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Macrophages are not only essential components of innate immunity that contribute to 
host defense against infections, but also tumor growth and the maintenance of tissue 
homeostasis. An important feature of macrophages is their plasticity and ability to adopt 
diverse activation states in response to their microenvironment and in line with their 
functional requirements. Recent immunometabolism studies have shown that alterations 
in the metabolic profile of macrophages shape their activation state and function. For 
instance, to fulfill their respective functions lipopolysaccharides-induced pro-inflamma-
tory macrophages and interleukin-4 activated anti-inflammatory macrophages adopt a 
different metabolism. Thus, metabolic reprogramming of macrophages could become a 
therapeutic approach to treat diseases that have a high macrophage involvement, such 
as cancer. In the first part of this review, we will focus on the metabolic pathways altered 
in differentially activated macrophages and link their metabolic aspects to their pro- and 
anti-inflammatory phenotype. In the second part, we will discuss how macrophage 
metabolism is a promising target for therapeutic intervention in inflammatory diseases 
and cancer.

Keywords: M1–M2 macrophage polarization, tumor-associated macrophages, microenvironment, 
immunometabolism, metabolic reprogramming, metabolic therapy, cancer, inflammatory diseases

iNTRODUCTiON

Immunometabolism is a fast evolving field, which determines the metabolic machinery of immune 
cells and investigates how changing their metabolic phenotype affects immune cell function. It is 
known that the microenvironment shapes the metabolism of cells, which in turn contributes to 
their functionality. Environmental signals involved in metabolic regulation are cytokines, growth 
factors, oxygen levels, and nutrient availability. There is a growing evidence that immune cells in 
a specific microenvironment, such as inflamed tissue or tumors, reprogram their metabolic phe-
notype to fulfill cellular needs, such as survival, growth, and proliferation, or to carry out specific 
effector functions, such as phagocytosis and cytokine production. By changing the metabolism 
of immune cells, in particular, macrophages, it will be possible to modulate their function, which 
would be useful in diseases with a high macrophage commitment. Hence, understanding immune 
cell metabolism and its regulation will be essential to use metabolism as a therapeutic target to affect 
disease outcome (1–3).
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In this review, we provide an overview of the current knowl-
edge concerning the metabolism of differentially activated 
macrophages. We will discuss recent findings on macrophage 
metabolism in the context of cancer and inflammatory diseases 
such as obesity and atherosclerosis. Furthermore, we will com-
ment on promising metabolic targets for therapeutic purposes 
and approaches to reprogram macrophage metabolism in par-
ticular diseases.

OveRview ON THe MOST ReLevANT 
MeTABOLiC PATHwAYS iN 
MACROPHAGeS

Metabolism is a network of highly interconnected biochemical 
reactions required to generate metabolic products, such as energy 
and macromolecules from nutrients, provided by the microen-
vironment. Despite the plasticity of the metabolic network, 
immune cells, including macrophages, usually stick to a unique 
metabolic phenotype to accomplish their function. For example, 
while multiple ways [i.e., glycolysis and oxidative phosphoryla-
tion (OXPHOS)] exist to produce energy, macrophages generally 
prefer particular pathways for energy production in relation to 
their functional requirements.

A pathway that allows energy and biomass production is 
glycolysis. During glycolysis, extracellular glucose is taken up by 
the cell and subsequently converted to two molecules of pyruvate 
and ATP whereas NAD+ is converted to NADH. To maintain 
glycolytic flux, cells can regenerate NAD+ by converting pyruvate 
into lactate. Glycolysis also provides the intermediate glucose-
6-phosphate, which is the first molecule of the pentose phosphate 
pathway (PPP). The PPP consists of an oxidative branch that 
produces NADPH that is required to maintain the cellular redox 
balance and the production of fatty acids. The nonoxidative PPP 
branch provides intermediates used as precursors for nucleotide 
and amino acid synthesis. Although glycolysis is not the most 
efficient way to generate high amounts of ATP (two ATP mol-
ecules per glucose molecule), high glycolytic rates allow the cell to 
quickly produce sufficient energy and biosynthetic intermediates 
for cell growth and to fulfill its functional demands. For instance, 
the in  vivo functions of macrophages not only encompass the 
insurance of tissue homeostasis under steady state but also a 
multitude of activities such as phagocytosis and cytokine produc-
tion, upon activation (4). These functions have been referred to 
as SHIP: sample, heal, inhibit, and present (antigen) (5). Other 
cells that use glycolysis as major pathway for biomass produc-
tion are cancer cells (6). Already in the early twentieth century, 
Otto Warburg postulated that cancer cells preferentially convert 
glucose into lactate, even in the presence of oxygen, a process 
better known as the Warburg effect (7). On the other hand, in the 
presence of oxygen, cells usually produce ATP via the electron 
transport chain (ETC) which is coupled to the tricarboxylic acid 
(TCA) cycle. Acetyl coenzyme A (acetyl-CoA) usually serves 
as the entry point of glycolytic carbon into the TCA cycle. The 
reducing equivalents NADH and FADH2, generated by the TCA 
cycle, serve as electron carriers that transfer electrons through 
ETC for OXPHOS, an oxygen-driven process that produces 

high amounts of ATP (theoretically up to 36 ATP molecules 
per glucose molecule). Moreover, cells can use different carbon 
sources, such as glutamine or fatty acids, to fuel into the TCA 
cycle. While glutamine can be converted into the TCA cycle inter-
mediate α-ketoglutarate, the fatty acid oxidation pathway (FAO, 
also known as β-oxidation) degrades fatty acids into acetyl-CoA, 
NADH, and FADH2, which are further used to produce ATP. In 
general, OXPHOS is a highly efficient way for ATP production, 
preferred by cells with high energy demands or cells that require 
longevity to function over a long period of time (3, 8).

Besides energy production, intermediates from different 
metabolic pathways, such as glycolysis, PPP, and the TCA cycle 
can be used as precursors for de novo synthesis of nucleotides, 
fatty acids, and amino acids, which are essential building blocks 
for the cell. This requires increased replenishment of metabolic 
pathway intermediates via anaplerotic reactions. A well-known 
example is the replenishment of TCA cycle intermediates via 
direct conversion of pyruvate into oxaloacetate (OAA) by pyru-
vate carboxylase, production of α-ketoglutarate from glutamate 
or the conversion of adenylosuccinate into fumarate.

MeTABOLiC SiGNATURe OF 
MACROPHAGeS

Macrophage Activation States
Macrophages are considered as polyvalent cells in our body, playing 
a key role during embryonic development and contributing to tis-
sue repair and inflammation (9). As a consequence, macrophages 
have a high plasticity and are able to adapt their phenotype, as 
instructed by their microenvironment and in agreement with 
their functional requirements (10). This has resulted in a spec-
trum model of macrophage activation, illustrating the divergent 
transcriptome of macrophages exposed to a broad variety of cues 
(11). Furthermore, this has led to a new proposal of nomenclature, 
whereby the triggers that determine the macrophage’s phenotype 
are specified (12). Additionally, other nomenclatures have been 
proposed to distinguish macrophage populations based on their 
function and encompassing both in vitro and in vivo situations 
(13). Despite the diversity of signals they can be subjected to and 
the different proposals for classifying them, macrophages for a 
long time have been classified in two main groups, representing 
the extremes of a continuum, namely “classically activated” or M1 
and “alternatively activated” or M2 macrophages (14–16). Upon 
stimulation with interferon-γ (IFNγ) and toll-like receptor (TLR) 
ligands, such as lipopolysaccharides (LPS), macrophages obtain a 
pronounced pro-inflammatory M1 phenotype, characterized by 
the secretion of pro-inflammatory cytokines and reactive nitro-
gen and oxygen species. Furthermore, M1 macrophages possess 
bactericidal and antitumor activity. Conversely, the Th2 cytokines 
interleukin (IL)-4 and IL-13 polarize macrophages toward an 
anti-inflammatory M2 phenotype. Alternatively, activated mac-
rophages are involved in tissue remodeling, immunosuppression, 
and show phagocytic and protumoral activity (12, 17). Although 
this dichotomous M1–M2 model is an oversimplification that 
only represents two extremes in a spectrum of macrophage activa-
tion states, it has been found that under pathological conditions, 
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macrophages in  vivo regularly mimic these two polarization 
states. Moreover, the M1/M2 nomenclature has been exten-
sively used in multiple papers that are being referenced here, 
justifying the use of this nomenclature throughout this review. 
Imposed by their microenvironment, macrophages adapt their 
metabolic phenotype to fulfill their function in homeostasis and  
inflammation (18).

Briefly, the metabolism of M1 macrophages is characterized 
by enhanced glycolysis, flux through the PPP, fatty acid synthesis, 
and a truncated TCA cycle, leading to accumulation of succinate 
and citrate. The metabolic profile of M2 macrophages is defined 
by OXPHOS, FAO, a decreased glycolysis, and PPP (19). In the 
next section, we will discuss in more detail the metabolic signa-
ture of M1 and M2 macrophages and focus on the link between 
metabolism and macrophage functionality.

M1 Macrophage Metabolism is 
Characterized by Aerobic Glycolysis,  
Fatty Acid Synthesis, and a Truncated  
TCA Cycle
Integrated transcriptional and metabolic network analysis 
revealed that activation of macrophages by IFNγ and LPS gives 
rise to a TCA cycle that is truncated at the level of isocitrate 
dehydrogenase (IDH) and succinate dehydrogenase (SDH) 
leading to the accumulation of succinate and citrate metabolites 
(Figure 1). The build-up of citrate is the result of transcriptional 
downregulation of IDH1, the enzyme responsible for the conver-
sion of isocitrate (an isomer of citrate) into α-ketoglutarate. The 
accumulated citrate serves as a precursor for the synthesis of the 
macrophage-specific metabolite itaconic acid, which is a major 
feature of IFNγ/LPS-polarized macrophages. Further supporting 
this phenomenon, Jha and colleagues found that immunorespon-
sive gene 1 (irg1) is one of the most upregulated genes in IFNγ/
LPS-treated macrophages. Irg1 codes for the enzyme cis-aconitate 
decarboxylase that converts aconitate (derived from citrate) to 
itaconic acid (20). To ensure carbon entry into the truncated 
TCA cycle, LPS-activated macrophages repress pyruvate dehy-
drogenase kinase 1, which in turn leads to sustained conversion 
of pyruvate into acetyl-CoA via pyruvate dehydrogenase (21).

A study in murine and human macrophages revealed an 
antimicrobial effect of itaconic acid against Mycobacterium 
tuberculosis and Salmonella enterica, most likely by inhibition of 
the bacterial glyxoylate shunt pathway enzyme isocitrate lyase. 
Hence, itaconic acid is a first example of how cellular metabolism 
is linked to the antimicrobial function of pro-inflammatory 
macrophages (22). Recently, itaconic acid has been put forward 
as a specific driver for succinate accumulation in LPS-stimulated 
macrophages (23, 24), since it inhibits SDH (Figure 1). Hence, 
itaconic acid explains the second truncation in the TCA cycle 
of IFNγ/LPS-treated macrophages. In accordance, it was shown 
that LPS-induced bone marrow-derived macrophages from 
irg1−/− mice did not display succinate accumulation because of 
impaired itaconic acid production (23). Different mechanisms 
have been proposed to explain carbon flow to succinate within 
a dysfunctional TCA cycle. One of them is glutamine-dependent 
anaplerosis through α-ketoglutarate or glutamine-derived 

succinate replenishment via the GABA shunt pathway. Either 
way, LPS-stimulated macrophages showed high levels of the 
glutamine transporter Slc3a2 (25).

Metabolite concentration changes can directly alter the activ-
ity of signaling pathways (26). The accumulation of succinate in 
LPS-stimulated macrophages is an example of this regulation via 
metabolite concentrations, since it stabilizes HIF-1α by limiting 
prolyl hydroxylase domain activity (Figure 1). In turn, HIF-1α 
stabilization induces the expression of the pro-inflammatory 
cytokine IL-1β (25). Additionally, a recent study proposes that 
succinate may indirectly stabilize HIF-1α via the induction of 
reactive oxygen species (ROS) (27). In any case, mature IL-1β 
production requires inflammasome activation, which supports 
pro-IL-1β to IL-1β processing (4). Interestingly, also inflam-
masome activation may be regulated by metabolic cues, as 
demonstrated by the finding that mTORC1-induced hexokinase 
(HK)-1-dependent glycolysis activates the NLRP3 inflamma-
some in macrophages upon LPS activation (28).

Furthermore, the stabilization of HIF-1α by succinate can 
be linked to an increased glycolytic flux (Figure  1), which is 
another metabolic signature of classically activated M1 mac-
rophages, considering that HIF induces several glycolytic genes, 
such as glucose transporter 1 (GLUT1) (29), PFKFB3 (30), and 
monocarboxylate transporter 4 (MCT4) (31). The fact that LPS 
is able to induce hypoxic gene expression in macrophages in the 
absence of hypoxia has been suggested before (32). The expres-
sion of GLUT1 in M1 macrophages emphasizes the importance 
of glucose as carbon source for pro-inflammatory macrophages. 
Freemerman and colleagues demonstrated that overexpression of 
GLUT1 in the murine macrophage cell line RAW264.7 induces 
an M1 phenotype, characterized by the expression of inflam-
matory mediators and the production of ROS (33). Another 
HIF-1α regulated gene is PFKFB3, which codes for the ubiquitous 
6-phosphofructo-2-kinase/fructose-2,6-bisposphatase isoform 
(U-PFK2). The expression of U-PFK2 is considered as an under-
lying mechanism of a high glycolytic flux in M1 macrophages. In 
particular, upon IFNγ/LPS stimulation, the expression of PFK2 
shifts from the liver isoform (L-PFK2) to the more active ubiqui-
tous isoform (U-PFK2). U-PFK2 converts fructose-6-phosphate 
to fructose-2,6-biphosphate that in turn activates the glycolytic 
enzyme phosphofructo-1-kinase (PFK1) and consequently 
increases glycolytic flux (34, 35) because of its dominant kinase 
activity. Since the TCA cycle is truncated in M1 macrophages, 
lactate production regenerates the majority of the NAD+ needed 
to sustain glycolysis. Consequently, lactate is exported to the 
extracellular environment by (MCT4). Data indicate that knock-
ing down MCT4 in LPS-induced macrophages leads to enhanced 
accumulation of intracellular lactate, a decrease in the expression 
of the glycolytic enzymes HK-2 and PFKFB3 and a reduction of 
the pro-inflammatory cytokines IL-6 and tumor necrosis factor 
(TNF)α (36).

Another aspect of M1 macrophages is an enhanced PPP (25), 
which is not unexpected considering the high glycolytic flux. 
The PPP generates NADPH, which is required as a cofactor for 
LPS-induced inducible nitric oxide synthase (iNOS) to catabolize 
arginine into nitric oxide (NO) and l-citrulline (Figure  1). To 
sustain antimicrobial NO production, imported l-citrulline can 
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FiGURe 1 | M1 macrophage metabolism. M1 macrophage metabolism is characterized by enhanced aerobic glycolysis, converting glucose into lactate. M1 
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(GSH) and the inflammatory mediators nitric oxide (NO) and reactive oxygen species (ROS). In M1 macrophages, the tricarboxylic acid (TCA) cycle is broken in two 
places, leading to the accumulation of succinate and citrate. While the accumulation of succinate leads to HIF-1α stabilization and the transcription of pro-
inflammatory and glycolytic genes, citrate is used for the generation of fatty acids, NO, ROS, and the synthesis of itaconate. Another aspect of M1 macrophage 
metabolism is the conversion of l-arginine to NO and l-citrulline. All important metabolic reactions present in M1/M2 macrophages are shown in black, reactions 
shown in gray are absent or less pronounced. The metabolic pathways strongly upregulated by M1/M2 macrophage polarization are highlighted by a colored 
shadow, the width of the shadow illustrates the weight of a particular pathway in the macrophage activation state. All metabolic enzymes are indicated in green. 
Dotted lines represent impaired metabolic reactions. Abbreviations: α-KG: α-ketoglutarate; AASS: aspartate–arginosuccinate shunt pathway; ACLY: ATP-citrate 
lyase; CAD: cis-aconitate decarboxylase; CIC: mitochondrial citrate carrier; ETC: electron transport chain; FAS: fatty acid synthase; GLUT: glucose transporter; HK: 
hexokinase; IDH: isocitrate dehydrogenase; iNOS: inducible nitric oxide synthase; LDH: lactate dehydrogenase; MCT: monocarboxylate transporter; ME: malic 
enzyme; OAA: oxaloacetate; PEP: phosphoenolpyruvate; PDH: pyruvate dehydrogenase; PFK: phosphofructokinase; SDH: succinate dehydrogenase; SLC: solute 
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be recycled to arginine by the so-called aspartate–arginosuc-
cinate shunt pathway (AASS) (37). NO is not only an antimi-
crobial agent, but is also put forward as a key regulator of M1 
macrophage metabolism. NO actually causes nitrosylation of 
the iron–sulfur-containing ETC complexes and consequently 
inhibits mitochondrial respiration and OXPHOS (38, 39). Recent 
research by Van den Bossche and colleagues demonstrated 
that disturbed mitochondrial OXPHOS, caused by IFNγ/LPS-
induced NO production, can prevent M1 to M2 polarization 
after IL-4 stimulation (40). Furthermore, PPP-produced NADPH 

can be used as a cofactor for NADPH oxidase, which is involved 
in the generation of ROS (41). In general, the NADPH-driven 
production of the inflammatory mediators NO and ROS once 
again indicates the tight link between M1 metabolism and its 
antimicrobial functionality. Nevertheless, TLR1/2/4 signaling in 
macrophages induces mitochondrial ROS production, despite 
increased NADPH production via the PPP, which also contrib-
utes to the bactericidal activity of macrophages (42).

An additional concept that is related to M1 macrophage 
metabolism is maintenance of the cellular redox balance. 
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NADPH can be used to generate the anti-oxidant glutathione 
(Figure 1), which is essential to maintain redox homeostasis and 
prevent cellular damage by ROS (8). NAPDH can be produced 
by the PPP, and also citrate can be exported to the cytosol where 
it contributes to NADPH production and regulation of the redox 
balance. In particular, the mitochondrial citrate carrier (CIC), 
encoded by the Slc25a1 gene, exports citrate from the mitochon-
dria to the cytosol where it is cleaved back to acetyl-CoA and 
OAA by the enzyme ATP-citrate lyase (ACLY). In macrophages, 
the expression of both CIC and ACLY is induced by inflamma-
tory stimuli, such as LPS, TNFα, and IFNγ through NF-kB and/or 
signal transducer and activator of transcription (STAT) signaling 
(43–45). Within the cytosol, OAA can be reduced to malate, 
which is converted to pyruvate by malic enzyme (ME1) with 
production of NADPH. However, in their network analysis, Jha 
and colleagues did not detect ME1 activity in IFNγ/LPS-induced 
macrophages (20). Taken together, citrate-derived NADPH can 
be used, as described previously, for NO and ROS production and 
might support the redox balance (43–45), which again associates 
a metabolic intermediate to the pro-inflammatory functionality 
of M1 macrophages.

Moreover, it has been shown in several studies that specific 
metabolites, such as acetyl-CoA, can regulate the activation 
of chromatin-modifying enzymes, making the link between 
metabolism and epigenetics. For example, citrate-derived 
acetyl-CoA can be used for histone acetylation (46). Especially 
the expression of some glycolytic genes, such as HK-2, 
PFK1, and lactate dehydrogenase-A is regulated in an ACLY-
dependent manner and thus subjected to histone acetylation 
(47). Besides, acetyl-CoA can be used for the biosynthesis of 
fatty acids (Figure 1), a last aspect of M1 macrophage metabo-
lism we want to discuss. It was demonstrated before that LPS 
activation of TLR4 in macrophages induces lipid accumulation 
through several mechanisms, among which enhanced fatty 
acid uptake by the fatty acid transporter CD36, increased tri-
glyceride synthesis, and diminished triglyceride lipolysis (48). 
Moreover, it was found that upon M-CSF mediated monocyte to 
macrophage differentiation, lipid synthesis increased through 
upregulation of the nuclear transcription factor sterol regula-
tory element-binding protein-1c, inducing expression of fatty 
acid synthesis-related genes, such as fatty acid synthase (49). 
Moreover, fatty acids are used as precursor for prostaglandin 
production in macrophages stimulated by TNFα, LPS, or IFNγ 
(43–45).

Since citrate is involved in several mechanisms that shape 
the pro-inflammatory phenotype of M1 macrophages, such as 
production of NO, ROS, NAPDH, itaconic acid, fatty acids, and 
histone acetylation, M1 macrophages developed mechanisms 
to ensure the preservation of high citrate levels. As described 
before, IFNγ/LPS-treated macrophages show an upregulation of 
the AASS pathway, which connects the NO and TCA cycle. This 
pathway not only sustains NO production, but also replenishes 
citrate in the broken TCA cycle by anaplerosis (20).

Taken together, the above-described metabolic mechanisms 
of M1 macrophages contribute in a specific manner to their 
pro-inflammatory phenotype, highlighting the link between 
macrophage metabolism and functionality.

The Metabolic Signature of M2 
Macrophages is Characterized by  
FAO, and an Oxidative TCA Cycle
The metabolic phenotype of M2 macrophages shows significant 
differences with M1 macrophages, which is comprehensible 
regarding their differential function as anti-inflammatory com-
ponent and mediator of tissue homeostasis (19).

One of the major metabolic differences between M1 and 
M2 macrophages is their energy metabolism. While M1 mac-
rophages preferentially obtain their energy from glycolysis, M2 
macrophages mainly produce ATP through an oxidative TCA 
cycle coupled to OXPHOS (Figure 2) (50). To fuel an oxidative 
TCA cycle, IL-4-stimulated macrophages rely on FAO (also 
known as β-oxidation) (51) and glutamine metabolism (20). In 
IL-4-induced macrophages, the important sources of fatty acids 
are triacylglycerol-rich lipoproteins, such as LDL and VLDL. 
These are taken up by the scavenger receptor CD36 and catabo-
lized in the lysosome by lysosomal acid lipase (LAL). Studies in 
CD36- and LAL-deficient mice indicated that CD36-mediated 
lysosomal lipolysis of lipoproteins is essential for proper M2 
activation (52). Another study demonstrated that expression of 
a permanently active mutant of carnitine palmitoyl transferase 
(CPT)-1a, which is essential for the transport of long-chain fatty 
acids along the mitochondria, enhanced FAO in macrophages, 
and reduced inflammation (53). However, a recent study indi-
cated that macrophage-specific CPT2 depletion inhibits FAO, 
while not impairing M2 polarization after IL-4 stimulation (54). 
These data suggest that CPT1 might have an extra function in 
M2 polarization, independent of FAO (4). As mentioned before, 
glutamine can fuel the TCA cycle via anaplerotic generation of 
α-ketoglutarate. Furthermore, glutamine contributes to UDP-
GlcNAc synthesis via the hexosamine pathway. UDP-GlcNAc 
leads to protein glycosylation, including the M2 markers mac-
rophage mannose receptor (MMR) and macrophage galactose 
binding lectin (Mgl1) (20).

In IL-4/IL-13-stimulated macrophages, the upregulation 
of FAO and mitochondrial biogenesis is orchestrated by the 
combined action of STAT6, peroxisome proliferator-activated 
receptors (PPARs), and PGC-1β (55). Stimulation with Th2 
cytokines IL-4 and IL-13 induces a cytoplasmic signaling cascade, 
resulting in activation of the transcription factor STAT6, which 
in turn induces expression of PPARδ, PPARγ, and the coactiva-
tor protein PGC-1β (55, 56). Additionally, the expression of M2 
markers, such as MMR, is regulated by the interplay of these 
components (57). Accordingly, the knockdown of PGC-1β was 
shown to decrease FAO upon IL-4 stimulation and impaired the 
suppression of pro-inflammatory cytokine production by IL-4, 
which underlines the importance of PGC-1β to sustain the anti-
inflammatory phenotype of M2 macrophages (51).

Besides differences in the energy metabolism, M1 and 
M2 macrophages show an opposing arginine metabolism 
(Figure  2), which is correlated to their functional polariza-
tion. While M1 macrophages upregulate iNOS and metabolize 
l-arginine to the antimicrobial agent NO and l-citrulline, M2 
macrophages catalyze l-arginine to urea and l-ornithine by 
inducing arginase (ARG-1). l-ornithine serves as precursor 
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for l-proline production, which is used for collagen synthesis 
and accordingly contributes to wound repair, a key function 
of M2 macrophages (58). The expression of ARG-1 is induced 
by the Th2 cytokines IL-4 and IL-10 (59) via activation of the 
transcription factor STAT6 (60, 61). Since NO is no longer 
produced in M2 macrophages, it cannot block the ETC and 
subsequently enables OXPHOS (40), pointing out the strong 
interconnection within the metabolic network of M2 mac-
rophages. A recent study by Ref. (62) stated that ornithine 
decarboxylase (ODC), involved in polyamine metabolism, 
directly regulates macrophage activation. The authors 
showed that ODC-deficiency in macrophages alters histone 
modifications and changes the chromatine structure, lead-
ing to up-regulated transcription of M1 genes and increased 

inflammation during bacterial infections with Helicobacter 
pylori and Citrobacter rodentium (62).

In contrast to M1 macrophages, M2 macrophages show 
a lowered glycolysis (Figure  2). IL-4/IL-13-stimulated 
macrophages express the L-PFK2 isoform, encoded by the 
PFKFB1 gene, which has a dominant biphosphatase activity, 
resulting in low levels of the glycolytic activator fructose-
2,6-biphosphate (34). Correlated to low glycolytic rates, 
M2 macrophages have a limited flux through the PPP. IL-4/
IL-13 stimulation promotes the expression of kinase-like 
protein (CARKL), a sedoheptulose kinase that catalyzes the 
production of sedoheptulose-7-phosphate and limits PPP flux 
in a not fully understood manner. Moreover, overexpression 
of CARKL in macrophages leads to decreased production  
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of pro-inflammatory cytokines, which is consistent with the  
M2 phenotype (63).

MACROPHAGe MeTABOLiSM AS A 
PROMiSiNG TARGeT FOR THeRAPeUTiC 
iNTeRveNTiON iN CANCeR AND OTHeR 
iNFLAMMATORY DiSeASeS

In multiple inflammatory diseases, macrophages are leading cells 
affecting disease outcome. For example, a tumor is considered as 
a nonhomogeneous mass wherein a complex interaction exists 
between cancer cells and tumor-infiltrating immune cells, such 
as macrophages. These so-called tumor-associated macrophages 
(TAM) are one of the most prominent immune cells in a tumor. 
Although macrophages can target transformed cells, cancer 
cells evade this defense by reprogramming macrophages so that 
they support tumor progression (17, 64). The cancer context is a 
good example where metabolic targeting is already assessed as 
therapeutic target. Cancer cells have, as a consequence of their 
highly proliferative potential, a metabolic signature that is nota-
bly different compared to nonmalignant cells. Several drugs that 
specifically target the metabolic pathways of cancer cells are in 
clinical trials (65, 66). However, in other inflammatory diseases, 
such as obesity and atherosclerosis, macrophages are highly 
involved in disease progression. Hence, macrophages are an 
intriguing target for therapy in several disorders. In the next sec-
tion, we will discuss recent discoveries concerning macrophage 
metabolism in cancer and inflammatory diseases and we will put 
forward interesting strategies for therapeutic intervention.

Cancer: Repolarizing Macrophages 
toward a Pro-inflammatory Phenotype
Tumor-associated macrophages are amongst the most abundant 
inflammatory cells in tumors and a significant correlation was 
found between high TAM density and a worse prognosis for most 
cancers (67). By now, it is clear that TAM exert several tumor-
promoting functions, including stimulation of angiogenesis, 
remodeling of the extracellular matrix, promotion of cancer cell 
survival, proliferation, invasion, extravasation and metastasis, 
and suppression of antitumor immunity (68). Within the same 
tumor, the co-existence of two distinct TAM subpopulations has 
been shown, both derived from tumor-infiltrating inflammatory 
monocytes: M2-like MHC-IIlow TAM that reside in the hypoxic 
regions of the tumor and perform angiogenic, immunosuppres-
sive and protumoral activities and M1-like MHC-IIhigh TAM 
that are present in the normoxic tumor regions and possess 
pro-inflammatory and antitumoral characteristics. Importantly, 
this dichotomous TAM phenotype remained valid in several 
independent transplantable and transgenic mouse tumor models 
(69–71). Studies indicate that the TAM phenotype depends on 
the stage of tumor development and that the majority of TAM in 
late stage tumors is M2-like (72) (Figure 3). M2-like TAM highly 
stimulate tumor progression and have been shown to affect the 
efficacy of anticancer treatments, contribute to therapy resist-
ance, and mediate tumor relapse following conventional cancer 

therapy (9). Therefore, intervening with M2 TAM functionality is 
a plausible avenue for the development of new immunotherapies.

Before, TAM-targeted antitumor strategies were mainly based 
on the inhibition of macrophage recruitment to the tumor and 
suppression of TAM survival (73). For example, CCL2 blocking 
agents, which prevent monocyte recruitment to the tumor and 
subsequent generation of monocyte-derived TAM, have been 
shown to impair tumor progression in several tumor models 
(74–76). As a cautionary note, a recent study in breast carcinoma 
demonstrated that interruption of CCL2 inhibition was associ-
ated with increased cancer cell mobility and blood vessel forma-
tion, leading to accelerated metastasis and cancer death (77). 
Hence, ablation of TAM as a monotherapy might be insufficient 
for prolonged tumor control. Furthermore, general macrophage 
depletion could cause side effects, such as increased susceptibility 
for infections (78).

Therefore, strategies that reprogram protumoral M2 TAM 
into an antitumoral M1 phenotype, without depleting the full 
TAM population, gained attention and are currently highly 
investigated. In this context, Casazza and colleagues showed that 
genetic depletion of neuropilin-1 in TAM prevents the entry of 
TAM in the hypoxic regions of the tumor. TAM that accumulate 
in the normoxic tumor area adopt a more M1-like phenotype, 
which initiates a cascade of antitumor immunity, leading to 
reduced angiogenesis, tumor growth, and metastasis (79). Recent 
research indicated that blocking M-CSFR signaling impaired the 
differentiation of tumor-infiltrating monocytes into MHC-IIlow 
M2-like TAM and consequently shifted the M1/M2 TAM balance 
toward the antitumoral TAM phenotype (71). Additionally, stud-
ies in glioblastoma illustrated that M-CSFR inhibition impaired 
the M2 phenotype and the tumor-promoting functions of TAM, 
without affecting TAM numbers (80).

Since macrophage metabolism is inextricably connected to 
its functionality, metabolic reprogramming of M2-like TAM 
might be an elegant way to repolarize TAM toward an antitu-
moral phenotype and thus affect tumor growth and metastasis. 
Although studies about TAM metabolism are rather limited at 
this moment, there is an emerging evidence that unraveling the 
TAM phenotype might lead to the identification of alternative, 
novel targets for TAM-directed intervention.

A study concerning TAM metabolism by Colegio and col-
leagues indicated that tumor-derived lactate is necessary to 
polarize TAM toward a protumoral M2 phenotype. Stimulation 
of bone marrow-derived macrophages with lactate was sufficient 
to induce the expression of the M2-related genes Vegf, Arg1, 
Relma, Mgl1, and Mgl2. Interestingly, stabilization of HIF-1α by 
tumor-derived lactate was the actual driving force for this M2 
polarization. Moreover, by inducing Vegf and ARG-1, lactate 
fulfills a key role in shaping the protumoral phenotype of TAM. 
While Vegf induces angiogenesis, ARG-1 contributes to tumor 
growth by the generation of polyamines which act as a prolifera-
tive signal for mammalian cancer cells (81). This study proves that 
nutrients in the tumor microenvironment, such as lactate, can 
affect the phenotype of infiltrating immune cells, such as TAM.

Research by Penny and colleagues demonstrated that in vitro 
generated macrophages, cultured with tumor-conditioned media 
from a pancreatic ductal adanocarcinoma (PDAC) cell line, 
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have a pronounced metabolic preference for aerobic glycolysis. 
In comparison to control macrophages, PDAC TAM showed 
enhanced angiogenesis and cancer cell extravasation, hence 
inducing metastasis. Treating PDAC TAM with 2-deoxyglucose, 
an inhibitor of the first glycolytic enzyme HK2, blocked the 
pro-metastatic TAM phenotype (82). This study links pancreatic 
TAM metabolism to aerobic glycolysis, which is in contrast to 
our current understanding of M2 macrophage metabolism, as 
extensively described before, claiming their lowered glycolysis 
and preference for oxidative mitochondrial metabolism.

A recent study by the group of Mazzone revealed that TAM 
metabolism directly affects tumor vasculature and metastasis, 
making the link between TAM metabolism and its protumoral 
functionality. REDD1, an inhibitor of mTOR, is highly expressed 
by TAM in the hypoxic regions of the tumor, which have been 
described previously as more M2-like macrophages with high 
angiogenic potential. Genetic deletion of REDD1 in hypoxic TAM 
induced mTOR activity, which in turn increased glucose uptake 

and directed hypoxic macrophage metabolism toward glycolysis. 
Enhanced glycolysis upon REDD1 deletion caused competition 
for glucose between hypoxic TAM and tumor endothelial cells. 
As a result of this competition, tumor vasculature is stabilized, 
thereby preventing metastasis (83). Thus, any approach dimin-
ishing REDD1 activity in TAM could be an interesting strategy 
to metabolically reprogram TAM toward a M1 phenotype. 
However, this should be combined with a therapy that allows to 
specifically target TAM, because REDD1 inhibition will stimulate 
mTOR signaling and glycolysis in cancer cells and boost their 
proliferation.

Hence, the challenge for next-level TAM-based antitumor 
therapies will be to identify metabolic targets that allow repolar-
izing TAM toward an antitumoral M1 phenotype (Figure  3), 
without boosting cancer cell metabolism. Therefore, strategies 
that are able to target TAM metabolism in a specific way will gain 
much attention. An even more interesting approach would be to 
look for metabolic targets that allow TAM repolarization and at 
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the same time impair cancer cell metabolism. Therefore, drugs 
that have been shown to disturb cancer cell metabolism could be 
repurposed to metabolically shift TAM. In this context, drugs that 
inhibit FAO could be very promising. Several studies indicated 
the importance of FAO for different types of cancer cells (84). For 
instance, it has been shown that pharmacological inhibition of 
FAO impaired proliferation of human leukemia cells (85). On the 
other hand, blocking FAO in human glioblastoma cells induced 
oxidative stress and led to bioenergetic failure and cell death 
(86). A recent study by Schoors and colleagues demonstrated 
that FAO supports de novo nucleotide synthesis in endothelial 
cells and subsequently contributes to angiogenesis (87). As 
described before, FAO is related to the metabolism of IL-4/IL-13 
induced M2 macrophages (51). Although it has not been shown 
that inhibiting FAO shifts M2-like TAM to a M1-like phenotype, 
impairing FAO could be a promising approach to target pro-
tumoral macrophage, endothelial, and cancer cell metabolism at 
the same time.

The opportunity of targeting immune cell metabolism for 
cancer therapy is extensively studied in T cells. Potential strate-
gies that aim to alter T-cell metabolism as an effective treatment 
against cancer recently evolved and have been reviewed in Ref. 
(88). Interestingly, it was shown that upon PD-1 ligation T-cell 
metabolism shifts from glycolysis to FAO, encouraging T-cell 
longevity and impairing their effector function. Hence, currently 
used immune checkpoint inhibitors, such as PD-1 blocking anti-
bodies, could affect T-cell metabolism by altering glycolysis and 
subsequently enhance T-cell function (89). Besides immune cells, 
the metabolism of stromal cells, such as endothelial cells, gained 
much attention and highlighted interesting therapeutic strategies 
for cancer therapy (87, 90).

Macrophage Polarization beyond  
Cancer: A Case Study on Obesity  
and Atherosclerosis
The concepts concerning macrophage polarization, as discussed 
above in the context of TAM, can be translated beyond cancer. 
Also for inflammatory diseases, such as atherosclerosis and 
obesity, metabolic repolarization of macrophages could be an 
interesting approach to affect disease outcome.

Atherosclerotic cardiovascular disease is a chronic inflamma-
tory disorder, showing strong macrophage involvement. In case of 
hypercholesterolemia, apolipoprotein B-containing lipoproteins, 
such as LDL, accumulate in the arterial wall and are taken up by 
macrophages. These lipid-laden macrophages, better known as 
foam cells, lead to plaque formation and secrete inflammatory 
mediators that persist inflammation and promote plaque progres-
sion. Plaque rupture and subsequent formation of blood cloths 
form the basis for myocardial infarction and stroke, the leading 
causes of death in western countries (91, 92). Although both M1 
and M2 macrophages are present in human atherosclerosis, M1 
macrophages are the dominant phenotype linked to plaque pro-
gression (93). Several studies in mouse models for atherosclerosis 
demonstrated that inducing M1 polarization of macrophages 
enhanced disease progression. For example, deletion of the tran-
scription factors NUR77 or KLF4, which both have been shown to 

drive M2 polarization, induced M1 polarization of macrophages, 
and enhanced atherosclerosis in apolipoprotein E−/− mice (94, 
95). In line with these studies, inducing M2 polarization through 
administration of the M2-related cytokine IL-13 reduced disease 
progression (96). Furthermore, lowering lipid levels or enhancing 
HDL levels in mouse models, induced atherosclerosis regression 
as a result of a switch toward M2 macrophages in plaques (97, 
98). Hence, strategies that allow M2 polarization of macrophages 
could be beneficial in atherosclerosis disease. A recent study 
demonstrated that upregulating FAO in macrophages of hyper-
cholesterolemic mice via miR-33 inhibition drives macrophages 
toward an M2 state and reduces atherosclerosis (99). This study 
emphasizes how metabolic reprogramming of macrophages can 
influence disease outcome.

Besides atherosclerosis, the relevance of interfering with 
macrophage metabolism gained much attention in the context of 
metabolic diseases, such as obesity. Low-grade systemic chronic 
inflammation leads to accumulation of macrophages in the 
adipose tissue of obese humans and mice. While adipose tissue 
macrophages (ATM) represent less than 10% of all adipose tissue 
cells in lean mice and humans, their percentage raises over 50% 
in extremely obese mice and near 40% in obese humans (100). 
Since macrophages are known as plastic cells that adapt their 
phenotype to the changing microenvironment, one could expect 
a switch in the phenotype of ATM during obesity, as described 
in Ref. (101). Macrophages in lean adipose tissue are consid-
ered as anti-inflammatory M2 macrophages, playing a role in 
maintaining adipose tissue homeostasis by cleaning cellular 
debris and lipid buffering (uptake and storage of lipids released 
by adipocytes) (102). Macrophages in obese adipose tissue have 
been described as pro-inflammatory M1 macrophages and are 
believed to be the major contributors of obesity-induced insulin 
resistance, leading to type-2 diabetes, due to the production of 
pro-inflammatory cytokines, such as TNF (103). More recent 
papers highlight the importance of the continuous exposure 
of ATM to lipids in vivo, leading to chronic lipid overloading. 
Xu et al. showed that ATM in obese adipose tissue are associ-
ated with increased liposomal biogenesis and lipid catabolism 
(104). More recently, Kratz and colleagues introduced the 
principle of metabolic activation of ATM, showing that treating 
macrophages with glucose, insulin, and fatty acids (palmitate) 
drives the pro-inflammatory ATM phenotype in obese mice 
(105). Hence, this study indicates that a metabolic trigger can 
lead to inflammatory macrophage activation, rather than a clas-
sic cytokine-driven activation. These new insights imply that 
interfering with metabolism is a promising approach to dampen 
the pro-inflammatory ATM phenotype and restore adipose tis-
sue homeostasis in obesity.

Taken together, hyperactivated pro-inflammatory mac-
rophages often contribute to disease progression in inflammatory 
disorders, such as atherosclerosis and obesity. Therefore, damp-
ening their pro-inflammatory activity is a promising avenue 
to affect disease outcome. Although, similar to cancer, where 
repolarization of macrophages toward the pro-inflammatory 
phenotype has been established as beneficial in inflammatory dis-
eases, such as obesity and atherosclerosis, it would be even more 
useful to do the opposite and reprogram macrophages toward an 
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anti-inflammatory state. Especially in the case of atherosclerosis, 
forcing macrophages into an anti-inflammatory phenotype has 
been shown to induce atherosclerosis regression.

CONCLUDiNG ReMARKS

The growing interest and studies on immunometabolism, in 
particular, the metabolism of macrophages, raise new therapeu-
tic opportunities to treat inflammatory diseases and cancer. In 
particular, the metabolic repolarization of macrophages seems to 
be an interesting approach to fight diseases that show a high mac-
rophage involvement, such as cancer, obesity, and atherosclerosis. 
Nevertheless, there are some challenges for the future that need 
to be considered in the study of macrophage metabolism. One of 
them will be to either only selectively target macrophages or to find 
metabolic targets that do not affect the disease in a positive way, 
which is an existing risk in the case of cancer. On the other hand, 
macrophages should be considered as dynamic cells which adapt 
their phenotype and possibly also their metabolic state through 
the different phases of disease, which might hamper metabolic 
targeting. Furthermore, most of the macrophage metabolism 
studies have been done in  vitro. However, during inflamma-
tion or tumor development, macrophages have to deal with a 
specific microenvironment, characterized by disturbed nutrient 
and oxygen availability, which instructs their metabolism and  

functionality. Hence, specialized experimental technologies, 
such as in  vivo tracer analysis, will be unconditional to bring 
macrophage metabolism studies one step further to the in vivo 
level. We look forward to revolutionary discoveries in the area 
of macrophage metabolism that will lead to therapeutic targets 
that could affect disease outcome in inflammatory diseases and 
cancer.
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