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Antibodies participate in defense of the organism from all types of pathogens, including 
viruses, bacteria, fungi, and protozoa. IgG antibodies recognize their associated antigen 
via their two Fab portions and are in turn recognized though their Fc portion by specific 
Fcγ receptors (FcγRs) on the membrane of immune cells. Multiple types and polymorphic 
variants of FcγR exist. These receptors are expressed in many cells types and are also 
redundant in inducing cell responses. Crosslinking of FcγR on the surface of leukocytes 
activates several effector functions aimed toward the destruction of pathogens and the 
induction of an inflammatory response. In the past few years, new evidence on how 
the particular IgG subclass and the glycosylation pattern of the antibody modulate the 
IgG–FcγR interaction has been presented. Despite these advances, our knowledge of 
what particular effector function is activated in a certain cell and in response to a specific 
type of FcγR remains very limited today. On one hand, each immune cell could be pro-
grammed to perform a particular cell function after FcγR crosslinking. On the other, each 
FcγR could activate a particular signaling pathway leading to a unique cell response. In 
this review, I describe the main types of FcγRs and our current view of how particular 
FcγRs activate various signaling pathways to promote unique leukocyte functions.
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iNTRODUCTiON

The first antibodies produced by the adaptive immune response belong to the immunoglobulin M 
(IgM) class. These antibodies present low affinity for pathogen antigens. However, as the adaptive 
immune response progresses, antibodies produced are mainly of the IgG class. These antibodies 
present higher affinity and greater specificity for their particular antigen. Thus, IgG antibodies 
are involved in protection from all types of pathogens, including viruses, bacteria, fungi, and 
protozoa (1).

Although, IgG molecules are key for controlling infections, these antibodies usually do not 
directly damage the microorganisms they recognize. Nowadays, it is well known that leukocytes 
of the innate immune system are responsible for the protective effects of these antibodies. Some 
antibodies can directly neutralize toxins or viruses, and activate complement. By binding to a toxin, 
antibodies prevent the toxin from reaching its receptor on a cell and thus protect the cell. Similarly, by 
binding to a virus, antibodies inhibit uncoating of the virus and prevent a productive viral infection 
(2). Antibodies can also activate complement, which is then deposited on pathogens to promote 
phagocytosis via complement receptors (3, 4), or to induce bacterial lysis via the formation of the 
membrane attack complex (5).
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FiGURe 1 | Mouse Fcγ receptors (FcγRs). Schematic illustration of mouse 
receptors for IgG. FcγRs are shown relative to the cell membrane (yellow line) 
and together with their respective signaling subunits. γ2, FcR gamma subunit 
dimer; β2m, beta-2 microglobulin; ITAM, immunoreceptor tyrosine-based 
activation motif (green rectangle); ITIM, immunoreceptor tyrosine-based 
inhibition motif (red rectangle); FcRn, neonatal Fc receptor. TRIM21 is a 
cytosolic receptor.
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IgG antibodies recognize their associated antigen via their 
two Fab (fragment antigen-binding) portions and are in turn 
recognized though their Fc (fragment crystallizable) portion by 
specific Fcγ receptors (FcγRs) on the membrane of immune cells 
(6, 7). Crosslinking of FcγR on the surface of cells activates several 
effector functions. These effector functions are aimed toward the 
destruction of pathogens and the induction of an inflammatory 
response that is beneficial during infections (8). Depending on 
the cell type, and also on the Fcγ receptor type, these effector 
functions include phagocytosis, activation of the oxidative burst, 
cell degranulation, antibody-dependent cell-mediated cytotoxic-
ity (ADCC), and activation of genes for production of cytokines 
and chemokines (8, 9).

Because FcγR-mediated cell effector functions vary consider-
ably among different leukocytes and types of IgG, it is then of 
great interest to understand how a certain FcγR is activated to 
induce a particular cellular function. This knowledge would help 
us in the future to augment an effective anti-microbial response 
for example during infections, or to inhibit an exacerbated 
inflammatory or autoimmune response (10, 11). In addition, it 
will help us to develop new therapeutic antibodies capable of 
interacting with certain Fc receptors to induce particular effector 
cell functions (12). The first level of control is clearly the binding 
of IgG molecules to FcγRs. In the past few years, the binding of 
IgG molecules to FcγRs has been examined more carefully, and 
new evidences on the manner some factors modulate the IgG–
FcγR interaction have been described. These factors include the 
particular IgG subclass (13, 14) and the glycosylation pattern of 
the antibody (15–17).

Despite these advances on how IgG molecules and FcγRs 
interact, our knowledge of what particular effector function is 
activated in a certain cell and in response to a specific type of FcγR 
remains very limited today. The traditional view has been that 
each immune cell could be programmed to perform a particular 
cell function after FcγR crosslinking. Another more recent view 
is that each FcγR activates a particular signaling pathway leading 
to a unique cell response. In this review, I describe the main types 
of FcγRs, and the recent evidence that supports the idea that a 
specific FcγR induces a unique cell response.

Fcγ ReCePTORS

Fcγ receptors are a family of glycoproteins expressed on the 
membrane of immune cells, and capable of binding the Fc por-
tion of IgG antibody molecules (9, 14). These receptors can bind 
to the various IgG subclasses with different affinities (8), and 
when crosslinked by multivalent antigen-antibody complexes, 
can induce different cellular responses. In mice, there are three 
exclusive IgG receptors (mFcγRI, mFcRn, and mTRIM21), and 
three receptors that can bind both IgG and IgE (mFcγRIIb, 
mFcγRIII, and mFcγRIV) (18) (Figure 1). The latter dual-specific 
receptors prefer binding to IgG (affinity is around 2 log higher) 
that they are usually described as IgG receptors (18). However, 
interacting with IgE can also induce biological responses (19). 
All these receptors bind IgG on the membrane of the cells 
expressing them, except the neonatal FcR (mFcRn) (20, 21) and 
the cytosolic tripartite motif-containing protein 21 (TRIM21)  

(22, 23) that bind antibody molecules once internalized. In addi-
tion, polymorphisms for mouse Fc receptors have been described. 
Ly17.1 and Ly17.2 are alleles for mFcγRIIb, and V, T, H are alleles 
for mFcγRIII (Figure 1). These receptors can also be divided into 
activating (mFcγRI, mFcγRIII, and FcγRIV) and one inhibitory 
(mFcγRIIb) receptors (14, 24).

In humans, also several activating receptors (FcγRI/CD64, 
FcγRIIa/CD32a, FcγRIIc/CD32c, and FcγRIIIa/CD16a), one 
inhibitory receptor (FcγRIIb/CD32b), and one glycosylphos-
phatidylinositol (GPI)-linked receptor, lacking a cytoplasmic tail 
(FcγRIIIb/CD16b) have been identified (Figure 2) (14, 24–26). 
These are also described as classical IgG receptors. In addition, 
non-classical receptors for IgG include two FcR-like receptors, 
FcRL4/CD307d and FcRL5/CD307e that are homologous to 
FcγRI, and the receptors hFcRn and hTRIM21. All these recep-
tors, with the exception of FcRL4 (that binds both IgA and IgG) 
are truly IgG receptors since they do not bind any other class of 
immunoglobulin (27) (Figure 2).

FcRL4 and FcRL5 are inhibitory receptors that are expressed 
exclusively on B  cells and downregulate B-cell receptor 
responses (28, 29). FcRL4 is restricted to a subset of memory 
B cells (30). The hFcRn is a transport receptor that allows IgG 
recycling. Expression of hFcRn on vascular endothelial cells and 
on intestinal epithelial cells permits bidirectional IgG transport, 
from the circulation into tissues and vice  versa. Also, on pla-
cental syncytiotrophoblasts, this receptor allows the transport 
of maternal IgG into the fetus (20). The hFcRn seems also 
capable of transporting IgG-bound antigens in dendritic cells 
(31), macrophages (32), and neutrophils (33), thus promoting 
antigen presentation and modulating immune responses (21). 
Similarly to the mouse, the cytosolic receptor hTRIM21 is also 
ubiquitously expressed (23).

FcγRI is a high-affinity receptor, having three Ig-like extracel-
lular domains. It binds mainly monomeric IgG (34). By contrast, 
FcγRII and FcγRIII are low-affinity receptors, having two Ig-like 
extracellular domains. They bind only multimeric immune  
complexes (34, 35).
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FiGURe 2 | Human Fcγ receptors (FcγRs). Schematic illustration of 
human receptors for IgG. FcγRs are shown relative to the cell membrane 
(yellow line) and together with their respective signaling subunits. Upper panel 
shows the classical FcγR (those containing typical Ig-domains). Lower panel 
shows the non-classical FcγR. γ2, FcR gamma subunit dimer; β2m, beta-2 
microglobulin; ITAM, immunoreceptor tyrosine-based activation motif (green 
rectangle); ITIM, immunoreceptor tyrosine-based inhibition motif (red 
rectangle); FcRn, neonatal Fc receptor. TRIM21 is a cytosolic receptor. The 
FcR-like receptors FcRL4 and FcRL5 are inhibitory receptors that are 
expressed exclusively on B cells.
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Activating receptors are associated with a dimer of the com-
mon FcRγ chain, which contains an immunoreceptor tyrosine-
based activation motif (ITAM) sequence (Figure 2). An ITAM is 
a conserved signaling motif with the consensus sequence YxxI/
Lx(6–12)YxxI/L, where x represents any amino acid (36). Exceptions 
to this rule are the human FcγRIIa and FcγRIIc, which contain 
their own ITAM within their cytoplasmic tail. By contrast, the 
inhibitory receptor FcγRIIb contains an immunoreceptor 
tyrosine-based inhibition motif (ITIM) within its cytoplasmic tail 
(Figure 2). An ITIM has the consensus sequence I/V/L/SxYxxL/V 
(37). FcγRIIb negatively regulates various cell functions including 
antibody production by the B cell (38), proliferation, degranula-
tion, and phagocytosis in other leukocytes when it is crosslinked 
with activating FcγRs (37, 39). Most immune cells express both 
activating and inhibitory FcγRs, hence simultaneous crosslinking 
establishes a threshold for cell activation (40, 41) that maintains 
a balanced immune response (42, 43). The GPI-linked receptor 
FcγRIIIb is expressed mainly on neutrophils and on a subset of 
basophils (44). It is classified as an activating receptor, although 
it is not associated with the common FcRγ chain (34). In fact, 
no other subunits are known to associate with it, and its signal-
ing mechanism remains unknown (4, 14). The human FcγRIIa 
and FcγRIIIb are exclusive receptors that are not found in other  
species (24, 45).

Polymorphisms and Links to Disease 
Susceptibility
In addition, there are several polymorphisms in the human FcγRII 
and FcγRIII (46). Two alleles of the gene coding for FcγRIIa 
generate two isoforms with different aminoacids at position 131. 
These are known as low-responder (H131) and high-responder 

(R131) (47). The H131 and R131 isoforms are expressed differentially 
in Caucasian and Asian people (48). For FcγRIIIa also allelic vari-
ants exist expressing either valine or phenylalanine at position 158 
(49, 50). Similarly, for FcγRIIIb on neutrophils, two isoforms exist 
differing at four positions, NA1 (R36 N65 D82 V106) and NA2 
(S36 S65 N82 I106) (51), and with different glycosylation patterns 
(52). These differences affect the capacity of FcγRIIIb to interact 
with human IgG. Therefore, neutrophils from individuals who are 
homozygous for the NA1 allele have better phagocytosis of IgG-
opsonized targets than do neutrophils from NA2-homozygous 
individuals (53, 54). Also, a point mutation (A78D) in the NA2 
allele generates another FcγRIIIb isoform named SH (55). In 
addition, the gene for FcγRIIIb may be present in a variable num-
ber of gene copies in different individuals. Thus, a single person 
may express all three FcγRIIIb isoforms (56). Several of these 
polymorphisms have been associated to autoimmune and infec-
tious diseases. FcγRIIa R131 has been associated to nephropathy 
(57), bacterial infections (58), and systemic lupus erythematosus 
(SLE) (57, 59). FcγRIIIa F158 has been associated to SLE (49) and 
to rheumatoid arthritis (60). FcγRIIIb NA1 has been associated to 
Wegener granulomatosis (61) and systemic vasculitis (62), while 
FcγRIIIb NA2 has been associated to SLE in Japanese people (54). 
These multiple FcγR and their allelic variants vary greatly in their 
affinity for different IgG classes (35).

Cell expression of FcγRs
Fcγ receptors are found on many cells of the immune system 
(34). The expression pattern of these receptors on the different 
immune cell types has been recently reexamined with support 
from new FcγR-specific monoclonal antibodies (Table 1). FcγRI 
is expressed on monocytes, macrophages, dendritic cells (25), and 
interferon-γ (IFN-γ)-stimulated neutrophils (63) and mast cells 
(64). FcγRIIa is expressed on macrophages, neutrophils, mast 
cells, eosinophils, and platelets. FcγRIIb is expressed on B cells 
(65), basophils (66), tissue macrophages, dendritic cells (65), and 
on a small fraction of monocytes and neutrophils (67). FcγRIIIa 
is expressed mostly on NK cells and weakly on monocytes, mac-
rophages, basophils, and mast cells (26, 34). FcγRIIIb is expressed 
on neutrophils and by a subset of basophils (44). Interestingly, 
the expression of some of these classical FcγRs has been found 
on cells other than hematopoietic cells (68). For example, FcγRI 
expressed on sensory and motor neurons allows uptake of IgG 
and release of neurotransmitter (69), while FcγRIIb is expressed 
on hippocampal neurons (70), and also on liver endothelial sinu-
soidal cells (71). Thus, FcγR-mediated functions may not always 
be related to immune cells.

It is worth mentioning that FcγR expression is not fixed and 
can be altered by other factors. For example, Th1-type cytokines 
such as IFN-γ and the anaphylatoxin C5a upregulate activating 
FcγRs expression and downregulate FcγRIIb expression (72, 
73), whereas Th2-type cytokines, such as interleukin (IL)-4, 
IL-10, and transforming growth factor-beta upregulate FcγRIIb  
expression (41, 74).

Soluble FcγRs
Another interesting characteristic of FcγRs is that soluble 
forms exist. They are generated by enzymatic cleavage of 
membrane-associated receptors or by alternative splicing of the 
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TABLe 1 | Cell expression pattern of Fcγ receptors (FcγRs).

FcγRi FcγRiia FcγRiib FcγRiiia FcγRiiib

Human cell
Neutrophil +a + +/−b – ++
Monocyte + + +/−b +c –
Macrophage + + + +c –
B cell – – ++ – –
T cell – – – – –
NK cell – – ++ ++ –
Dendritic cell + + + – –
Mast cell +a + – +c –
Basophil – + – +c +b

FcγRi FcγRiib FcγRiii FcγRiv

Mouse cell
Neutrophil – + + +
Monocyte + + + +d

Macrophage + + + +
B cell – + – –
T cell – – – –
NK cell – – + –
NKT cell – – + –
Dendritic cell + + + –
Mast cell – + + –
Basophil – + + –

aInducible expression.
bSmall subset.
cWeak expression.
dLybC low.
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transmembrane region encoding exons. In the first case, these 
soluble receptors comprise the extracellular part of the recep-
tor, and in the second case they include the extracellular region 
linked to the intracytoplasmic part of the receptor. Soluble FcγRs 
are found in serum (75, 76), human saliva (77), and their levels 
depend on the immune status of the host (78). Recombinant 
soluble FcγRs bind mouse and human IgG subclasses with a bind-
ing profile identical to the corresponding membrane-associated 
receptors and present immunomodulatory properties (79). Thus, 
FcγRs present a dual role in immunity. They are signal transduc-
tion units for antibodies during activation of leukocytes, and also 
function as regulatory molecules when produced in solution.

Soluble forms of FcγRs were first described for the mouse 
FcγRIIb on activated B cells (80), T cells (81), and on fibroblasts 
expressing a recombinant form of this receptor (80). In murine 
macrophages (P388D1 cell line), a soluble form of FcγRIIb was 
detected in tissue culture supernatants. This soluble receptor 
corresponded to an mRNA derived from the FcγR gene by splic-
ing exons encoding the transmembrane and intracytoplasmic 
domains (82). Interestingly, B cells, which do not splice the IC1 
exon, do not secrete this soluble FcγRIIb isoform (81, 83). The 
mouse FcγRIII has also been shown to be released in soluble 
form from activated NK  cells (83), macrophage cell lines (82), 
and Langerhans cells (84).

In human cells, an mRNA splice form of FcγRII without the 
transmembrane region was detected by PCR in erythroleukemia 
(K562) and monocytic (U937) cell lines (47, 76). This soluble 
isoform of FcRII has been found in serum (85), and can also be 
released from Langerhans cells (86). In addition, a soluble FcγRIIb 
produced by proteolytic cleavage of the membrane-bound 

receptor, is released from activated B cells (87, 88). For human 
FcγRIII, both isoforms, FcγRIIIa and FcγRIIIb are released by 
proteolytic cleavage upon NK cell (89, 90) and neutrophil activa-
tion (91, 92), respectively, by various stimuli. The soluble FcγRIII 
is found in serum (92), in synovial fluid and saliva (77). No 
soluble FcγRI isoform has been reported. However, one human 
FcγRI gene has a stop codon at the 3′ end of the exon coding for 
the second extracellular domain. Thus, this gene would code for a 
predictive soluble low-affinity FcγR. Such a secreted receptor has 
not been identified (79).

The shedding of FcγRIIIa involves mainly matrix metal-
loproteinases (93), whereas FcγRIIIb is released by the 
action of both metalloproteinases and serine proteases (94, 
95). Metalloproteinase inhibitors mostly blocked phorbol-
12-myristate-13-acetate (PMA)-induced, but not cytochalasin 
B + fMLF-induced shedding of FcγRIIIb. By contrast, serine pro-
tease inhibitors mostly blocked cytochalasin B + fMLF-induced, 
but not PMA-induced shedding of FcγRIIIb (96). Thus, distinct 
types of proteolytic enzymes seem to be involved in the stimulus-
induced shedding of FcγRIIIb from human neutrophils. Because, 
inhibitors of metalloproteinase members of the A Disintegrin 
And Metalloproteinase (ADAM) family appeared most efficient 
in preventing FcγRIIIb shedding (96), more recently it has been 
shown that ADAM17 is the primary protease mediating FcγRIIIb 
cleavage (97). ADAM17 is also involved in releasing FcγRIIIa 
from activated NK  cells (97–100). However, in these cells, 
membrane-type 6 matrix metalloproteinase may also participate 
in FcγRIIIa shedding (101). FcγRIII presents a short membrane 
proximal cleavage region where three separate cleavage sites have 
been identified at positions alanine195/valine196, valine196/
serine197, and threonine198/isoleucine199 (102).

Functions for soluble FcγRs are not completely known. However, 
because their levels in serum depend on the immune status of the 
host, these soluble receptors have a potent immunomodulatory 
role (78). In mouse, activation of the immune system by protein 
antigens such as ovalbumin and parasitic infections increases 
the levels of soluble FcγRs in serum (103), and in tumor-bearing 
animals (75). T cell-produced soluble FcγRs inhibited IgM and 
IgG production (79), and primary and secondary responses were 
inhibited by recombinant soluble FcγRII both in vitro (79) and 
in  vivo (81, 83). Also, the intraperitoneally administration of 
these recombinant soluble receptors inhibited B  cell responses 
induced via the B cell receptor, or B cell proliferation induced by 
mitogens (104). Purified soluble human FcγRIIIb inhibited IgM 
and IgG production by peripheral blood leukocytes stimulated 
with pokeweed mitogen (79, 105).

Despite a clear immunomodulatory role for these soluble 
FcγRs, a potential function for them in immunological disorders 
has been difficult to demonstrate. However, several examples exist 
where soluble FcγRs clearly change in pathological conditions. In 
patients with paroxysmal nocturnal hemoglobinuria, an acquired 
defect of hematopoietic stem cells in the synthesis or attachment 
of GPI-anchored proteins, a reduced expression of FcγRIIIb 
on neutrophils (106), and a reduced level of soluble FcγRIIIb 
(91, 92) have been reported. The impact for the deficiency of 
both membrane and soluble FcγRIIIb on the immunological 
disorders associated with this disease has not been established 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TABLe 3 | Relative affinities of mouse igG subclasses for mouse Fcγ 
receptors (FcγRs).

FcγRi FcγRiib FcγRiii FcγRiv

igG subclass
IgG1 – ++ + –
IgG2a +++ ++ ++ +++
IgG2b ++ ++ ++ +++
IgG3 + – – –

TABLe 2 | Relative affinities of human igG subclasses for human Fcγ 
receptors (FcγRs).

FcγRi FcγRiia FcγRiib FcγRiic FcγRiiia FcγRiiib

H131 R131 v158 F158

igG subclass
IgG1 +++ ++ ++ + ++ ++ ++ ++
IgG2 – ++ + + + ++ + –
IgG3 +++ ++ ++ + ++ ++ ++ ++
IgG4 +++ ++ ++ + ++ ++ + ++

+++, high affinity; ++, low affinity; +, very low affinity; –, no binding.

5

Rosales Each FcγR Activates Distinct Functions

Frontiers in Immunology | www.frontiersin.org March 2017 | Volume 8 | Article 280

(79). In patients with multiple myeloma, a reduction of soluble 
FcγRIIIb correlated with disease severity (79). This reduction 
was associated with a slight decrease in circulating neutrophils, 
but not with a significant defect in soluble FcγRIIIb production 
by neutrophils, as detected in  vitro (107). Treatment of acute 
immune thrombocytopenic purpura (ITP) with intravenous 
immunoglobulin (IVIG) induces partial or complete responses, 
shown by increases in platelet count. The mechanism for this 
clinical benefit may be the blockade of FcγRs. Platelets sensitized 
by IgG could not be cleared by cells of the reticuloendothelial 
system if their FcγRs were blocked with IVIG (108, 109). In the 
same way, children with ITP, who were treated with intravenous 
infusions of Fc fragments of IgG, showed rapid increases in 
platelet counts together with partial or complete responses (110). 
In addition, an increase in serum soluble FcγRIII concentration 
correlated with the rise in platelet count (110). Thus, it seems that 
FcγR blockade is the main mechanism of action of IVIG in ITP. 
However, other immunoregulatory mechanisms triggered by the 
presence of increased soluble FcγRIII could also be involved in 
the clinical benefit observed during ITP treatment (110). Also, 
in human immunodeficiency virus (HIV)-infected patients, a 
reduction of soluble FcγRIII levels in serum was reported. The 
reduction of soluble receptor correlated with a reduction of CD4+ 
T  cells (111). Although, no specific changes in the number of 
NK cells expressing FcγRIIIa were found in this study, recently it 
has been proposed that NK cell activation during HIV infection 
leads to profound decreases in FcγRIIIa expression on NK cells 
(112). These results suggest that NK cell activation-induced FcγR 
cleavage may result in the soluble FcγRIII that associates with 
HIV disease progression, further suggesting a linkage between 
chronic NK cell activation and HIV disease progression (112).

More research on the role of these soluble FcγRs in various 
immunological and inflammatory disorders is needed, in order 
to fully understand their effects on the immune response and to 
use them in novel therapeutic approaches.

igG BiNDiNG AFFiNiTY FOR FcγRs

As described above, there is one high-affinity Fcγ receptor, 
FcγRI (CD64), and two groups of low-affinity FcγRs, FcγRII 
and FcγRIII. The FcγRII group includes FcγRIIa, FcγRIIc, and 
FcγRIIb (CD32a, CD32c, and CD32b), while the FcγRIII group 
includes FcγRIIIa and FcγRIIIb (CD16a and CD16b). This means 
that a single IgG molecule cannot bind to most FcγRs. On the 
contrary, antigen-antibody (immune) complexes promote many 
low-affinity interactions between FcγR and IgG. In consequence, 
only immune complexes are able to induce the crosslinking of 
FcγR on the membrane of immune cells leading to the various 
antibody-mediated cell functions (Tables 2 and 3).

The Role of Particular igG Subclass
Because, there are four subclasses of IgG (IgG1, IgG2a, IgG2b, and 
IgG3 in mice; and IgG1, IgG2, IgG3, and IgG4 in humans) (113), 
different kinds of immune complexes exist. It has been observed 
in many in vivo studies that the different IgG subclasses indeed 
can activate different cell responses. For example, in mice, IgG2b 
was better at eliminating B cells (114) and T cell lymphomas (115) 

than IgG1. Also, anti-erythrocyte antibodies of IgG2a and IgG2b 
subclasses were better in mediating phagocytosis of opsonized 
erythrocytes than antibodies of IgG1 and IgG3 subclasses (116, 
117). In addition, IgG2a could induce a more severe glomerular 
inflammation than IgG2b, and in turn IgG2b could do it better 
than IgG1 (118).

All these reports confirmed that different IgG subclasses 
mediate different cellular responses in vivo and have suggested 
that these different cellular activities result from crosslinking dif-
ferent FcγRs. In consequence, a great interest exists for determin-
ing which type of IgG binds to which FcγR and what particular 
receptor is involved in mediating a certain cellular function. In 
humans, it was shown that most FcγRs bind primarily IgG1 and 
IgG3 over the other subclasses of IgG (Table 2). Similarly, in mice 
it was shown that IgG1 binds only to mFcγRIII, while IgG2a binds 
to all types of activating FcγR. IgG2b binds to mFcγRIII and 
mFcγRIV. IgG3 does not seem to bind significantly to any of the 
FcγR (14, 24, 117, 119) (Table 3).

In agreement with these data, IgG1 activity was lost in mice defi-
cient in mFcγRIII (117, 120). For IgG2a and IgG2b, however, the 
correlation with particular FcγRs is not as simple. In some model 
systems, the activity of these IgG classes was lost in mFcγRIII-
deficient mice, while it was not in others (13). Therefore, it seems 
clearly established that different IgG subclasses mediate different 
cellular responses by crosslinking different FcγRs. However, the 
mechanism used to generate this IgG–FcγR selectivity is not 
completely understood.

Obviously, this selectivity depends mainly on the affinities 
of different IgG subclasses to particular FcγRs. For this reason, 
detailed studies to measure the affinities of IgG classes to the 
various FcγRs have been conducted both for mice FcγRs (117) 
and more recently for all human FcγRs (35). Through these 
studies, it was found that murine IgG1 has higher affinity for the 
inhibitory FcγRIIb than for the activating mFcγRIII. By contrast, 
murine IgG2a and IgG2b have higher affinity for the activating 
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mFcγRIV than for the inhibitory mFcγRIIb. These results sug-
gest that for IgG1 a high threshold for activation exists, while for 
IgG2a a lower threshold for activation is present, and also help 
explain why in most in  vivo responses IgG2a antibodies seem 
to be much more potent and effective (121, 122). In the case 
of humans, it was found that IgG1 and IgG3 bind to all FcγRs. 
IgG2 binds mainly to FcγRIIa (H131 isoform) and FcγRIIIa (V158 
isoform), but not to FcγRIIIb (35). IgG4 binds to many FcγRs 
(35). Thus, it is clear that different IgG subclasses engage different 
FcγRs depending on the relative affinity of these receptors for a 
particular IgG class (24).

The Role of Antibody Glycosylation 
Pattern
All IgG antibodies have one carbohydrate (sugar) side chain added 
to asparagine 297 (Asp297) in their Fc portion. This N-glycosylated 
carbohydrate side chain is important for IgG function (123) and 
its deletion leads to poor binding to FcγRs (124). The N-glycans 
attached to the Fc portion of the IgG molecule are heterogene-
ous in their sugar composition (15). The heterogeneous pattern 
of glycosylation may contain sugar residues such as galactose, 
fucose, and sialic acid in straight or branching patterns (16). This 
heterogeneous pattern may also change with age and disease 
(125). For example, terminal galactose and sialic acid residues 
were reduced in active autoimmune disease (126, 127), while they 
were increased during pregnancy (128, 129). These changes in the 
glycosylation pattern seem to regulate IgG activity (130).

Many IgG antibodies present a fucose residue linked to an 
N-acetylglucosamine residue (131). The absence of this fucose 
residue increased the binding affinity of antibodies to human 
FcγRIIIa and its mouse ortholog mFcγRIV (132). Together 
with the increased receptor binding, these IgG antibodies also 
augmented ADCC activity against various tumor cells (119, 132, 
133). These observations have lead to producing recombinant 
IgG antibodies with low fucose levels in order to increase their 
ADCC activity. Several of these antibodies are now in clinical 
trials to test their therapeutic potential (134).

IgG antibodies also have sugar side chain often terminating 
with sialic acid residues (135). High levels of terminal sialic acid 
correlate with very low affinity for FcγRs and also with reduced 
ADCC activity (127, 136). These sialic acid-rich antibodies were 
also found to preferentially bind other cellular receptors different 
from FcγRs. Specific ICAM-3 grabbing non-integrin-related 1 
and its human ortholog dendritic cell specific ICAM-3 grabbing 
non-integrin were identified as receptors for sialic acid-rich IgG 
(137). Hence, terminal sialic acid can modify IgG activity by 
promoting less binding to FcγRs and more binding to other novel 
(type II) antibody receptors (17, 138).

Fc ReCePTOR SiGNALiNG

All activating FcγR containing ITAM sequences seem to signal in 
a similar way at least at the first signaling step. After crosslinking 
of activating FcγRs, Src family kinases, such as Fyn, Lck, or Lyn, 
get activated followed by activation of Syk (spleen tyrosine kinase) 
family kinases. These kinases phosphorylate tyrosines within the 

ITAM. Phosphorylated tyrosines then become docking sites for 
Syk, which in turn phosphorylates multiple substrates leading 
to different cell responses (4, 14, 139). The Ras pathway can be 
activated through phosphorylation of Sos. This leads to activation 
of Ras, which in turn phosphorylates Raf, leading to activation 
of MAPK/ERK kinase (MEK) and extracellular signal-regulated 
kinase (ERK). This pathway is associated with activation of 
transcription factors such as AP-1, nuclear factor of activated 
T  cells (NFAT), and NF-κB that control cytokine production 
and expression of cell survival proteins (Figure  3). Syk can 
also induce activation of phosphatidylinositol-3 kinase, which 
produces phosphatidylinositol 3,4,5-trisphosphate (PIP3). This 
phospholipid recruits pleckstrin homology domain-expressing 
proteins such as Bruton’s tyrosine kinase and other Tec family 
kinases involved in activation of small GTPases, such as Rho and 
Rac that are required for cytoskeleton remodeling. These small 
GTPases also impinge in activation of MEK and c-Jun N-terminal 
kinases, leading to nuclear factor activation (Figure 3). PIP3 also 
recruits phospholipase Cγ, which in turn generates diacylglyc-
erol (DAG) and inositol triphosphate (IP3). DAG activates PKC 
(protein kinase C), an important serine/threonine kinase that can 
lead to activation of the MAP kinases ERK and p38 (Figure 3). 
IP3 induces release of intracellular calcium from the endoplasmic 
reticulum. Calcium regulates several proteins such as calmodulin 
and calcineurin, which are important for activation of some 
nuclear factors like NFAT (Figure  3). Activation of different 
nuclear factors induces expression of cytokines important for 
inflammation and immune regulation, such as IL-2, IL-6, IL-8, 
IL-10, tumor necrosis factor α (TNF-α), and IFN-γ (140–142) 
(Figure 3).

The signal transduction pathways activated by FcγRs bind-
ing to high avidity immune complexes, induce multiple cell 
responses including phagocytosis, respiratory burst, cytokine and 
chemokine production, and antibody-dependent cell-mediated 
cytotoxicity (ADCC) (14, 18, 41). The particular signaling 
molecules activated to initiate each cell response are not clearly 
defined in part because every cell has more than one type of FcγR 
and all receptors can bind more than one type of IgG. Thus, it is 
not clear whether each receptor leads to a particular response or 
the average signaling from various receptors activates a prede-
termined cell response. As discussed later in more detail, recent 
research is beginning to shade light into this issue.

eACH FcγR LeADS TO UNiQUe 
CeLLULAR ReSPONSeS

As discussed above, it is now clear that different IgG subclasses 
engage different FcγRs to induce particular cellular responses 
in vivo. However, the data published so far does not explain what 
cell function is activated in response to a particular type of Fcγ 
receptor. We can think of at least two mechanisms to generate 
this IgG–FcγR response selectivity: in one, each immune cell is 
already programmed to perform a particular cell function after 
FcγR crosslinking, independently of the receptor used. This 
does not seem likely because as mentioned before, each type 
of immune cell can give different responses depending on the 
class of IgG and also on the conditions the cell encounters (such 
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as inflammation, etc.) (42, 72). In the second mechanism, each 
FcγR activates a particular signaling pathway leading to a unique 
cell response. This mechanism is supported by recent reports 
where individual FcγR were crosslinked on human neutrophils 
(143–147).

Human neutrophils express only two FcγRs, FcγRIIa and 
FcγRIIIb (45). These receptors are different in the way they are 
anchored to the cell membrane. FcγRIIa has a typical transmem-
brane and cytoplasmic tail containing an ITAM for signaling. 
By contrast, FcγRIIIb is a GPI-linked receptor, lacking a cyto-
plasmic tail, and its signaling mechanism remains unknown. The 
first report suggesting that these receptors could initiate distinct 
cellular responses came out over 20 years ago. It was reported 
that both FcγRs were capable of signaling, but while FcγRIIIb 
induced actin polymerization in a Ca2+-dependent manner, 
FcγRIIa did not (148). This pioneer work did not manage to 
maintain the idea of one receptor one response. However with 
time other reports have provided new evidence that supports 
this idea. For example, it was later reported that FcγRIIa, but 
not FcγRIIIb could induce an increase in L-selectin expression 
(149). Based on this, it was suggested that FcγRIIIb-mediated 
activation of circulating neutrophils could lead to a proadhesive 

phenotype (149). Supporting this view, it was also found that 
after selective engagement of each receptor with specific mono-
clonal antibodies, FcγRIIIb, but not FcγRIIa, was able to activate 
β1 integrins (143). This activation was not due to an increase in 
integrin expression but rather to an increase in binding affinity 
for integrin ligands such as fibronectin (143). By contrast, when 
the major cell response of neutrophils, arguably phagocytosis 
(150, 151), was examined with receptor specific opsonized beads, 
FcγRIIa was the predominant FcγR mediating this response. 
FcγRIIIb contribution to phagocytosis was minimal (145). Thus, 
at least in human neutrophils each Fcγ receptor is used to activate 
unique cell responses. FcγRIIa induces mainly phagocytosis, 
while FcγRIIIb promotes an adhesive phenotype via activation 
of β1 integrins (Figure 4).

In addition, it was recently found that FcγRIIIb signaling to 
the neutrophil nucleus was much more efficient than FcγRIIa 
signaling. FcγRIIIb, but not FcγRIIa, promoted a robust increase 
in phosphorylated ERK in the nucleus, and also efficient 
phosphorylation of the nuclear factor Elk-1 (144) (Figure  5). 
Interestingly, FcγRIIa also induced phosphorylation of ERK in 
the cytosol (144, 152), but this active ERK seems to function 
mainly in enhancing phagocytosis and not in nuclear signaling 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 4 | each FcγR induces particular cellular responses. In human 
neutrophils (PMN), (A) FcγRIIa causes L-selectin shedding from the cell 
membrane, and also activates efficient phagocytosis. By contrast,  
(B) FcγRIIIb does not cause L-selectin shedding, but stimulates activation  
of β1 integrins promoting in this way a proadhesive phenotype. FcγRIIIb also 
induces formation of neutrophil extracellular traps (NETs). The oval represents 
an IgG-opsonized particle.

8

Rosales Each FcγR Activates Distinct Functions

Frontiers in Immunology | www.frontiersin.org March 2017 | Volume 8 | Article 280

(Figure  5). An important point still unresolved is the actual 
FcγRIIIb signaling pathway. For FcγRIIa, the FcγR signaling 
pathway resembles the classical ITAM-mediated pathway  
(4, 14, 139, 153) (Figure  3), while for FcγRIIIb, the signaling 
pathway remains a mystery and further research is needed in 
this area (Figure 5).

Another important cellular function of neutrophils to kill 
microbes is the formation of neutrophil extracellular traps 
(NETs) (154, 155). These structures are induced by several 
pathogens, including virus, bacteria, fungi, and parasites (156). 
Also, pro-inflammatory stimuli such as lipopolysaccharide, 
TNF-α, and PMA are efficient inducers of NETs (157). Because, 
antigen-antibody complexes are also capable of inducing NET 
formation (158, 159), it was clear that FcγRs were involved in 
NET formation. Recently, it was reported that FcγRIIIb is the 
receptor responsible for NET formation in response to immo-
bilized immune complexes (160). In this study, NET formation 

induced by immobilized immune complexes was blocked by 
antibodies against FcγRIIIb, but not by antibodies against 
FcγRIIa (160), indicating that solely FcγRIIIb mediates NET 
release. Moreover, by direct crosslinking of each type of FcγR 
with specific monoclonal antibodies it was also confirmed that 
only FcγRIIIb is capable of inducing NET formation (147, 161). 
Although, the initial signaling mechanism for FcγRIIIb remains 
unknown, the signaling pathway for this cell response has been 
shown to involve the Syk and TAK1 kinases, as well as the MEK/
ERK cascade (Figure 6) (161). Because FcγRIIIb is a GPI-linked 
receptor it is not clear how it can connect to the ERK pathway. 
However, it is known that GPI-linked proteins concentrate in 
lipid rafts on the cell membrane. In these rafts many signaling 
molecules such as Src family tyrosine kinases concentrate, and it 
is possible that FcγRIIIb upon ligand binding can connect some-
how with these kinases and activate Syk. A possible mechanism 
is the binding of the receptor, within the lipid rafts, to a putative 
ITAM-containing molecule (151). After Syk activation, a signal-
ing molecular complex can be organized leading to activation 
of other kinases such as TAK1 (Figure 6). Many steps are still 
unknown and future research will help in elucidate this signaling 
pathway.

Taken together, these reports strongly support the hypoth-
esis that each FcγR is capable of initiating particular signaling 
pathways that lead to unique cell responses. This information 
would certainly be very helpful in the future for controlling 
some of the cellular responses in clinical settings. For example, 
during a strong infection efficient phagocytosis may be desirable. 
Considering that IgG2 displays a stronger binding to FcγRIIa 
than to FcγRIIIb (35) (Table 2), one could predict that antibodies 
of the IgG2 subclass would be much better at inducing phago-
cytosis by neutrophils. Thus, inducing the production of IgG2 
antibodies against certain pathogens, would very likely improve 
the phagocytosis response against them. Following the same idea, 
new monoclonal antibodies against tumors have been developed 
for recognition of malignant cells. Because on NK cells the only 
activating Fcγ receptor is FcγRIIIa, finding antibodies with better 
binding (higher affinity) to FcγRIIIa should improve the activa-
tion of ADCC. Indeed, this has been shown to be the case for 
several anti-tumor antibodies (12, 162, 163). This means that, 
when we know what is the particular cellular response initiated by 
each FcγR on an immune cell, we could find ways to improve the 
IgG binding interaction and enhance the response, or vice versa 
to block the IgG binding interaction and in consequence inhibit 
the response.

CONCLUSiON

Fcγ receptors expressed in many immune cells are capable of 
activating different cellular responses important not only for 
controlling microbial infections but also for regulating immunity. 
Different subclasses of IgG antibodies bind the various FcγRs with 
different affinities. These FcγRs are expressed on a wide variety 
of leukocytes and are capable of activating when crosslinked 
with immune complexes, different cellular responses of great 
importance for host defense and for immune regulation. Recent 
evidence suggests that a specific Fcγ receptor activates particular 
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FiGURe 6 | Model for FcγRiiib signaling to induce neutrophil 
extracellular trap (NeT) formation. In human neutrophils (PMN), 
crosslinking FcγRIIIb results in activation of Syk (spleen tyrosine kinase) and 
TAK1 (transforming growth factor-β-activated kinase 1). These kinases lead 
to activation of PKC (protein kinase C) and the MEK/ERK signaling pathway 
to generate the production of reactive oxygen species via NADPH oxidase 
and to induce NETs formation. The question marks indicate that the 
mechanism for FcγRIIIb-induced Syk activation is not known, and that it is 
not clear whether TAK1 functions upstream of PKC. Model based on Alemán 
et al. (161).

cell responses. At least for the human neutrophil it is clear that 
FcγRIIa activates efficient phagocytosis, while FcγRIIIb signals 
to the nucleus for nuclear factor activation and NETs forma-
tion. Therefore, in principle, a particular cell response could be 
induced or inhibited by engaging or blocking the corresponding 
FcγR. For example, using IgG2 antibodies a better phagocytosis 
response should be generated in neutrophils. Because, FcγRs are 
responsible not only of initiating anti-microbial responses, but 
also of controlling the intensity of the immune response, there is 
growing interest in revealing what specific Fcγ receptor activates a 
particular cell response. Information similar to the one described 
for neutrophil FcγRs on other immune cells, such as monocytes 
or dendritic cells, is not available. We will certainly see in the near 
future much more research in this area.
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