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Irrespective of various efforts, malaria persist the most debilitating effect in terms of 
morbidity and mortality. Moreover, the existing drugs are also vulnerable to the emer-
gence of drug resistance. To explore the potential targets for designing the most effective 
antimalarial therapies, it is required to focus on the facts of biochemical mechanism 
underlying the process of parasite survival and disease pathogenesis. This review is 
intended to bring out the existing knowledge about the functions and components of 
the major signaling pathways such as kinase signaling, calcium signaling, and cyclic 
nucleotide-based signaling, serving the various aspects of the parasitic asexual stage 
and highlighted the Toll-like receptors, glycosylphosphatidylinositol-mediated signaling, 
and molecular events in cytoadhesion, which elicit the host immune response. This dis-
cussion will facilitate a look over essential components for parasite survival and disease 
progression to be implemented in discovery of novel antimalarial drugs and vaccines.

Keywords: malaria, Plasmodium, cyclic nucleotide signaling, toll-like receptor, calcium signaling, 
glycosylphoshatidylinositol, cytoadhesion

iNTRODUCTiON

Plasmodium falciparum is one of the major afflictions to the human health. The annual report of 
malaria speculated around 2.1 million cases of disease and more than 0.4 million mortality cases 
in 2015 (1). The emergence of drug resistance species appended the severity of the problem. The 
intracellular inhabitation of Plasmodium makes the substantial modification in the host cell envi-
ronment. After exoerythrocytic schizogony, the merozoites are released from hepatocytes into the 
blood stream and targeted to host erythrocytes, which marks the beginning of erythrocytic phase. 
Inside the erythrocyte, they multiply asexually and released following the rupture of RBC. These 
newly released merozoites make the recurrence of the same process for the fresh erythrocytes (2). 
Infection of fresh erythrocyte requires the egress from infected erythrocyte and reinvasion to fresh 
one. During egress and internalization process, multiple molecular interactions between the surface 
proteins of merozoites and receptors on the host erythrocytes come into play (3). Moreover, the 
parasitic entry into the host cell modulates the host environment to suit its own needs and to stay 
clear from the host defense. The modulation processes are coupled with a well-defined signaling 
mechanism, which can be described at cellular and molecular levels (4, 5). A few of the large rep-
ertoire of parasite proteins involved in modulating the host signaling pathways are summarized 
in the Table 1. Despite of unraveling of the functions and involvement of molecules in signaling 
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TABLe 1 | Plasmodium protein triggering signals associated with modulation in host response.

Plasmodium protein Associated signaling pathway 
of host

Response Reference

PfB190 (PfSEL1) and PF14_0462 
PfN462 (PfSEL2)

Notch signaling pathway T cell differentiation to Th1 cell leads to weak antibody response Singh et al. (8)

Epoxide hydrolase 1 (PfEH1) and 
2 (PfEH2)

Epoxide signaling of RBCs Perturbed vascular signaling and inflammation Spillman et al. (9)

PfEMP1 MAP kinase dependent on Src 
family kinase

Modulation of cytoadherence property in endothelium Ho and White (10); Yipp 
et al. (11)

Pf-IRBC/PfEMP1 and other 
unknown membrane associated 
proteins

Nuclear factor kappa-light-chain-
enhancer of activated B cells 
signaling pathway

Increase intercellular adhesion molecule 1 expression on brain 
endothelium increase sequestration Pf-IRBC

Tripathi et al. (12)

Unknown P-21 activated protein kinase-
MEK signaling pathway

Activation of the “novel permeation pathway” required for nutrient 
uptake in to the infected RBC

Sicard et al. (13)

PfEMP1 subtypes containing 
domain cassettes 8 and 13

Activated protein C signaling Interfere with the activation of cytoprotective and anti-inflammatory 
pathways

Turner et al. (14)

Unknown Toll-like receptor (TLR) signaling 
through TLR9

Activation of regulatory T cells contribute to immune evasion Hisaeda et al. (15)

Unknown TLR signaling through TLR7 Increased production of pro-inflammatory cytokine interferon (IFN)-
1, interleukin (IL)-12, and IFN-γ

Baccarella et al. (16)

Tyrosyl-tRNA synthetase (PfTyrRS) – Enhanced secretion of the pro-inflammatory cytokines tumor 
necrosis factor-α and IL-6

Bhatt et al. (17)
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pathways during the parasite life cycle, certain proteins remained 
uncharacterized. The analysis of different signaling mechanism 
during the asexual erythrocytic stage (6, 7) will be advantageous 
in understanding the strategies used by parasite to thrive success-
fully in the host, which would give novel input in planning an 
effective antimalarial therapeutic approach.

CYCLiC NUCLeOTiDe-BASeD SiGNALiNG 
DURiNG MALARiA

Signals from the extracellular environment are transmitted 
inside the cell through the secondary messenger molecules like 
cyclic adenylyl monophosphate (cAMP) and cyclic guanylyl 
monophosphate (cGMP). The homologous genes for enzymatic 
components involved in cyclic nucleotide-based signaling like 
adenylyl cyclase (AC), guanylyl cyclase (GC), cGMP-dependent 
protein kinase [protein kinase G (PKG)], and a regulatory and 
catalytic subunit of cAMP-dependent protein kinase, and nucleo-
tide phosphodiesterase (PDE) have been identified (18, 19) in 
malaria parasite.

Plasmodium falciparum Protein Kinase A 
(PfPKA) and cAMP
The first evidence of the cAMP signaling in malaria parasite arose 
through an experimental study in which the addition of external 
cAMP to Plasmodium culture was shown to positively affect the 
exflagellation or gametocyte formation during the ring stage of 
the parasite (20). However, the parasitic AC differs biochemically 
from that of host counterpart. Forskolin and Alf4, the activators of 

mammalian AC, and GTPγs, the activator of G protein, are unable 
to cause stimulation in parasitic AC (21). Moreover, expression 
of G stimulatory α have been demonstrated in early asexual stage 
and mature sexual stage. So, it was assumed that G protein might 
be implicated in the signaling during gametogenesis. However, 
this finding leads to a dilemma because the Plasmodium genome 
is devoid of gene corresponding to the G protein (22).

Adenylyl cyclase and cAMP signaling were demonstrated to 
play an important role during the infection of hepatocytes by 
sporozoites. The migration of sporozoites across the host hepato-
cytes results in their activation and triggering of apical regulated 
exocytosis. The sporozoites can be activated externally by calcium 
ionophore, which are then able to infect liver cell without migra-
tion (23). The gene knockout experiment of ACα in Plasmodium 
berghei explained the prevention of the exocytosis along with the 
reduced infectivity. However, the results were reciprocated after 
the reintroduction of the ACα gene into the mutant. Thus, the 
involvement of cAMP-mediated signaling in the initial phase of 
infection was confirmed. Besides this, the ACα also share homol-
ogy with K+ channels, which are required for exocytosis in sporo-
zoites (24). Not only sporozoites but also merozoites invasion 
process also involves cAMP-dependent signaling. During inva-
sion, there occurs the formation of tight junctions with host cells, 
which leads to the secretion of apical organelle containing several 
proteins like gliding-associated protein 45 and apical membrane 
antigen 1 (AMA-1) (25, 26). The whole event of invasion is 
regulated by the cAMP-dependent phosphorylation of protein 
AMA-1 mediated by PfPKA (Figure 1). The mutational analysis 
of AMA-1 showed the hampering of the invasion process due to a 
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FiGURe 1 | Signaling during egress and invasion of merozoites: invasion is mediated through the secretion of apical organelle, microneme and 
rhoptry organelle containing AMA-1 and GAP45, and eBA175. PfACβ triggers the cAMP level, boosting Epac pathway thereby phosphorylating RAP-GDP into 
RAP-GTP. RAP-GTP activates PLC to produce IP3 that binds to IP3R on endoplasmic reticulum, releasing calcium ions. Calcium ions bind to calcineurin and also 
activate CDPK1, required for the discharge of microneme and rhoptry. During egress, the cleavage of parasitophorous vacuole and rupture of infected erythrocyte 
require the proteolytic processing of PfSERA and PfMSP-1. The activation of PfSERA and PfMSP-1 occurs through the proteolytic activity of PfSUB-1, caused by 
increment of intracellular calcium ions in response to PKG. Calcium ions also regulates the release of PLP1 and PLP2 and activates PfCDPK5. AMA-1, apical 
membrane antigen 1; GAP45, glideosome-associated protein 45; EBA175, erythrocyte-binding antigen 175; PfACβ, Plasmodium falciparum adenylyl cyclase-β; 
cAMP, cyclic adenylyl monophosphate; Epac, exchange protein activated by cAMP; Rap-GDP, Ras proximate guanylyl diphosphate; PLC, phospholipase C; IP3, 
inositol 1,4,5-trisphosphate; IP3R, IP3 receptor; CDPK1, calcium dependent protein kinase 1; PfSERA, Plasmodium falciparum serine-like repeat antigen; PfMSP-1, 
Plasmodium falciparum merozoite surface protein; PfSUB-1, Plasmodium falciparum subtilisin like protease; PKG, protein kinase G; PLP, perforin-like protein.
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change in phosphorylation site (serine 610) (27). It was evidenced 
from another study that merozoite proteins, particularly localized 
to the microneme and rhoptry organelle, get secreted and interact 
with receptors on fresh erythrocytes. The secretion of proteins 
involves a stepwise signaling cascade initiated due to the exposure 
of the low K+ extracellular environment (28–32). Low K+ triggers 
activation of PfACβ followed by an increase in cAMP. The cAMP 
activates Epac (exchange protein activated by cAMP) pathway, 
which subsequently cause an increase in PfPKA coupled with 
elevation of Ca2+ level (33). In the Epac pathway, Ras-proximate-1 
(Rap1) converted to Rap1-GTP and further activates phospho-
lipase C (PLC). The activated PLC induces calcium-dependent 
protein kinase 1 and calcineurin, which eventually leads to the 
secretion of microneme and rhoptry proteins (33–35) (Figure 1). 
Intense analysis of the pathway and its regulating components 
rendered a better understanding of overall mechanism, which 
can be implemented for inhibiting parasitic growth, invasion, and 
malaria prevention.

The parasitic infection remodels the membrane of host eryth-
rocytes for the nutrient acquisition and maintaining the balance 
of electrolytes. The electrophysiology-based studies indicated a 
peak of conductance of anionic channels during Plasmodium 
infection (36). The conductance of anions across the infected 
host cell membrane is mainly regulated by cAMP signaling. 
The experimental addition of PKA and ATP to the uninfected 
erythrocyte caused the upregulation of anion conductance 
(26), while the process overturned on the addition of alkaline 
phosphatase (ALP) or by dephosphorylation (37, 38). In this 
contest, the dependency of anion channel regulation on cAMP 
was further confirmed through an experiment with PfPKI (H89 
cAMP-dependent protein kinase inhibitor) or by developing 
transgenic parasite with higher expression of PfPKA-R (phos-
phokinase A-regulatory subunit), which binds to cAMP, thereby 
downregulating the process and directly affecting the parasitic 
growth (39, 40). The signaling cascade either involves parasitic 
components or host is still controversial. Also, little is known 
about the actual substrates of PKA. The above discussion presents 
the essentiality of cAMP. Cyclic nucleotides are produced by AC 
and GC on hydrolysis, which requires PDE (19, 41). Therefore, 
PDE regulates the production and functioning of cAMP and 
cGMP. In P. falciparum, PfPDE1 was the first-reported PDE, 
which is specific for cGMP (42). Among various PDE types, 
PDE4 is predominant in the immune cells. Implementation of 
PDE4 inhibitors was found to enhance chemokines production 
and elicit inflammatory response. To delineate the regulatory 
mechanism of cyclic nucleotide, parasite-specific PDE inhibitors 
were developed. Zaprinast, a PDE5 inhibitor, and 5-benzyl-
3-isopropyl-1H-pyrazolo[4, 3-d] pyrimidin-7(6H)-one, inhibitor 
of PfPDEα, were potentially most effective inhibitors blocking 
the parasite proliferation (43). PDE inhibitors can be explored in 
developing antimalarial therapy (44).

PfPKG and cGMP
The protein sequence analysis of PfPKG with respect to vertebrate 
counterpart revealed certain differences between their sequence 
features. For instance, the presence of three cAMP/cGMP bind-
ing motif, a degenerated cGMP binding motif and lack of leucine 

zipper motif required for dimerization and insensitivity towards 
cGMP analogue (45, 46). Along with its role in gametogenesis, 
cGMP has been demonstrated to express its functionality dur-
ing the ring and schizogony stage (45). A known PKG inhibi-
tor, 4-[2-(4-fluorophenyl)-5-(1-methylepiperidine-4-yl)-1H 
pyrrol-3-yl] pyridine (compound 1), has a retarding effect on 
parasitemia level (47, 48). In contrast, the mutant strain with 
genetically modified PfPKG showed normal development in the 
presence of inhibitor compound 1. These findings established the 
key role of cGMP signaling during the asexual phase of parasite 
development.

Conditional knockout study carried on P. berghei PKG 
(PfPKG) at late liver sporozoites (LS) stage depicted that parasite 
can infect hepatic HePG2 cell lines, but failed to get released 
from hepatocytes as merosome. Sporozoites at this stage elicited 
protective immune response in the host (49). Thus, it reflects 
an essentiality of cGMP signaling during the formation and 
release of merosome. So far, the precise role of PKG and trigger 
for its stimulation is not clear. A deep insight into the signaling 
involved in LS would be opportune to control disease pathologies 
at the erythrocytic stage and can be advantageous in search of 
prospective medication of malaria and preerythrocytic vaccine 
development (49).

During the egress cascade, PKG is required in proteolytic pro-
cessing of proteins such as proteolytic processing of P. falciparum 
serine-like repeat antigen (PfSERAs) and PfMSP-1 by P. falcipa-
rum subtilisin-like protease (PfSUB1) (Figure 1), which in turn 
are involved in merozoite egress and secretion of apical organelle 
(50, 51). The proteolytic processing of PfMSP-1 was prevented 
with the inhibitor of PfPKG, compound 1 without affecting the 
activity of SUB1. Noticeable, in an experiment involving schizonts 
deficient in PfCDPK5 showed normal processing of PfMSP-1 in 
the presence of compound 1. Therefore, it indicates the role of 
PfCDPK5 downstream to PKG (52). The phosphoproteomics and 
chemical genetic approach involving the use of PKG inhibitor, 
compound 2 4-[7-[(dimethylamino) methyl]-2-(4-fluorophe-
nyl)imidazo[1,2-α]pyridin-3-yl]pyrimidin-2-amine along with  
strain containing PKG mutant allele (PfPKGT618Q), resistant 
to compound 2 further demonstrated the role of PKG in the 
signaling event. Comparative analysis of the effect of treatment 
with compound 2 in wild-type and PfPKG mutant brought out 
various cellular targets of PfPKG involved in egress and invasion 
(53). The significance of PfPKG upstream to calcium signaling 
was indicated by a study in which phosphorylation of PfCDPK1 
occurred in a PKG-dependent manner (50, 53). Moreover, 
PKG plays a significant role in regulating the cytosolic calcium 
signaling both during egress and at the asexual stage (54). The 
key importance of PfPKG in phosphorylation of the substrates 
gives a reflection that both PfPKG and its substrates are the 
therapeutic candidates in malaria treatment and in transmission 
blocking (55).

ATP as Signaling Molecule in infected 
erythrocytes
During malaria, extensive modification in erythrocytes is 
accompanied by changes in membrane permeability (56, 57). 
It has been well documented that hypoxic signals or surface 
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deformation of RBC accounts for the release of ATP (58, 59). 
An elevated level of ATP has been recorded both in the extra-
cellular environment and in the cytoplasm of host and parasite 
(60, 61). Parasitemia is proved to be directly linked to level of 
ATP (62). Any diminution of ATP in the medium rendered 
the Plasmodium ineffective to infect the fresh erythrocytes 
(60, 63, 64). The essentiality of ATP in the invasion process of 
parasite was confirmed by thwarting the entry of the parasite 
through inhibitor-mediated blocking of purinergic receptor 
and the addition of apyrase (65). The underlying mechanism 
of this inhibition involved the boosting up of the cytoplas-
mic calcium levels by extracellular ATP (65). The effect of 
purinergic signaling is mediated through phosphorylation 
of skeleton protein like spectrin present in erythrocyte (64, 
65). Purinoceptor signaling is linked to induction of the new 
permeation pathway. Therefore, purinoceptors antagonist, 
suramin, reduces the membrane permeability and leads to 
deterioration in parasitic growth, both in vivo and in vitro (66). 
Purinoceptor blocker, suramin, and pyridoxal phosphate-
6-azophenyle-2′,4′-disulphonic acid alter the proteolytic 
processing of protein like MSP-1, which is involved in the 
invasion, while the addition of ATP was found to trigger the 
intracellular proteolytic event in P. berghie and Plasmodium 
yoelii (67). It suggests the involvement of purinergic receptors 
in ATP signaling. The purinergic receptors that are expressed 
on the parasite surface are phylogenetically distinct from 
human counterparts. Thus, these receptors can be exploited as 
targets so as to design inhibitors of parasite invasion process 
(68, 69). ATP is also thought to be involved in the host-induced 
inflammation following the malaria infection (70).

P-21 ACTivATeD PROTeiN KiNASe (PAK)-
MeK SiGNALiNG PATHwAY iN iNFeCTeD 
eRYTHROCYTeS

In eukaryotes, the regulation of cell cycle is dependent on 
mitogen-activated protein kinases (MAPKs). In this pathway, 
signals are transmitted successively to its respective compo-
nents, MAPKKKs (MEKKs), MAPKKs [MEK/extracellular 
signal regulated kinase (ERK)], and finally to MAPK (71, 72). 
The Plasmodium kinome study revealed the presence of two 
homologs of human MAPK, namely, Pfmap-1 (73, 74) and 
Pfmap-2 (74, 75). Pfmap-1 is expressed in both asexual and 
gametocyte stage, while the expression of Pfmap-2 is found in 
gametocytes only. The reverse genetic-based approach demon-
strated the essentiality of Pfmap-2 in the asexual development 
of P. falciparum (74). The sequence alignment depicted that the 
homology of gene PfPK7 with human MAPKK3 at its C-terminal 
region and the N-terminal region was aligned with fungi PKA. 
The assay conducted to analyze the inhibition via phosphokinase 
inhibitors, namely, PKI and H89 showed that PfPK7 activity was 
not affected. Similarly, MEK inhibitor, U0126, had no inhibitory 
effect on PfPK7 activity. It was suggested that PfPK7 is not an 
ortholog of MAPKK due to the absence of MAPKK activation 
site (76). The data provide an evidence of the absence of a regular 
MAPK pathway in Plasmodium. Due to the absence in parasite, 
the role of MEK of host erythrocytes in parasite development 

was hypothesized and confirmed. The immunological experi-
ment evidenced the modulation of the host erythrocyte MAPK 
pathway. When compared, the level of phosphorylated MEK in 
infected erythrocytes was found much higher than uninfected 
ones. Moreover, MEK inhibitors, U0126 and PD184352, had 
parasiticidal effect on trophozoite, while the invasion process 
remained ineffective (13). It was found that activation of MEK 
is relying on MEKK-independent mechanism, which involves 
PAK (77). The involvement of PAK-1 was evident by observing 
the inhibition of parasitic growth due to reduction in the phos-
phorylation of MEK-1 by the use PAK-1 inhibitor, IPA-3 (78). 
The activation of PAK-1 occurs as a consequence of erythrocyte 
remodeling during parasite infection (79, 80). Furthermore, the 
importance and requirement of MEK-1 and substrate of MEK-
1-PAK-1 pathway for parasite are yet obscured (13). Targeting 
the human kinase would provide a discrete strategy for the 
development of antimalarial therapy. It could be advantageous 
as many kinase inhibitors are known to pass the phases of clini-
cal trials as anticancerous agents. If such inhibitors have “cidal” 
effect on parasite, then they can be used as an antimalarial in a 
cost-effective manner. The overall lengthy process of drug devel-
opment can also be reduced. Second, targeting host protein will 
aid in circumventing the problem of drug resistance (13). Most 
common examples are the pyridinyl imidazoles SB203580 and 
SB202190 known to inhibit the activation of human p38MAPK. 
These p38MAPK inhibitors were found to be inhibitory for 
protozoan parasite as well. Similarly MAPK p38 inhibitors 
like pyridinyl imidazole RWJ67657 and pyrrolobenzimidazole 
RWJ68198 impede the growth of P. falciparum.

Ca2+ SiGNALiNG

Ca2+ is one of the important secondary messenger molecule 
involved in the signal transduction. It plays multiple roles in 
different aspects of parasite lifecycle, such as egress, invasion, 
growth, development, motility, and secretion (64, 81, 82). 
Therefore, maintenance of Ca2+ homeostasis is crucial for the 
parasite survival. Ca2+ ions regulate varied cellular events by 
binding to the effector molecules. But it is difficult to characterize 
the components of Ca2+-dependent signaling due to the lack of 
homology of effector molecules between Plasmodium and higher 
eukaryotes (83). Some effectors like Ca2+ transporters, PfCHA 
(PF3D7_0603500), similar to Ca2+/H+ exchanger (84), P. falcipa-
rum sarco-endoplasmic reticulum calcium ATPase (SERCA-type 
ATPase), PfATP6 (PF3D7_0106300), and PfATP4 (85) have been 
identified, but their functions need to be investigated.

Ca2+ Signaling during egress
Live cell fluorescent video microscopy involving the use of fluo-4 
Ca2+ probe, Ca2+ chelators, and inhibitors of Ca2+ ATPase revealed 
the differential role of various effector molecules in egress and the 
invasion of the merozoites. It has been shown that before egress 
of merozoites there is a constant increase in Ca2+ level in the 
cytoplasm of both parasite and infected RBC (iRBC) independent 
of extracellular Ca2+ ions.

Inhibition of Ca2+ ATPase from ER inhibitors and addition of 
Ca2+ ionophore enhanced the process of egress, while chelating 
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agents like bis(o-aminophenoxy)ethane-N,N,N′,N′-tetra acetic 
acid inhibited the process of egress (64, 86). The mechanism of 
inhibition involved the prevention of permeabilization of host 
membrane. The Ca2+ is found to regulate the release of perforin-
like protein 1 (PLP1) from microneme to the membrane where 
it begins its lytic activity. Likewise, the expression of PLP2 also 
occurs during the asexual blood stage, but its role is not clear. 
The reverse genetic studies would be helpful in disclosure of 
the details of PLP1 and PLP2(86). P. falciparum subtilisin-like 
protease (PfSUB1) is another effector of calcium signaling, which 
is found to be required for the PfSERAs. The inhibition of PfSUB1 
by the use of Ca2+ chelators prevented the rupture of the parasito-
phorous vacuole and consequently the egress of merozoites (86).

Ca2+ Signaling during invasion
The invasion process requires the discharge of rhoptry and 
microneme, which is dependent on the elevated levels of Ca2+. On 
exposure to low K+ level, cytosolic Ca2+ level increases through 
PLC and it triggers the export of erythrocyte-binding antigen 
175 (EBA175) and AMA-1 from microneme to merozoite surface 
(Figure 1). The interaction with the receptors of RBC brings the 
increased level of calcium to the basal level, which induces the 
release of rhoptry protein (29). P. falciparum reticulocyte-binding 
protein homologs-1 (PfRH1), present in trace amounts in rhoptry 
neck, was found to trigger the release of calcium ions, which 
further initiates the cascade. The use of PfRH1 antibody inhibited 
the invasion process by blocking the calcium signaling and halt-
ing the interaction of EBA175 with host receptors. Therefore, it is 
assumed that an alternative pathway, namely, K+ ion-dependent 
pathway for the release of protein from apical organs, might exist. 
In spite of the above findings, the mechanism of triggering of 
signals to release calcium ions is yet to be probed (87). A study 
indicated the role of PfCDPK1 in the discharge of microneme 
protein for invasion. The mutational analysis further analyzed 
the inhibition of invasion process upon mutating its active site 
residues (88, 89). Microneme secretion and thereby invasion was 
also found to be impaired on deletion of another calcium lipid-
binding Doc 2 protein, PfDoc2. However, the actual mechanism 
of action is unclear (47, 90).

Calcium-Dependent Cell Cycle Regulation
The cell cycle of parasite is known to be regulated by the coor-
dinated release of calcium ions. The efflux of calcium ions from 
ER occurs through inositol 1,4,5-trisphosphate (IP3) channels. It 
was demonstrated that exogenous addition of IP3 also causes the 
release of ions. Melatonin hormone was found to induce the pro-
duction of IP3 through PLC, which further opens the Ca2+ chan-
nels in the ER (91–93). An increase in calcium level on incubation 
with tumor necrosis factor (TNF)-α caused the downregulation of 
P. falciparum’s proliferating cell nuclear antigen-1 and ultimately 
the retardation of parasite growth (94). Calcium mediates its 
activity through PfCDPK7. The role of PfCDPK7 was confirmed 
by knockout studies in which PfCDPK7 mutant showed drastic 
retardation in growth. It can be assumed that the role of calcium 
might be correlated with protein kinase, PfPK7 and cdc2-related 
protein kinase, because the inhibition of these genes also dem-
onstrated to retard parasitic growth, but this hypothesis needs 

further validation (95). Expression of PfCDK2 was also indicated 
to be at peak during the ring and trophozoite stage. However, the 
function of PfCDK2 has not been deciphered yet (96). A different 
group of Ca2+-binding orthologs of cytoskeletal-binding protein 
centrin (PfCEN), expressed during asexual and the gametocyte 
stage of parasite, was found to be colocalized with the centrosome. 
The role of centrin in cell division of Plasmodium yet concealed, 
while the knockout studies in Leishmania donovani revealed their 
involvement in the growth and cytokinesis (97).

There is an extensive involvement of calcium signaling in 
various important pathways of parasite. Any interruption would 
be deleterious for invasion, egress, and ultimately the growth of 
parasite. On these grounds, components of calcium signaling are 
considered for therapeutic interventions.

TOLL-LiKe ReCePTOR (TLR)-MeDiATeD 
SiGNALS DURiNG MALARiA

Pathological symptoms during the severity of malaria are cor-
responding to the elevated level of pro-inflammatory cytokine. 
With the release of liver schizonts, a relative increase in the 
production of pro-inflammatory cytokine, such as interleukin 
(IL)-12, IL-8, and interferon (IFN)-γ, has been noticed in infected 
individuals (98–103). Any flaw in the inflammatory response will 
be responsible for the severity of disease (101, 104, 105). Antigen 
recognition by TLRs is one of the common mechanisms for 
the activation of the innate immune response. The mechanism 
involves the triggering of the signals from TLRs, which will 
ultimately cause the activation of the pro-inflammatory response 
(106–108) (Figure 2). In a case study of severe malaria, higher 
levels of TLR2, TLR4, and TLR8 were found (109). Owing to their 
role in severe malaria pathologies, TLRs are considered to be 
good candidate for in-depth research to elucidate the mechanism 
of innate immune response during parasite infection. Also, TLR 
ligands can be implicated for therapeutic intervention (110). 
The TLR role was investigated by correlating liver inflammation 
with parasite infection. In this study, cytotoxic activity of hepatic 
lymphocytes was induced by IL-12, produced in response to TLR-
myeloid differentiation factor 88 (MyD88) mediated signaling 
pathway. On the contrary, the normal IL-12 level was found in 
MyD88-deficient mice. The cascade initiates with the interaction 
of a ligand with TLR extracellular domain, which is followed by 
the transfer of signal to intracellular Toll/interleukin-1 receptor 
(TIR) domain (111). Afterward, the signals are transferred to 
downstream targets and followed by the activation of transcrip-
tion factors like nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) and activator protein 1. The signals from 
the TIR domain are transduced via intracellular adaptors such as 
MyD88, TLR2, TLR4, TLR9, and TLR7 (112).

Role of TLR9
During malaria, TLR9 is involved in providing protective immune 
response in a MyD88-dependent manner (113). Hemozoin (HZ) 
was indicated to stimulate this response (114–116). In a study, 
the ligand property of purified HZ against TLR was studied. The 
studies performed in TLR9-deficient mice showed the inadequate 
functioning of HZ in the production of chemokine, cytokine, 
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and costimulatory signals (117). Parroche et  al. (118) identi-
fied that natural HZ but not purified hemin can induce TLR9. 
Experimentally, it was explored that the stimulation was forbidden 
due to the lack of binding to TLR9 in the presence of nuclease. Later, 
it was confirmed that DNA present on the surface of HZ interacts 
with TLR9 (118). Another piece of information supporting the 
role of TLR signaling during malaria was derived from the find-
ing, which has demonstrated the activation of regulatory T (Treg) 
cells in a TLR9-dependent manner. During the P. yoelii infection, 
an unknown protein of parasite stimulates the TLR9 present on 
dendritic cells. These signals ultimately trigger off the Treg cells, 
which in turn suppress the effector T cells. Evidence suggests that 
mice deficient in TLR9 are more resistant to malaria infection due 
to the activation of the effective response of T cells (15).

Role of TLR4
The pro-inflammatory response is not restricted to be mediated 
through TLR9, but in recent past, natural HZ has been shown to 
bind with host fibrinogen, which interacts with fibrinogen recep-
tor TLR4 on monocytes, and this interaction leads to downstream 
activation of NF-κB and MAPK, thereby arousing the oxidative 
burst and elevated expression of TNF and other pro-inflammatory 
cytokines (119). Similarly in case of murine malaria, 2-Cys per-
oxiredoxin antigenic protein of Plasmodium stimulates TLR4 on 
mast cell and macrophages to produce TNF-α (120) (Figure 2).

Role of TLR7
A study carried out in Plasmodium chabaudi elucidated the role 
of TLR7 in the production of IFN-1, IL-12, and IFN-γ. Earlier, 
TLR9 was reported as the key sensor of infection. But the experi-
ments conducted in the absence of TLR7 and MyD88 showed the 
remarkable reduction in the pro-inflammatory cytokine-like IFN-
1. Contrary to it, no influence on IFN production was observed 
in mice deficient in TLR2, TLR4, TLR9, interleukin-1 receptor, or 
IL18R. Rational for this disparity is that the activation of TLR9 or 
TLR 7 depending on the time or stage of infection and alteration 
in the available ligand (16). Although the parasitic ligand trigger-
ing TLR7 has not yet been proven, however, based on finding that 
single-stranded RNA is required for TLR7-dependent production 
of IFN-I during viral infection (121), it was hypothesized that the 
RNA of parasite might work as a ligand against the receptor (16). 
Despite this speculation, the actual receptor–ligand interaction 
needs to be elucidated.

Role of TLR2
TLR2 recognize glycosylphosphatidylinositol (GPI) with TLR1 
and TLR6 in a heterodimeric form (110) and induces the 

inflammatory cytokine production (122) (Figure 2). Severity of 
malaria was found to be correlated to allelic variation in TLR1 
(123). TLR2 signaling in liver stage initiates the production 
of pro-inflammatory response, which hampers the parasite’s 
development (124).

GPi-BASeD SiGNALiNG AND iMMUNe 
ReSPONSe

Several factors are involved in immune modulation leading to 
malaria pathologies. For instance, GPI is involved in the elicitation 
of innate immune response. GPI, ubiquitously found in eukary-
otes, but are more prominent on parasitic surface. GPIs of different 
species exhibit structural diversity. GPIs are considered as toxic 
due to their deleterious effect of inducing of pro-inflammatory 
cytokines such as TNF-α, IL-1, IL-6, IFN-γ, and nitric oxide (NO) 
in macrophage. The induced cytokines lead to the development 
of symptoms like hypoglycemia, pyrexia, fever, illness, and lethal 
cachexia (125–129). Conversely, the anti-GPI antibody sig-
nificantly diminishes the pro-inflammatory response. Consistent 
with this, data show that surviving individuals after sever malaria 
have higher level of anti-GPI (130, 131). The GPI manifest its effect 
through the activation of protein tyrosine kinase and phospho-
kinase C consecutively activating NF-κB (125, 129, 132). Studies 
with knockout mice demonstrated that TLR-2 (110) and to a lesser 
extent TLR-4 (133) recognize GPIs, on the surface of merozoites 
(Figure 2). Mice deficient in MyD88 and CD36 showed reduced 
TNFα secretion in the presence of GPI. This indicates that GPI 
pass down its signals through TLR2 and CD36 (134). Elucidating 
the signaling cascade activated by GPI in murine peritoneal and 
bone marrow-derived macrophages, it was found that GPIs from 
Plasmodium can differentially stimulate the MAPK pathway like 
ERK, P38, and c jun N-terminal kinase (JNK) (128, 134). Of the 
above three MAPK pathway, ERK is not involved in GPI-induced 
secretion of TNF-α and NO (128). Reflecting on JNK its two iso-
forms, JNK1 and JNK 2 participate differentially in GPI-mediated 
cytokine production. On the induction of macrophage with the 
GPI, unaffected production of IL-6 and NO was observed in 
both JNK1−/− and JNK2−/−. But IL-12 and TNF-α levels were 
reduced in JNK2−/−, thus indicating the essential requirement 
of JNK2 to produce TNF-α and IL-12 (134). The crucial role of 
GPI in the activation of pro-inflammatory response and highly 
conserved nature suggest the synthetic GPIs as potential vaccine 
candidates (135). Targeting GPIs for designing the antimalarial 
therapy would be beneficial and secured from emergence of drug 
resistance (136). GPIs exerts their effect by imitating host GPIs, 
thereby modulating the normal host signaling pathways, thus 
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candidature of GPI as a vaccine target was further verified  
(136, 137).

In an effort to find inhibitory molecules against GPIs a mol-
ecule, human C1 inhibitor (C1INH) with an anti-inflammatory 
effect, secreted by liver cell, was brought to attention (138). 
C1INH directly interact with GPIs of P. falciparum, and this 
binding inhibits the invasion of parasite to fresh erythrocyte 
and also it obstructs the interaction of iRBC to CD36 and 
chondroitin sulfate A, thereby halting parasite sequestration and 
consequently suppress the production of the pro-inflammatory 
cytokine as well (139). The effectiveness of C1INH was ques-
tioned due to the insufficiency of the endogenously produced 
molecule in controlling the disease pathogenesis. The presence 
of a mechanism like elastase, responsible for the weakening of the 
effect of C1INH in Pseudomonas aeruginosa, was hypothesized 
to be present in P. falciparum (139, 140) but has no experimental 
clues.

CYTOADHeSiON AND ReLATeD 
SiGNALiNG DURiNG MALARiA iNFeCTiON

Most of the malaria pathologies are associated with the cellular 
interaction between host and parasitic proteins (7, 10, 141) 
(Table  1). Therefore, the focus on the response produced by 
cytoadhesion will help in overviewing of mechanisms of patho-
genesis. During trophozoite stage, a large repertoire of proteins 
is exported on iRBC surface. Of hitherto of proteins, interaction 
of PfEMP1 with endothelial cell surface receptors or receptors 
on immune cells is most widely explored (142–145). Most of 
the exported proteins form a knob-like structure with adhesive 
property (4). Binding of these proteins to the EC, other iRBC or 
fresh RBCs cause the sequestration of iRBC in different tissue. 
As a consequence, it reduces the blood flow and bypasses the 
main flow to stay off from the splenic clearance (146). On the 
EC, several different types of receptors such as CD36, interstitial 
cell adhesion molecule (ICAM-1), endothelial protein C receptor 
(EPCR), P-selectin, and E-selectin are expressed in a tissue-
specific manner (10, 141, 147, 148).

Recently, it was suggested that shedding of protective glycoca-
lyx from endothelium is responsible for increased permeability 
and procoagulation state (149, 150). It makes direct access of the 
iRBC on the endothelial receptors. This finding provides a new 
line for the development of adjunct therapies, which can prevent 
the damage to the glycocalyx (151).

CD36 scavenger receptor is an important signaling molecule 
for various ligands and responsible for producing a pro-inflam-
matory response during inflammatory disease. The importance 
of CD36-mediated sequestration in parasitic growth was demon-
strated through mutant of P. berghie with deficient CD36-binding 
ligand (152). The adherence of the iRBC to CD36 on vascular 
endothelium activates the intracellular signaling cascade, which 
in turn intensifies the affinity of the interaction of receptor for 
its ligand (11, 153). A downstream signaling cascade of CD36-
iRBC interaction was explained by employing cross linking 
anti-CD36 or recombinant domain CD36-binding domain of 
PfEMP. This interaction stimulates src-dependent kinase, which 
activates ecto-ALP present on the surface of the EC (Table 1). 

The ALP subsequently potentiates the affinity of the receptor by 
dephosphorylation (153). It has been shown that recruitment of 
α5β1 integrin due to src signaling is responsible for an increase 
in affinity. This also leads to the rearrangement of cytoskeleton 
protein through phosphorylation of (P130Cas) Crk-associated 
substrate (P130Cas) adaptor protein (61, 154). The src kinase also 
activates Erk1/2, but it is not involved in receptor interaction. In 
monocytes, it avails in phagocytosis of iRBC but not concerned 
with TNF, responsible for sever pathologies (155, 156). During 
acute lung injury in P. berghei infection, splenic monocytes 
recruited to the lung tissue cause CD36-mediated phagocytosis 
of iRBC (157). Future research is expected for unrevealing the 
prospects of phagocytosis and the involvement of this pathway in 
activation of adaptive immunity.

In childhood malaria, PfEMP1 containing domain cassettes 
8 and 13 domain binds to specific EPCR. EPCR-bound acti-
vated protein C (APC) activates protease activation receptor-1, 
which leads to induction of protective signals. APC on getting 
released binds to membrane phospholipids on platelets and 
causes the inactivation of the coagulation factor (14). However, 
during malaria, the interaction of PfEMP1 with EPCR inhibits 
the activation of protein C then pro-inflammatory cytokines 
from EC cause the shedding of EPCR (158). But it is matter to 
ponder upon that whether to implicate EPCR-mediated inter-
action for restricting iRBC sequestration? Would providing 
APC exogenously restore the cytoprotective and anticoagulant 
state? It would then provide novel concept to deal with the 
severity of malaria (158).

Host immune response causes the subtle changes in the 
functioning of blood–brain barrier, which affects the cellular 
trafficking of lymphocytes (159). The infiltration of lymphocytes 
from endothelium is mediated through the interactions between 
ICAM-1 and cell surface integrin (160). In P. falciparum infec-
tion, interaction of iRBCs with ICAM-1 is one of the reasons 
for the development of cerebral pathologies (161, 162). During 
the inflammatory response, the expression level of ICAM-1 
increases. The rosetting of iRBC and their adherence to ICAM-1 
was suggested to be responsible for bacterial enteric infection in 
children with severe malaria (163). Severity of disease involves 
damage in the microvasculature and organ. So, implementation 
of anti-adhesion agents coupled with anti-malarials are needed 
to combat the disease (164). The application of antiadhesion 
therapies would provide a new perspective in the reduction 
of the interactions related to severe pathologies. In the line of 
this effort, a truncated ICAM-1 biophore peptide (IBT213) was 
designed through in silico approach, which can specifically block 
the binding of PfEMP1 to ICAM-1(165).

CONCLUSiON

The impression of the involvement of signaling pathways dur-
ing the asexual stage of parasite is clear. The different signaling 
strategies are involved to gain access or to modulate the host 
environment. Several techniques such as pharmacological 
inhibition and reverse genetic approach and techniques for 
single-cell live imaging revealed various indispensable compo-
nents responsible for the invasion, egress, parasite growth, and 
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