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The task of epitope discovery and vaccine design is increasingly reliant on bioinformatics 
analytic tools and access to depositories of curated data relevant to immune reactions 
and specific pathogens. The Immune Epitope Database and Analysis Resource (IEDB) 
was indeed created to assist biomedical researchers in the development of new vac-
cines, diagnostics, and therapeutics. The Analysis Resource is freely available to all 
researchers and provides access to a variety of epitope analysis and prediction tools. 
The tools include validated and benchmarked methods to predict MHC class I and class 
II binding. The predictions from these tools can be combined with tools predicting anti-
gen processing, TCR recognition, and B cell epitope prediction. In addition, the resource 
contains a variety of secondary analysis tools that allow the researcher to calculate 
epitope conservation, population coverage, and other relevant analytic variables. The 
researcher involved in vaccine design and epitope discovery will also be interested in 
accessing experimental published data, relevant to the specific indication of interest. 
The database component of the IEDB contains a vast amount of experimentally derived 
epitope data that can be queried through a flexible user interface. The IEDB is linked to 
other pathogen-specific and immunological database resources.
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iNTRODUCTiON

The Immune Epitope Database and Analysis Resource (IEDB) is a freely available resource that 
contains an extensive collection of experimentally measured immune epitopes and a suite of tools 
for predicting and analyzing epitopes (Figure 1). The IEDB includes antibody and T cell epitopes for 
infectious diseases, allergens, autoimmune diseases, and transplant/alloantigens studied in humans, 
non-human primates, mice, and other animal species. Life science researchers can use the IEDB to 
develop new vaccines, diagnostics, and therapeutics. The database is populated using information 
captured or curated from peer-reviewed scientific literature and from data submitted by researchers. 
As of December 2016, over 18,000 references have been curated, and the database contains over 
260,000 epitopes and over 1,200,000 B cell, T cell, MHC binding, and MHC ligand elution assays 
(positive and negative). Because the database is continually being updated with new literature and 
data submissions, the IEDB provides researchers designing vaccines with a comprehensive collection 
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FiGURe 1 | The immune epitope Database and Analysis Resource 
captures experimental epitope data in a database and makes known 
epitopes freely available to the research community. These data are 
used to train epitope prediction tools in the Analysis Resource, which also 
contains tools to analyze sets of epitopes.
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of experimental data in a single data repository that can be used 
to query for known epitopes and their immunogenic responses.

The tools in the Analysis Resource1 (1, 2) fall into two general 
categories: prediction and analysis tools. Prediction tools predict 
the outcome of experiments, such as MHC class I or class II 
binding, MHC class I processing and immunogenicity, and for 
predicting linear and discontinuous (conformational) B  cell 
epitopes. The epitope prediction tools are valuable resources 
for vaccine developers when experimentally measured epitopes 
are not available in the IEDB. In this review, we briefly describe 
the basic principles of machine learning algorithms, on which 
the prediction tools are based, and some basic principles of tool 
evaluation. Next, we describe the MHC class I and class II binding 
prediction tools hosted in the analysis resource.

The tools for class I cover a broad range of alleles, including 
83 human, 8 chimpanzee, 18 macaque, and other non-primates. 
The accuracy of these predictions is very high, with AUC values 
greater than 0.9. For MHC class II binding, the breadth of allele 
data is less extensive, involving 24 human alleles and 3 mouse 
alleles. There are also pan predictions that extrapolate from these 
alleles to predict binding for other alleles. The class II binding 
predictions are being retrained with new data as of the end of 
2016. The accuracy of class II binding predictions has improved 
significantly over the past 10 years, from AUC of 0.76 to 0.87, but 
it is lower than class I. Subsequently, we describe T cell process-
ing predictions which combine MHC binding with other parts of 
the MHC class I cellular pathway, namely proteasomal cleavage 
and TAP transport, generated from independent experimental 
datasets. There are also predictors trained on eluted MHC 
ligands that provide an overlay of the signals from MHC bind-
ing and MHC processing presentation pathway. The processing 
prediction tools offer a relatively small but statistically significant 

1 http://tools.iedb.org.

increase in accuracy compared to using the MHC binding pre-
diction alone.

The Analysis Resource includes several B cell epitope predic-
tion tools, based on a number of classical approaches such as 
hydrophilicity scales or amino acid properties, independently 
developed by different authors and reimplemented in the Analysis 
Resource. There are also predictors based on machine learning 
and structure-based approaches. The accuracy of B cell epitope 
prediction tools is generally rather poor, having AUC values rang-
ing from 0.6 to 0.7. Finally, we will describe analysis tools. The 
analysis tools enable users to analyze known epitope sequences, 
assembled either from IEDB queries or other sources. These tools 
include epitope conservancy analysis, population coverage, and 
epitope clustering.

In the general categories of analysis tools, there are tools with 
which users can estimate the fraction of individuals expected to 
respond to a given set of peptides with the Population Coverage 
tool, calculate conservancy of a peptide within a protein, and 
cluster peptides based on sequence identity. The Population 
Coverage tool gives vaccine designers insight to the efficacy of 
their vaccine to regional and global populations, while the con-
servancy analysis tool identifies regions of a protein or antigen 
that are conserved and are potential targets for vaccines.

MACHiNe LeARNiNG AND evALUATiNG 
PReDiCTiON QUALiTY

MHC binding experiments measure the affinity between an 
MHC and isolated peptides, usually expressed as IC50 con-
centration with low IC50 value implying a high affinity binder 
(3). Because even a small virus can result in tens of thousands 
of peptide fragments as a result of processing by a cell’s MHC 
class I pathway, experimentalist can rarely afford to measure each 
of them. Machine learning approaches can develop a function 
that predicts affinity binding for a given peptide sequence (4, 5). 
Artificial neural networks (ANNs), support vector machines, 
linear programming, and hidden Markov models (HMMs) find 
this function and differ primarily in how they define “find,” their 
respective function spaces, and how they measure affinity bind-
ing. The calculation of a scoring matrix offers a relatively simple 
example. With a scoring matrix, the binding affinity for the 
sequence is computed based on the amino acid and its position 
in the binding groove. The values for each residue in the sequence 
are summed to yield the overall binding for the entire sequence. 
The position-specific scoring matrix is derived by varying the 
values of the matrix until the sums for known, measured pep-
tides approximate the measured affinities. To evaluate how well 
this function works for predicting MHC class I peptide binding, 
objective methods to evaluate prediction quality are necessary.

Peptide binding datasets, far larger than any previously assem-
bled, were originally compiled in 2006 (6). The dataset covered 
48 MHC class I alleles from 88 different datasets with a variety of 
peptide lengths with a total of 50,000 IC50 values. This collection 
allowed the IEDB team to perform a thorough comparison of 
different prediction algorithms, including a number of publicly 
available prediction websites, such as SYFPEITHI (7) and BIMAS 
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(8), and computed the correlation between the measured IC50 
values and each algorithm’s predicted score, be it a heuristic score 
as for SYFPEITHI or a half-life of binding score as for BIMAS. 
To evaluate performance, given the different predicted scoring 
systems of the algorithms, we reformulated the problem in terms 
of predicting which peptides bind with an IC50 value less than 
500 nM, an established threshold associated with immunogenic-
ity for 80–90% of all epitopes.

This allowed computing the number of true negatives, true 
positives, false negatives, and false positives. By systematically 
varying the predicted score threshold from low to high, one can 
calculate the rate of true positives and false positives as a func-
tion of the threshold to derive an ROC curve. The area under this 
ROC curve is the AUC value and that has a number of important 
statistical properties (9). It is independent of the predicted scale 
because it compares the rank of your matrices and it is independ-
ent of the composition of the dataset, such as having different 
proportions of binders and non-binders. The AUC value is 
essentially capturing the probability that given two peptides, one 
a binder and the other a non-binder, the predicted score will be 
higher for the binder compared to the non-binder. An AUC value 
of 0.5 is equivalent to a random prediction and a value of 1.0 is 
equivalent to a perfect prediction.

In evaluating the different web server predictors, we discovered 
that it was difficult to separate the performance of the algorithms 
from the datasets used to train them. To correct for this effect, we 
used a cross-validation approach, where the dataset is split into 
five subsets. The algorithm is then trained on the data in four of 
the subsets and predicts the values in the fifth. This process is then 
repeated four more times, with each subset being omitted from 
training and used to compare predictions (10).

MHC CLASS i BiNDiNG PReDiCTiONS

Antigen-specific T cells do not directly recognize native antigens, 
but rather the T Cell receptor binds a molecular complex formed 
by an MHC molecule and a peptide epitope. In order for a peptide 
to be bound and presented by the MHC molecule, the antigen 
needs to be processed by the cell (11). Antigens are cleaved by the 
proteasome and transported into the endoplasmic reticulum (ER), 
through the Golgi, and finally presented in a closed groove on the 
MHC class I molecule. The MHC class I molecule is expressed 
by almost all nucleated cells and presents cleaved segments of 
the antigen to the CD8+ T cells. Its binding groove is closed at 
both ends and can accommodate peptides of 8–15 amino acids in 
length. MHC molecules are highly polymorphic and thousands 
of different variants exist. The peptide binding specificity is also 
very broad, and a given MHC can bind and present a number of 
different peptides (12).

Given the large number of variants possible and this broad 
specificity, experimental characterization of all peptide–MHC 
interactions is experimentally challenging. Binding predic-
tion methods facilitate the selection of potential epitopes. The 
methods are developed using experimental peptide binding data 
for different MHC alleles to train machine learning algorithms 
that in turn can be used to predict the binding for any arbitrary 
peptide.

The IEDB database resource houses binding data for 173 MHC 
class I molecules, which includes 119 human alleles for HLA-A, 
B, and C. It also has data for macaque, chimpanzee, mouse, cattle, 
pig, and rat (13). The machine learning methods are periodically 
retrained when sufficient amount of new data become available 
in the IEDB. The prediction routines were last retrained in 2013, 
and the training sets are publicly available at http://tools.iedb.
org/main/datasets/. The available methods and their perfor-
mance have been published starting from 2005 and have seen an 
improvement in performance over that time (14, 15).

The web interface for MHC Class i 
Binding Predictive Tools
The primary interface for epitope prediction tools is through 
a web interface, which is described below. Users can access 
the MHC class I binding prediction tool from the IEDB home 
page or directly at http://tools.iedb.org/mhci/. The class I home 
page has numerous tabs to assist users, including a Help tab for 
detailed explanations on inputs and outputs, an Example tab with 
specific examples and a Reference tab with publications related 
to the methods. From the Download tab, the user can download 
the scoring matrices for the various methods and a link to the 
dataset used for retraining the class I binding prediction tools in 
2013 (16). Tool developers are encouraged to make use of these 
data. In addition, users can download a standalone version of 
the binding prediction tool that can be hosted on the user’s own 
server. Finally, the Contact tab has a link to the IEDB help desk at  
help@iedb.org that has the goal of responding within one busi-
ness day of receiving a help request.

To perform class I binding predictions, the user inputs one 
or more sequences as plain text, separating the sequences with 
blanks, or in FASTA format, or specifies a file containing the 
proteins. Next, a user can select a preferred method from a list 
including IEDB recommended, consensus (17), netMHCpan 
(10, 18), ANN (4, 19–22), scoring matrix method (SMM) (5), 
SMMPMBEC (23), Combinatorial Library (24), PickPocket 
(25), and netMHCcons (26). The IEDB recommended method 
is the default setting and usually is consensus, a combination 
of three different methods (ANN, SMM, and Combinatorial 
Library). If these methods are not available for the selected allele, 
netMHCpan will be used instead. The user next specifies MHC 
species (human, mouse, non-human primates, and others) and 
specific alleles. Multiple alleles and epitope lengths (9–14) can be 
specified. For humans, the most frequent alleles are available for 
selection by default, and a reference set of the 27 most frequent 
alleles (97% of the global population) and peptide lengths of 9 and 
10 can also be selected.

Output of MHC Class i Binding Predictive 
Tools
When the user clicks the submit button, the protein sequence 
is parsed into all possible peptides for the specified length and 
the predicted binding affinity for each is calculated. The tool 
compares the predicted affinity to that of a large set of randomly 
selected peptides and assigns a percentile rank (lower percentile 
rank corresponds to higher binding affinity), which is method 
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independent since not all methods predict IC50 values. In the 
Consensus method (17), the median value of the three values 
is used. Results are presented by default sorted by predicted 
percentile rank, but results can also be sorted by sequence posi-
tion. Users can filter results by a designated percentile rank 
cutoff.

The results page lists the input protein sequence, the table of 
results, a link to download the results as a CSV file, and a list 
of citations associated with the methods used. The output table 
includes columns for the allele, peptide start and end positions, 
the peptide length, the peptide sequence, the method(s) used, and 
the percentile rank. Checking a box at the top of the results table 
can expand the results. The output table can be sorted by clicking 
on each column header.

There are three main strategies for selecting potential binders. 
The first involves selecting all peptides with IC50 value less than 
500 nM, a threshold previously associated with immunogenicity 
(3). A second recommended strategy is to pick the top 1% of 
peptides for each allele/length combination. The third strategy is 
to pick peptides with percentile ranks below 1% (27). A further 
study regarding the strength of affinity for different alleles and 
their repertoire size indicated that repertoire size differs for each 
allele (28). We derived from this study allele-specific binding 
thresholds for the 38 most common HLA-A and HLA-B alleles. 
A link at the top of the Help tab accesses a table of alleles and their 
associated affinity cutoff IC50 values.

Standalone version and Application 
Program interface (APi)
The MHC class I binding tools are also available in a standalone 
version that runs on a Linux operating system and can be down-
loaded from the Download tab. Because the standalone version 
is hosted locally on hardware of the user’s choosing, an internet 
connection is not needed and users do not need to worry about 
their web browser timing out. Instructions for installing the 
software are provided in the accompanying README file.

All users can also access the MHC binding prediction tools 
using the API. The API uses a Representational State Transfer, 
an application that uses HTTP requests to GET, PUT, POST, 
or DELETE data from web servers. In this manner, users can 
send parameters over the internet directly to the IEDB web 
servers. No special software needs to be installed locally to use 
the API, and users will always access the latest version of the 
tools, unlike the standalone versions that need to be updated 
on local servers with each new release of the prediction tools. 
The API can also be incorporated into scripts and pipelines. In 
addition to the MHC class I binding prediction tool, APIs exist 
for several other prediction tools, including class II binding, 
linear antibody epitope, class I processing, class I immunogenic-
ity, and MHC-NP. Documentation for using these APIs can be 
found on the Tool-API tab.2 The features and attributes of the 
web, standalone, and API versions of the tools are summarized 
in Figure 2.

2 http://tools.iedb.org/main/tools-api/.

MHC CLASS i PROCeSSiNG PReDiCTiON 
TOOLS

When a virus infects a host, it gets inside the cell, replicates, and 
spreads throughout the host. The virus and other components are 
degraded by a process known as antigen processing, which results 
in some of the peptide fragments being presented on the surface 
in the context of MHC class I epitopes that are recognized by 
CD8 T cells that can kill the cell, produce cytokines, proliferate, 
and form memory populations. Antigen processing is a complex 
enzymatic process with key players such as the proteasome 
complex that generates short peptides. Some of these fragments 
are transported from the cytosol into the ER by binding to TAP, 
where they undergo further trimming of N-terminal residues and 
then bind to MHC complexes. These are then transported to the 
cell surface where they can be presented to T cells (11).

To predict the outcome of antigen processing and presenta-
tion, proteasomal cleavage, TAP transport, MHC class I binding, 
and T cell receptor peptide–MHC interaction can be considered. 
Each step of this pathway has a corresponding specificity or 
efficacy. As a first approximation, about 15% of all peptides that 
can be made from a protein are actually transported into the ER 
and about 2.5% of peptides that are made will bind to an MHC 
molecule. About 50% of peptides presented on the cell surface 
will be recognized by a T cell receptor (29).

There are two different types of processing tools in the Analysis 
Resource. One combines proteasomal cleavage, the transfer of 
peptide fragments by TAP, and MHC binding. The other type is 
neural network trained directly on naturally processed and pre-
sented peptides. The NetChop method (30, 31) models the cleav-
age and generation of the C-terminus of peptides based on data 
from naturally processed peptides and it is combined with other 
neural network based approaches [NetCTL (32) and NetCTLpan 
(33)]. Processing prediction tools include the MHC-NP tool 
developed by a research group outside the IEDB team, based on 
MHC elution experiments to assess the probability that a given 
peptide is naturally processed and binds to a given MHC molecule 
(34). Figure 3 provides a summary of the various tools involved 
in antigen processing and the different steps of processing with 
which they are associated.

Combined Predictors
This tool can be found on the T Cell Tools section of the web 
interface, similar to that of the MHC class I binding, with added 
sections for proteasome cleavage and TAP transport. Users can 
select between two proteasome types—immunoproteasome and 
constitutive proteasome. Since their specificities are very similar 
(35), the immunoproteasome is recommended for use and is set 
by default.

TAP transports peptides into the ER that are potentially 
N-terminally extended from the ligand that end up in MHC 
(36). This means that the peptide that binds to MHC does not 
necessarily need to be a good substrate for TAP, but needs to be an 
N-terminally extended precursor of a TAP substrate. Accordingly, 
the TAP transport input section has two input fields, maximum 
precursor extension and alpha factor. The TAP transport method 
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FiGURe 2 | Different versions of the prediction tools available at immune epitope Database and Analysis Resource (ieDB) and their features. The web 
version has an easy to use interface and can be accessed using internet browsers at http://tools.iedb.org/. The standalone version can be downloaded from the 
IEDB tools website and installed on local computers. The Application Program Interface (API) version can be used to make custom scripts and used in pipelines.
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takes a precursor of up to an extension of 1 into account. The alpha 
factor is a weighting factor that takes into account the uncertainty 
of not knowing which peptides are involved. A detailed discus-
sion on the selection of these values has been published elsewhere 
(37). For most users, we recommend the use of the default values 
of 1 for the maximum precursor extension and 0.2 for the alpha 
factor as these worked best in predicting TAP transport overall.

The output includes columns for the allele, start and end posi-
tions, peptide length, and sequence, plus columns for proteasome, 
TAP, MHC, and Total scores. The proteasome score indicates how 
well the peptide with its C-terminus could have been generated. 
The TAP transport score evaluated the ability of the peptide or 
its N-terminally prolonged precursor to be generated. The MHC 
score is the −log10 of the IC50 value, so in this case a higher MHC 
score indicates a better binder. The total score is the sum of these 
three scores.

There are several caveats associated with the combined predic-
tor and the other processing prediction tools. Based on our evalu-
ation of the performance of prediction methods, we found that 
the processing predictions were better than the MHC binding 
predictions alone when predicting eluted peptides (38). However, 

eluted peptides are typically identified by mass spectrometry, 
which requires the peptide to be reasonably abundant to allow for 
detection. In actuality, an immune response could occur with few 
peptides on a cell. So there is a potential bias that eluted data over-
represents the “best possible” ligands and the difference between 
the processing predictions and the binding-only predictions may 
not be relevant in practice. When we benchmarked the ability 
to predict T cell epitopes, the improvement was not statistically 
significant. In conclusion, while processing predictions make 
sense in terms of the biology, the IEDB team recommends using 
the MHC class I binding predictions, which are trained on much 
larger datasets. For situations where the binding predictions 
provide too many candidate epitopes, using the processing scores 
instead can offer another filter to reduce the number of peptides 
to investigate.

Other Processing Tools
Additional processing predictors are the neural network based 
tools, NetChop (30, 31), NetCTL (32), and NetCTLpan (33). 
NetChop is the proteasomal cleavage predictor based on an 
analysis of C-terminus residues in eluted ligands. NetCTL uses 
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http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
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the NetMHC method and combines it with NetChop and TAP 
transport method. NetCTLpan uses the NetChop, TAP transport 
method, and NetMHCpan.

The input interface is again similar to the other binding and 
processing tools, allowing the user to specify one of the three 
prediction methods and the protein sequence(s) of interest. 
NetChop predicts C-terminal cleavage based on two approaches, 
either the C-term 3.0 method, which uses specificities for 
the C-terminals based on eluted MHC ligands, or the 20S 3.0 
method, which uses the analysis of proteasomal cleavage digests 
similar to the combined predictor. C-term 3.0 is not actually a 
proteasome prediction because it derives the specificity of the 
C-terminals statistically from eluted ligands that reflect the TAP 
transport specificity, but it performs better than 20S 3.0 and is, 
therefore, presented as the default value for all three methods. 
There are six publications that provide further details on the 
methods.

An additional processing method is MHC-NP, which was 
contributed to the IEDB by the Giguère group. While it covers 

a limited number of mouse and human MHC class I alleles, 
MHC-NP won a benchmark performance contest at the Second 
Machine learning Competition in Immunology.3 The IEDB 
is open to hosting tools from external groups on the Analysis 
Resource and welcomes the opportunity to do so.

THe T CeLL iMMUNOGeNiCiTY 
PReDiCTOR

The Analysis Resource has a T cell immunogenicity predictor tool 
that predicts the relative ability of a given set of peptides bound in 
an MHC complex to be recognized by a T cell. To develop the tool, 
we assembled datasets of peptides that have similar MHC binding 
affinity and then separated the ones that are recognized by T cells 
from the ones that are not recognized by T cells. We then observed 
that certain amino acids, such as tryptophan, phenylalanine, and 

3 http://bio.dfci.harvard.edu/DFRMLI/HTML/natural.php.
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TABLe 1 | Comparison of MHC class i and class ii epitope prediction 
tools available in the ieDB.

Features MHC class i MHC class ii

Structure 3 Alpha chains, 1 beta-2 
microglobulin

2 Alpha chains, 2 beta 
chains

Peptide binding chain Alpha Alpha and beta

Binding cleft Closed Open

Loci A, B, and C DP, DQ, and DR

Antigen presenting cells All nucleated cells Dendritic, macrophage 
and B cells

Responding lymphocytes Cytotoxic T cells (CD8+) T helper cells (CD4+)

URL for IEDB predictions http://tools.iedb.org/
mhci

http://tools.iedb.org/mhcii

Binding core 9 residues 9 residues

Residues flanking the 
binding core

NA 0–5 on each side

Recommended cutoff 
(IEDB Consensus 
percentile rank)

1.0 10.0

Peptide length accepted 8–14-mer 15-mer

Algorithms available 8 (Consensus, 
NetMHCpan, artificial 
neural network, 
SMMPMBEC, SMM, 
Comblib, PickPocket 
and NetMHCcons)

6 (Consensus, 
NetMHCIIpan, NN-align, 
SMM-align, Combinatorial 
library, Sturniolo)

Host species for which 
prediction is available

8 (human, mouse, 
gorilla, chimpanzee, 
cow, macaque, pig, 
and rat)

2 (human and mouse)

Total number of alleles 
available

3,600 DPA = 17, DPB = 128, 
DQA = 28, DQB = 104, 
DR = 256

IEDB, Immune Epitope Database and Analysis Resource; SMM, scoring matrix method.
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isoleucine, are enriched in immunogenic peptides while other 
residues, such as serine, methylamine, and lysine, are depleted. 
Studies suggest that tryptophan and phenylalanine have long side 
chains that have a greater ability to make contact with the T cell 
receptor, possibly making them more immunogenic than other 
residues (39). We used the enrichment and depletions score to 
generate propensity scales than can be used to evaluate a peptide 
directly (39).

The tool has only been validated for 9-mers. By default, the tool 
masks the first, second, and C-terminus residues, the ones most 
likely to be directly responsible for MHC binding. The remaining 
residues in positions 3–8 are then the ones most likely to be in 
contact with the T cell and they are evaluated using the propen-
sity scale and a score is calculated. A positive score indicates a 
likelihood of T cell recognition and a negative score indicates that 
recognition is less likely. We have conducted extensive studies to 
validate this approach. The tool has AUC values of 0.65–0.69, 
which is rather poor but still statistically significant. It offers an 
advantage over the processing tools in that it is independent of 
MHC binding.

It is worth noting that proteasomal cleavage, TAP transport, 
and MHC binding have undergone coevolution to a large extent, so 
that MHC molecules have evolved to bind peptides that are in the 
ER (38). So processing prediction tools are predicting dependent 
variables. As a result, their combination does not provide vastly 
improved predictions. In contrast, the immunogenicity tool 
focuses on residues that are not involved in these other predic-
tions, and thus, its results are independent of the other processing 
prediction tools. Therefore, the IEDB team recommends using 
the MHC class I binding predictions to select candidate peptides 
for measurement and supplement that with the immunogenicity 
predictor to further reduce candidates to test.

MHC CLASS ii BiNDiNG PReDiCTiONS

The MHC class II antigen-processing pathway applies to exog-
enous proteins from extracellular sources, such as bacteria or 
fungus, which are engulfed by the cell and cleaved by proteases 
in the lysosome (11). The MHC class II molecules are synthesized 
by the ER and have two chains, alpha and beta, which assemble 
together to make a complete MHC class II chain. After a series 
of complex cellular processing events, MHC class II carrying 
specific peptides derived from degradation of these proteins are 
presented on the cell surface to T cell scrutiny (11).

The basic structure and principles for class II and class I bind-
ing prediction have many things in common but there are also 
some important differences (Table 1). With regard to structure, 
MHC class I molecules have a single alpha chain that impacts 
binding and the binding cleft lies between the alpha 1 and alpha 
2 domains. Because the binding groove is closed, it can only 
accommodate shorter peptides (8–14 amino acids). MHC class 
II molecules though have two chains, alpha and beta that impact 
binding (12). The binding groove is open and can accommodate 
longer peptides (13–25 amino acids). MHC class I molecules are 
present in all nucleated cells. Class II molecules are found only 
in antigen presenting cells, such as macrophage cells, B cells, or 
dendritic cells (12).

With regard to nomenclature (40), only the alpha chain is 
variable in class I molecules so the nomenclature is “HLA” fol-
lowed by the locus, typically A, B, or C, an asterisk, and certain 
digits that define the kind of allele it represents. An example for 
class I is HLA-B*07:02. For class II molecules, both the alpha and 
beta chains affect binding and both chains are variable for the DP 
and DQ loci. As such, both chains need to be specified, such as 
HLA-DPA1*01:03/DPB1*02:01. For the DR locus, only the beta 
chain is variable so it is the only one that needs to be specified, for 
example HLA-DRB1*01:01.

Another important difference pertains to the binding core. 
Because the open binding groove accommodates longer peptides, 
only part of the peptide binds or interacts with the class II mol-
ecule. The binding core is typically nine amino acids in length 
with neighboring or flanking residues. As a result, it is difficult 
to identify which residues are actually involved in the binding 
process. For proper binding, the binding core needs to be aligned 
with the binding groove. Flanking residues also interact with the 
class II molecule outside the binding groove, but because peptides 
lengths typically vary from 15 to 23 residues, the flanking residues 

http://tools.iedb.org/mhci
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are also challenging to identify. As a result, MHC class II binding 
prediction is more challenging than that for class I molecules 
(41–45).

MHC Class ii Binding Prediction Tool web 
version
The web interface for the MHC class II binding prediction tool 
has many similarities to the class I interface. The tool can be 
accessed by links on the IEDB home page or directly at http://
tools.iedb.org/mhcii and has tabs for Help, Example, Reference, 
Download, and Contact. Users can find a sequence of interest by 
clicking on the NCBI sequence browser and cut/paste it into the 
sequence field. The format for the sequences can be plain text 
or FASTA. Users can also upload a file with their sequences as 
plain text.

Several different prediction methods are available including 
IEDB recommended, Consensus (41, 46), netMHCIIpan (47, 48), 
SMM-align (49), Sturniolo (50), and NN-align (51). The default 
method is IEDB recommended. Users can specify the species and 
locus for humans (DR, DP, and DQ) and mouse (H-2-I), and the 
associated alleles. Finally, users can specify the output results to 
be sorted by percentile rank or sequence position. The IEDB team 
continuously evaluates and enhances algorithms and develops 
new algorithms, so the IEDB recommended methods can change 
over time. Each method generates a percentile rank and a binding 
affinity score.

The user selects the species, locus, and alleles. As in the class I 
binding tool, only the most frequent alleles are listed for HLA-DR. 
There are five or six alleles available for the DP and DQ loci. Thus, 
there are fewer alleles available, because less data are available for 
training the algorithms (44). By default, the alpha and beta chains 
are combined. If the user wants to specify the chains separately for 
DP and DQ, they can check a box to enable this option. For the 
DR locus, only the beta chain is displayed since the alpha chain 
is invariant.

A reference set of 27 most common alleles (52) that can pro-
vide global coverage can be selected by checking the appropriate 
box. Users also have the option to upload allele selections in a 
text file using the allele names. The tool parses the input protein 
sequences into 15-mers and predicts the binding affinity for each 
peptide. It then compares the predicted affinity for each peptide 
with that of a large set of randomly selected peptides to determine 
its percentile rank. The Consensus method uses the median rank 
of the three constitutive methods. As before, the lower the per-
centile rank, the better the binder.

Users can download the results in a CSV file and the web 
output lists the allele in the first column, followed by the start and 
end sequence positions, the peptide sequence, method used, and 
the percentile rank. The results can be expanded by checking the 
box at the top of the table, which reveals the different scores for 
the methods used. The expanded view also lists the nine amino 
acid binding core computed by each method.

As for class I, there are several recommended approaches to 
selecting binders, including selecting peptides that have percen-
tile rank less than or equal to 10.0, or IC50 values less than or 
equal to 1,000 nM, the experimentally determined threshold for 

class II immunogenicity (53). Another approach is to select a 
desired percentage of the peptides within the peptide set sorted 
by percentile rank for users who want to study a fixed number of 
best possible peptides.

Because the tool breaks down input sequences into all possible 
15-mers, many of these sequences will have the same predicted 
9-mer binding core. One way to reduce this redundancy is to 
preprocess the input protein sequence by splitting it into a series 
of 15-mers that overlap by 10 residues and submit this series as 
input instead of the entire protein sequence. An overlap of 10 
is recommended because it can capture the minimal number 
of 15-mers with all possible 9-mer binding cores with at least 
on flanking residue on both sides. Alternatively, the user can 
post-process results when the entire protein sequence is used 
as input by selecting the best binding (lowest percentile score) 
peptide among those with the same binding core. Because this 
process is more involved than the pre-processing approach, the 
pre-processing approach is recommended.

Prediction of Promiscuous Binders and 
immunodominant epitopes
A peptide that binds to multiple MHC molecules is referred to 
as a promiscuous binder. Promiscuous binders may be associ-
ated with strong antigenicity (54, 55) and can provide extensive 
population coverage (52, 55). To predict promiscuous class II 
binders, the binding prediction tool can be used as described 
but raising the binding percentile rank threshold to 20 from 
10, opting to use the 27 reference alleles that covers 94% of the 
global population. Once the run is submitted and completed, 
users can download the results into a CSV formatted file and 
use a spreadsheet program to find the sequences that have per-
centile rank below 20, and then count the number of alleles that 
bind each 15-mer peptide. We recommend selecting sequences 
that bind at least 50% of the alleles with a percentile rank cutoff 
of 20%.

In an independent study, we analyzed peptide datasets with 
measured immune responses from house dust mite, Timothy 
grass, Mycobacterium tuberculosis, cockroach allergens, and 
Pertussis (44). The aim of the study was to devise prediction 
strategies not at the level of single alleles, but rather at the level 
of the general population. After extensive experimentation, we 
discovered that a combined prediction for a set of seven alleles, 
representative of prototypic binding supertypes, could capture 
50% immune response with 20% of the peptides. Users can 
generate 15-mers overlapping by 10 residues from their protein 
of interest, predict binding for these seven alleles, compute 
the median consensus percentile rank of the seven values for 
each peptide, and select all peptides with a median consensus 
percentile rank less than or equal to 20.0. This group of peptides 
will capture ~50% of the immune response in a general human 
population (44).

TepiTool

The IEDB team has recently developed TepiTool, a T cell Epitope 
Tool that provides a user-friendly interface for MHC class I and 
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II binding predictions, by using IEDB team’s recommendations as 
defaults, to automatically select the top peptides (56). The TepiTool 
interface is a step-by-step wizard that guides the user through 
input parameters and desired outputs. It is currently available at 
http://tools.iedb.org/tepitool on the Analysis Resource Labs web 
page.

TepiTool guides the user through six separate steps, specifying 
inputs about their sequences (step 1), host species and MHC class 
(step 2), and alleles (step 3). For class I alleles, there are several 
options that the user can pick via radio buttons. The user can select 
from the list of frequently occurring alleles (frequency greater 
than 1% in the global population), a list of all available alleles, a 
list of representative alleles from different HLA supertypes, the 
panel of 27 allele reference set, or they can choose to upload an 
allele file. In step 4, the user is presented with several options 
regarding the selection of peptides, including low, moderate, or 
high number of peptides and different lengths of peptides. The 
user also has the option to select their own settings regarding 
removing or keeping duplicate peptides (to facilitate setting up 
of pools for screening). The user also has the option of includ-
ing only peptides that are conserved in a specified percentage of 
sequences. By default, the percentage is set to 50%, but it can be 
changed in 10% increments up or down. All during this process, 
the selected parameters are summarized in a panel on the right 
of the web page.

In step 5, the user selects the prediction method (IEDB recom-
mended, Consensus, SMM, or ANN) and the output (predicted 
percentile rank, predicted IC50 or MHC-specific binding 
thresholds, the top X% or the top X number of peptides based 
on percentile rank). The recommended threshold of 500 nM is 
provided as a default if the IC50 option is chosen. In all cases, 
the number of peptides in the predicted results is shown in the 
summary panel on the right. In the sixth and final step, the user 
reviews input parameters and selected options before submission. 
The user can also specify a job name and an email address to be 
notified when the run is completed.

On the output page, a table of concise results and the best 
binders based on the chosen criteria are listed at the top. This 
table contains the peptide start and end positions, peptide 
sequence, percentile rank, allele name, and the level of con-
servancy (if this option was chosen). The output also contains 
links to download the complete results citation information for 
the tools used, the input sequence, and a summary of the other 
input parameters.

MHC class II binding predictions are performed similarly, 
and in step 3, the user can select custom allele sets, the 
seven-allele, or the reference set of 27 most frequent alleles. 
In step 4, the default setting is for a moderate number of pre-
dicted peptides with duplicate peptides removed and the input 
protein will be automatically split into 15-mers overlapping 
by 10 amino acids. An overlap of 8 will be used if the “low 
number of peptides” option is used, and the overlap of 10 if 
the “high number of peptides” option is chosen. Alternatively, 
the tool performs the post-processing step of removing largely 
overlapping peptides from the prediction set by picking the 
top peptide from the overlapping set of peptides based on 
percentile rank.

SeQUeNCe-BASeD B CeLL ePiTOPe 
PReDiCTiONS

B cell epitope prediction tools can be accessed from the Analysis 
Resource pull-down menu or the link on the IEDB home page.4 
On the web page for this tool, users must input either a protein 
Swiss-Prot ID or a sequence in plain text format and select the 
method for the prediction. A description of the different methods 
can be found on the Help tab, including the references and amino 
acid scales used in these methods. As with the T cell prediction 
tools, there is also an Example tab that contains several sample 
cases that can help familiarize users to the input and output for-
mats and a Reference tab that lists the publications that describe 
the methods.

Historically, physicochemical properties such as hydrophi-
licity (57), surface accessibility (58), beta-turns (59, 60), and 
flexibility (61) were correlated with the occurrence of B  cell 
epitopes in proteins. We implemented these four amino acid 
physicochemical properties-based methods in this tool. In addi-
tion, we implemented a semi-empirical method which makes use 
of physicochemical properties of amino acids and their frequen-
cies of occurrence to predict linear B  cell epitopes (62) and a 
machine-learning based B cell linear epitope prediction method 
called BepiPred (63). BepiPred is a prediction method that is 
based on a combination of HMM and Parker’s hydrophilicity 
and Levitt’s secondary structure scales. For this reason, BepiPred 
is the default method. With an AUC value of 0.66, its prediction 
performance is relatively poor, but better than the other methods 
available on the web page.

BepiPred results page contains a plot of the predicted score 
versus the sequence position (Figure 4). The user can adjust the 
window size and score threshold. The score for a single residue 
position incorporates the neighboring residues defined by the 
specified window size, which has a default value of 7. The thresh-
old value is based on the sensitivity and specificity. For BepiPred, 
a threshold value of 0.35 corresponds to a sensitivity of 0.49 and 
specificity of 0.75 (63). Increasing the threshold will reduce the 
sensitivity and increase the specificity, which will reduce false posi-
tives but reduce the number of possible epitopes (true positives).  
A threshold of 0.90 corresponds to a sensitivity of 0.25 and a speci-
ficity of 0.91, and a threshold of 1.30 corresponds to a sensitivity of 
0.13 and a specificity of 0.96. Below the chart is a table that displays 
the predicted peptides, start and end positions, sequence, and its 
length. A second table lists the predicted residue score for each 
position and an Assignment column that indicates a predicted 
epitope position with an “E.” For the other methods, the threshold 
value is automatically set as the average score value, and both the 
window size and threshold values can be modified by the user.

STRUCTURe-BASeD ePiTOPe 
PReDiCTiONS

The IEDB Analysis Resource has two structure-based methods 
for predicting discontinuous epitopes—DiscoTope (64, 65) 

4 http://www.iedb.org.
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FiGURe 4 | BepiPred results. BepiPred results for predicting linear epitopes in sperm whale myoglobin protein (Swissprot ID: P02185). Users can change the 
window size and score threshold (highlighted in a red box) and recalculate the results. A red line is drawn in the Score versus residue position plot at the chosen 
score threshold value to predict epitopes. Predicted epitope residue positions are colored in yellow. Predicted peptide table below the plot lists all the predicted 
linear epitopes and their positions in the protein.
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and ElliPro (66). Both make use of the proteins’ geometrical 
properties. There are also protein–protein docking algorithms 
that can be used for antigen–antibody interaction prediction. 
To use structure based prediction tools, the user must provide 
a three-dimensional (3D) structure of the antigen–antibody 
complex such as the ones provided by the Protein Data Bank.5 
The search feature on the home page of the PDB allows the user 
to search 3D structures of a protein by key work, PDB ID, or a 
sequence, while an advanced sequence search feature allows one 
to run BLAST on an input sequence to find relevant structures in 
the PDB database. Clicking on the desired structure will open a 
structure specific web page from which the structure coordinates 
can be downloaded in PDB format for use in the prediction 
tools. FASTA files are also available for download. PDB ID or 
a PDB format file is a required input for the DiscoTope epitope 
prediction method. If a 3D structure is not available in the 
PDB, there are homology modeling or comparative modeling 
methods, servers, and databases that can accessed, as described 
below.

The performance of ElliPro was evaluated in two separate 
studies in 2007 (67) and 2012 (65). The 2007 benchmark used 
42 X-ray structures of antibody–antigen complexes and ElliPro 
obtained an AUC value of 0.73, a score better than several other 
predictors, including Epitopia (68), PEPITO (69), and DiscoTope 
1 (64). Two antibody–protein docking tools were benchmarked 
and had AUC values less than 0.60. The 2012 benchmark used 52 
X-ray structures of antibody–antigen complexes. In this study, 
ElliPro had an AUC value of 0.69 and was outperformed by 
DiscoTope 1.1 (AUC = 0.71) and DiscoTope 2.0 (AUC = 0.73). 
Overall, the performance of all the structure-based methods 
has average AUC value less than 0.75. This relatively poor per-
formance might be due to the limited number of structures that 
can be used to train the algorithms. As more antibody–antigen 
complexes are deposited in the PDB, the quality of the structure-
based predictions may improve.

The DiscoTope Method for B Cell epitope 
Prediction
DiscoTope 2.0 (65) was trained on 75 X-ray structures of 
antibody–protein complexes and it takes into account multiple 
epitopes of an antigen. It assigns each residue a score calculated 
as a linear combination of normalized values from Parker’s 
hydrophilicity scale, amino acid propensity, the number of con-
tacts within 10 Å for each atom, and the area of relative solvent 
accessibility. The DiscoTope web page requires three inputs: the 
PDB ID, a PDB chain ID, and the version of DiscoTope to use. If 
a user has generated a PDB file from homology modeling, that 
file can be specified and uploaded as well. The IEDB team recom-
mends the use of DiscoTope 2.0, but it involves a more complex 
calculation than version 1.1 and subsequently takes longer to run. 
Users making a large number of runs might, therefore, want to 
use version 1.1. Different default score thresholds are used by the 
two different versions.

5 http://www.rcsb.org.

The initial DiscoTope results page displays a plot of the 
DiscoTope score versus the amino acid position of the protein, 
with the score threshold displayed as a red horizontal line and 
epitope candidate positions colored in green. Users can also select 
a Table View and a 3D View.

The 3D View initiates a JSmol applet that graphically displays 
the 3D protein structure along with the same table that is displayed 
in the Table View (Figure 5). The orientation of the 3D protein 
structure can be changed in JSmol using a computer mouse and 
visualization settings can be changed by right-clicking the mouse 
button to reveal a list of display options. Each row in the table 
has a button labeled CPK, which when clicked will highlight the 
residue in the structure model.

elliPro
Like DiscoTope, ElliPro can be accessed from the IEDB home 
page from the Analysis Resource pull-down menu or via the link 
in the right-hand panel. ElliPro (67) predicts epitopes in three 
steps. It first approximates the protein shape with an ellipsoid. It 
next calculates a protrusion index (PI) (70) for each and every 
residue. The PI is determined by constructing an ellipsoid that 
encompasses as many residues as possible but excludes that 
particular residue. Once the ellipsoid is constructed, it computes 
the ratio of the number of residues contained in the ellipsoid 
to the total number of residues to produce the PI. In the third  
step, the program clusters neighboring residues based on PI 
values to predict epitopes. There are two prediction parameters 
as inputs. The minimum score has a default value of 0.5 and 
indicates that any residue with a PI greater than 0.5 is considered 
an epitope candidate. The maximum distance parameter has a 
default value of 6, which means that only residues within a 6 Å 
distance will be clustered together within one epitope.

The ElliPro results page contains two tables, the first one for 
predicted linear epitopes and the second for predicted discon-
tinuous epitopes. The former includes columns for the chain ID, 
start and end positions of the epitope, the peptide sequence, the 
number of residues, the ElliPro score, and buttons to view the 3D 
structure with a JSmol applet. The JSmol rendering of the protein 
will show the epitope as spheres and the rest of the protein as lines. 
The ElliPro score is the average value of the PI for all residues 
involved. The predicted epitopes are presented in descending 
order based on their scores. The second table has essentially the 
same information except each residue is listed with its chain ID, 
amino acid notation, and sequence position. At the bottom of the 
page is a link so users can view the individual residue scores in a 
table and a plot of score versus sequence position.

Homology Modeling for B Cell epitope 
Predictions
If the user has an amino acid sequence for their protein of interest 
but a PDB structure is not available, the user needs to perform 
homology modeling to generate a PDB file. In this case, we 
recommend using Protein Model Portal (PMP).6 Users can enter 

6 http://www.proteinmodelportal.org.
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FiGURe 5 | DiscoTope three-dimensional (3D) view results. DiscoTope discontinuous epitope prediction results for AMA1 protein from Plasmodium falciparum 
(PDB ID: 1Z40 chain A colored in blue) are shown. 3D structure of AMA1 protein is rendered using JSmol. Predicted epitope residues are shown in yellow. The table 
on the right side lists all these predicted epitope residues along with different scores calculated by the DiscTope algorithm. Any of these residues can be highlighted 
in the 3D structure by clicking the CPK button in the table.
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their protein sequence in the search field and hit the Search but-
ton. PMP will search major protein databases, such as UniProt, 
Swiss-Prot, and NCBI, and display results of the query. Users can 
then select a record and obtain a PDB-formatted file. If no models 
are found, the user can click the Submit button at the bottom 
of the query result page to submit their target protein sequence 
to one of PMP’s registered homology modeling services. The 
subsequent page displays a list of the protein modeling servers 
along with a brief description of their server policy. Among them 
MODELLER is one of the prominent homology modeling suites 
that has gained vast popularity over the years (71). Once users 
select a server, registers for it, and submit their sequence, they 
will receive an email informing them that their results are ready 
to be retrieved.

The I-TASSER server was the number one server for protein 
structure prediction in community-wide contests for CASP7, 
CASP8, CASP9, CASP10, and CASP11 (72, 73). It also has a 
relatively simple user interface and easily understood parameters. 
However, I-TASSER is very popular and busy, and a protein of 
1,000 amino acids could take several days before the job is fin-
ished. I-TASSER will provide five predicted homology models 
by default. Each model has a C-score that indicates the level of 
confidence of the model. I-TASSER also generates a TM score 
that indicates how close the top ranked structure is to a natural 
structure. We recommend only considering the models that have 

C-scores greater than −1.50 and using the model with the highest 
C-score if possible, even though a C-score meeting this empiri-
cal criterion does not necessarily guarantee the reliability of the 
model chosen. Once the user has obtained the PDB file of their 
homology model, they can specify the file for upload for their 
ElliPro run.

Methods for Modeling and Docking of 
Antibody and Protein 3D Structures
The B cell page of the Analysis Resource has a link to a web page 
that provides information on available methods for modeling 
and docking antibody and protein 3D structures. The first step 
in the process is taking the antibody and antigen sequences and 
developing structure models. If a structure exists in the PDB, this 
step can be skipped. For modeling the antigen, one can use the 
protein structure modeling process previously described. For 
antibody modeling, however, there are specific programs avail-
able that take advantage of the inherent structure of an antibody. 
RosettaAntibody (74) and PIGS (75) are two applications that 
model antibodies. PIGS, or Prediction of ImmunoGlobulin 
Structure, is easier to use and has been implemented in the 
Analysis Resource. Once models for the antigen and antibody 
have been generated, the docking can be modeled with many dif-
ferent protein–protein docking programs including PatchDock 
(76) and ClusPro (77).
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PIGS can be accessed from the Analysis Resource’s B Cell Tools 
tab. As with the other tools in the Analysis Resource, PIGS has 
Help, Example, and Reference tabs. Users also have the option of 
uploading a sequence file with the light and heavy chain informa-
tion instead. The PIGS results page displays a JSmol rendering 
of the modeled antibody structure. Each chain has its own color 
as do the light and heavy chain loops (L1, L2, L3, H1, H2, H3). 
There is a button at the bottom of the results page to download 
the structure file. This file can be opened in a text editor where 
the user can examine the alignment of the target sequence to the 
canonical antibody template. If the user wants to edit the align-
ment, they will have to go to the PIGS home website7 since this 
feature has not been implemented in the IEDB.

With structure files for the antibody and the antigen, the user 
can now use one of the antibody–antigen docking programs. 
PatchDock8 is relatively fast and has good accuracy and a straight-
forward and easy to understand user interface. The Complex 
Type input parameter should be set to “Antibody–antigen.” The 
antibody should be specified as the receptor molecule and the 
antigen specified as the ligand molecule since the antibody–anti-
gen docking is optimized for this configuration. The Clustering 
RMSD field is used for clustering the results. Because there can 
be many results, the program clusters them to be able to present 
representative ones. PatchDock recommends using 4.0 Å in pro-
tein–protein docking. Once a job is submitted, PatchDock typi-
cally returns results within a few minutes. The results are ranked 
by the geometric shape complementarity score (Score), where the 
higher score indicates a better result. Values are also presented 
for the approximate interface area of the complex (Area) and 
the atomic contact energy. The page has a link to visualize the 
candidate with a Jmol applet and a link to download the results. 
Users can improve the solutions using the FireDock (78, 79) link 
at the bottom of the page. PatchDock performs a rigid-body 
computation so the backbone does not move. FireDock is an 
efficient method for refining the rigid-body docking solutions of 
PatchDock.

ClusPro9 is another well-known docking server and was the 
first web-based antibody–antigen docking program publicly 
available. ClusPro also incorporates electrostatic interaction 
energy and desolvation energy. ClusPro accepts both PDB IDs 
and uploaded PDB files as input. Under Advanced Options, there 
is an Antibody Mode, where the user can check the boxes to use 
the Antibody Mode and to automatically mask non-CDR regions. 
The resulting models can be downloaded and visualized on this 
page.

Analysis Tools
The IEDB’s analysis tools most frequently used are the popula-
tion coverage tool, the epitope conservancy tool, and the epitope 
clustering tool. The population coverage tool (80) calculates the 
fraction of individuals that are predicted to respond to a given 
set of epitopes with known MHC restriction, based on HLA 

7 http://circe.med.uniroma1.it/pigs/.
8 http://bioinfo3d.cs.tau.ac.il/PatchDock/.
9 https://cluspro.bu.edu/.

genotypic frequencies from http://allelefrequencies.net (81) 
assuming no linkage disequilibrium between HLA loci. Example 
data sets from the tab of the same name can be selected. The user 
can enter either epitope names or sequences, and then selects the 
population geographical location of interest. Results show what 
fraction of the population are expected to respond to at least one 
peptide, how many peptides on average each subject is expected to 
respond, and to how many peptides 90% of donors can potentially 
respond. Results are presented in graphical and tabular form.

The epitope conservancy analysis (82) tool calculates the 
degree of conservancy of an epitope within a given protein 
sequence set at different degrees of sequence identify. The degree 
of conservation is defined as the fraction of protein sequences 
that contain the epitope at a given identity level. In practice, the 
user inputs a set of epitopes and a set of protein sequences, and 
specifies the sequence identity threshold. The results page shows 
the number of protein sequences where each epitope is conserved 
at the given identity threshold. Users can click on a link to view 
details for a given epitope, which shows the subsequences in 
each protein that match the epitope sequence. With an identity 
threshold of 100%, the matches are identical, but lower thresholds 
allow varying degrees of amino acid substitutions.

The epitope cluster analysis tool (2) groups epitopes together 
based on sequence similarity. It is common to have variants of 
the same epitope tested by different labs that synthesize peptides 
of different lengths or use different isoforms of proteins. This can 
result in largely redundant sequences in a group. This tool takes 
epitope sequences as input and groups them by a user-specified 
level of identity.

CONCLUSiON

The IEDB and the Analysis Resource provide researchers inter-
ested in vaccine design and evaluation with useful bioinformatics 
resources in the context of data and tools. In this paper, we have 
described the features of the epitope prediction and analysis tools 
and how to use them (Figure 6). The MHC class I binding and 
processing prediction tools calculate putative epitopes and their 
affinity to a wide assortment of MHC alleles, which correlates 
to CD8+ recognition and immune response. Evaluations have 
shown these predictions to have very good accuracy. The MHC 
class II binding tools, while not as accurate as the class I tools, 
have improved significantly over the years as more binding data 
have become available to train the machine learning algorithms 
that drive the predictions. For both class I and class II binding 
prediction tools, reference sets of HLA alleles have been derived 
that provide over 95% global population coverage, an important 
feature for developing drugs. These tools are helpful in devel-
oping a set of likely high affinity binding peptides that can be 
synthesized for experimental analysis. A user-friendly interface 
named TepiTool has been developed to guide users through 
the process of making class I and class II binding predictions. It 
facilitates the selection of different input parameters, including 
the IEDB recommended default values and the reference allele 
sets, and it allows the user to select output criteria, such as the 
top binders based on percentile rank or promiscuity in the case 
of class II alleles. The class I immunogenicity tool predicts the 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://circe.med.uniroma1.it/pigs/
http://bioinfo3d.cs.tau.ac.il/PatchDock/
https://cluspro.bu.edu/
http://allelefrequencies.net


FiGURe 6 | The tools of the Analysis Resource can be used to predict T cell and B cell epitopes and to analyze sets of epitopes. The Analysis Resource 
interacts with a range of bioinformatics resources.
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immunogenicity of peptide–MHC complex in a manner that is 
independent of MHC restriction.

The development of B cell epitope predictors is an ongoing 
area of research. The Analysis Resource offers tools for predict-
ing linear and conformational antibody epitopes using several 
approaches, including amino acid scales, machine learning 
techniques, and molecular geometrical properties. Although 
not providing a performance similar to that of MHC class I 
and class II predictors, the B cell epitope tools can identify can-
didate antigen regions likely to bind antibodies. The Analysis 
Resource also provides a tool for predicting the population 
coverage of T cell epitope-based vaccines so that vaccines can 
be designed to maximize coverage. The epitope conservancy 
analysis tool was designed to analyze the variability and con-
servation of epitopes within a given set of protein sequences, 
useful information in developing peptide-based vaccines since 
conserved epitopes would be expected to be immunogenic 

across multiple strains or possibly species. In all, the IEDB 
offers a valuable and free bioinformatics resource to the vac-
cine design community.
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