, although 
more researches are required to better clarify the mechanisms of 
immunotherapy and to adjust regiments.
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