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Background: Fibrosis, particularly excessive collagen deposition, presents a challenge 
for treating asthmatic individuals. At present, no drugs can remove or reduce excessive 
collagen in asthmatic airways. Hence, the identification of pathways involved in colla-
gen deposition would help to generate therapeutic targets to interfere with the airway 
remodeling process. Autophagy, a cellular degradation process, has been shown to be 
dysregulated in various fibrotic diseases, and genetic association studies in independent 
human populations have identified autophagy-related 5 (ATG5) to be associated with 
asthma pathogenesis. Hence, the dysregulation of autophagy may contribute to fibrosis 
in asthmatic airways.

Objective: This study aimed to determine if (1) collagen deposition in asthmatic airways 
is associated with ATG5 expression and (2) ATG5 protein expression is associated with 
asthma per se and severity.

Methods: Gene expression of transforming growth factor beta 1, various asthma- 
related collagen types [collagen, type I, alpha 1; collagen, type II, alpha 1; collagen, 
type III, alpha 1; collagen, type V, alpha 1 (COL5A1) and collagen, type V, alpha 2], 
and ATG5 were measured using mRNA isolated from bronchial biopsies of refrac-
tory asthmatic subjects and assessed for pairwise associations. Protein expression 
of ATG5 in the airways was measured and associations were assessed for asthma 
per se, severity, and lung function.

Main results: In refractory asthmatic individuals, gene expression of ATG5 was pos-
itively associated with COL5A1 in the airways. No association was detected between 
ATG5 protein expression and asthma per se, severity, and lung function.

conclusion and clinical relevance: Positive correlation between the gene expression 
patterns of ATG5 and COL5A1 suggests that dysregulated autophagy may contribute 
to subepithelial fibrosis in the airways of refractory asthmatic individuals. This finding 
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inTrODUcTiOn

The Global Initiative for Asthma estimated that globally there 
are 300 million people who suffer from asthma and the number 
is expected to reach 400 million by 2025 (1). Among asthmatic 
individuals, between 5 and 10% are considered severe who need 
a combination of oral steroids, inhaled steroids, short-acting 
bronchodilator, long-acting bronchodilator, and leukotriene 
modifiers to control their asthma. However, a proportion of these 
severe asthmatic subjects, despite aggressive treatment schemes 
continue to have exacerbations, obstructive airways, emergency 
visits, and even near fatal asthma attacks. The injury and repair 
associated with severe persistent asthma results in irreversible 
airflow obstruction due to airway remodeling (2, 3). Fibrosis is an 
important characteristic of tissue remodeling, and in asthmatic 
airways, fibrosis is associated with increased collagen deposition 
in the subepithelium (4–7). Simplistically put, in normal airways, 
collagen and other extracellular matrix (ECM) proteins are 
deposited and degraded in a homeostatic fashion; yet in asthmatic 
airways, such homeostasis is dysregulated, as reviewed elsewhere 
(8). In asthmatic airways, collagen type I (4), type III (4, 9), and 
type V (9, 10), among other ECM proteins, were found in greater 
quantity than in non-asthmatic airways. Furthermore, the pres-
ence of fibrosis below the epithelium of airways is associated with 
asthma severity and lung function decline (6). While commonly 
used asthma medications are effective in reducing inflammation 
and dilating constricted airways, they are ineffective in reducing 
or preventing fibrosis (6, 11, 12).

Autophagy is a cellular degradation process in which the cell 
hydrolytically removes cytoplasmic contents, such as damaged 
organelles and protein aggregates, by first engulfing the target 
within a double membrane vacuole and followed by fusion with 
lysosomes, as reviewed elsewhere (13, 14). During autophagy, 
autophagy-related 5 (ATG5) is covalently conjugated with ATG12 
and interacts with ATG16 to form the ATG12–ATG5–ATG16 
complex (15). This complex enhances the formation of the 
membrane destined to form an autophagosome and is thus, vital 
for autophagosome formation (16). Intricate relationships exist 
between autophagy and other forms of cell death (i.e., apoptosis 
and necrosis) (17, 18). It has been postulated that autophagy 
serves as a cell survival mechanism to remove triggers that are 
threatening cell survival, yet when such threats become over-
whelming, cell death processes such as apoptosis and necrosis 
take over (18, 19). Dysregulation of autophagy has been linked to 
fibrosis in a number of fibrotic diseases, including cirrhosis (20), 
idiopathic pulmonary fibrosis (21), and renal fibrosis (22). The 
upregulation of autophagy during activation of fibrogenic cells, 
such as hepatic stellate cells from mice as well as hepatitis B-, 
hepatitis C-virus-infected human liver, and human fibroblasts 
from idiopathic pulmonary fibrosis, suggests that autophagy is a 
central pathway in fibrosis (23, 24). The loss of autophagy func-
tion, with specific autophagy inhibition by siRNAs against Atg5, 

results in the attenuation of matrix accumulation and fibrogenesis 
in stellate cells and renal, embryonic and lung fibroblasts (23), 
further supporting the role of autophagy in the fibrotic process. 
Recently, elevated autophagic activities have been detected in 
cells from sputum and blood from severe asthmatic patients as 
compared to the milder asthmatics and healthy controls (25). 
Furthermore, two candidate gene association studies detected 
associations between variations in the gene encoding ATG5 and 
asthma (26, 27), and elevated ATG5 gene expression was found in 
the nasal epithelium of children with acute asthma as compared to 
those with no asthma or stable asthma (27). In addition to asthma 
per  se, ATG5 polymorphism was associated with lung function 
in asthmatic individuals (26). This genetic association coupled 
with the histological observation of increased autophagosomes 
in moderately severe asthmatics provides evidence of autophagy 
in the pathogenesis of asthma (25, 26). Stemming from these 
reports, we hypothesize that ATG5 expression is associated with 
collagen deposition in severe asthmatic patients.

MaTerials anD MeThODs

sample collections
Gene expression measurement using microarray was performed 
using RNA isolated from bronchial biopsy samples of study 
participants in the Bronchoscopic Exploratory Research Study 
of Biomarkers in Corticosteroid-refractory Asthma (BOBCAT) 
study (28). The BOBCAT study was a multicenter study conducted 
in Canada, United States, and United Kingdom, and patient 
recruitment has been described previously (28). Briefly, patients 
with uncontrolled moderate-to-severe asthma accompanied by 
forced expiratory volume in one second (FEV1) percent (%) pre-
dicted of 40–80%, airway obstruction of >12% and reversibility 
with a short-acting bronchodilator or methacholine sensitivity 
(PC20) <8 mg/ml in the past 5 years were recruited. The asthma of 
the participants must be refractory as defined by at least two exac-
erbations in the previous year or an asthma control quality (ACQ) 
score of >1.50 while on high-dose inhaled corticosteroid (ICS) 
(>1,000  μg of fluticasone or equivalent daily) with or without 
long-acting β-agonist. Processing of the bronchial biopsy tissues 
for RNA isolation and gene expression microarray analyses has 
been described previously (29).

Protein expression was measured in bronchial biopsy tis-
sues obtained from fiberoptic bronchoscopy of asthmatic and 
non-asthmatic healthy subjects archived at the Tissue Bank of 
the Respiratory Health Network of the Fonds de Recherche du 
Québec – Santé (McGill University Health Centre site). Patient 
recruitment and sample processing have been described previ-
ously (6, 30). Asthma severity (mild, moderate, and severe) was 
determined based on medication usage, frequency of exacerba-
tion, and lung function as previously described (30, 31). Briefly, 
severe asthma subjects met the criteria proposed by the American 
Thoracic Society workshop on refractory asthma (32). Moderate 

highlights the therapeutic potential of ATG5 in ameliorating airway remodeling in the 
difficult-to-treat refractory asthmatic individuals.
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asthmatic subjects were individuals with persistent asthma whose 
symptoms were under-control with a dosage between 176 and 
800 μg/d of fluticasone (or equivalent) with or without add-on 
controller medication, no more than two steroid bursts in the past 
12 months and none in the past 3 months with total days on oral 
steroids <30 days in the prior 12 months, predicted FEV1 >70% 
and >90% of personal best from the past 2 years, and a maximum 
of one unscheduled visit for asthma in the prior 12 months. Mild 
asthmatic subjects were individuals with prebronchodilator pre-
dicted FEV1 >80% and treated with either no or low-to-moderate 
dose of ICS (<880 μg fluticasone or equivalent). In addition to 
asthmatic subjects, non-asthmatic subjects with no history of 
asthma diagnosis, predicted FEV1 >90% and free of respiratory 
or systemic diseases, were included as control subjects.

All subjects have given their informed consent in accordance 
with the Declaration of Helsinki, and the study has been approved 
by the Research Ethics Board of the Research Institute-McGill 
University Health Centre. The BOBCAT protocol was approved 
by the Copernicus Group independent review board and respec-
tive institutional review boards associated with other participat-
ing study centers in the United States, Canada, and UK.

gene expression
Gene expression data were available from previously performed 
microarray analyses (33). Briefly, amplified single-stranded 
cDNA from homogenized bronchial biopsy tissues was hybrid-
ized to Affymetrix (Santa Clara, CA, USA) U133 plus 2.0 arrays, 
and array images were analyzed with Affymetrix GeneChip 
Expression Analysis Software. Gene expression data in the air-
ways of various asthma-related collagen types [collagen, type I, 
alpha 1 (COL1A1); collagen, type II, alpha 1 (COL2A1); collagen, 
type III, alpha 1 (COL3A1); collagen, type V, alpha 1 (COL5A1) 
and collagen, type V, alpha 2 (COL5A2)], transforming growth 
factor beta 1 (TGFB1), and ATG5 were obtained.

immunocytochemistry
Immunocytochemistry staining of formalin-fixed paraffin-
embedded biopsy samples was performed to determine the 
protein level of ATG5. ATG5 immunoreactivity was detected 
using an ATG5 specific antibody (Abcam, Cambridge, MA, USA, 
ab109490) on 5  µm thick tissues as previously described (34). 
Briefly, heat-activated antigen-retrieval in citrate buffer was per-
formed to expose antigens; endogenous peroxidase activity was 
blocked with 1% H2O2, protein detection and signal amplification 
were achieved with streptavidin-horseradish peroxidase complex 
(Dako, Carpinteria, CA, USA), brown color stains were devel-
oped by 3,3′-diaminobenzidine (Dako, Carpinteria, CA, USA), 
and tissues were counter stained with hematoxylin and lithium 
carbonate. Image analyses were performed using the image 
processing program, ImageJ (version 1.46). Protein expression of 
ATG5 in the submucosal area was measured as the proportion of 
positively stained area.

statistical analyses
Microarray data analyses were performed using Bioconductor 
in the R statistical environment as previously described (35). 
Pairwise correlation of gene expressions was performed using 

Spearman’s rank order correlation. A Bonferroni corrected  
p value <0.004 was considered as statistically significant. The 
association between ATG5 protein expression in the bronchial 
biopsy samples and asthma per  se, severity, and lung function 
were assessed by Wilcoxon, Wilcoxon rank sums, and Pearson’s 
correlation tests, respectively.

resUlTs

Population characteristics
Bronchial biopsy tissues from 35 refractory asthmatic subjects 
that participated in the BOBCAT study were used to assess for 
pairwise correlations between autophagy and different collagen 
subtypes gene expressions. Patients characteristics have previ-
ously been published (28). Briefly, the mean age of the subjects 
was 46 years (SD = 11) with 62.9% of the subjects being male. The 
mean FEV1% predicted was 61% (SD = 12). The mean ACQ score 
was 2.6 (SD = 0.8). Bronchial biopsy tissues from 42 asthmatics 
(15 mild, 12 moderate, and 15 severe) and 15 non-asthmatic 
healthy subjects were used to measure and assess correlation 
between ATG5 protein expression and asthma per se and sever-
ity. The mean ages of the four groups (normal, mild, moderate, 
and severe) were 32.7 years (SD = 14.9), 31.6 years (SD = 9.5), 
42.1 years (SD = 10.6), and 40.9 years (SD = 8.1), respectively. 
The percentages of the samples being female were 60, 63, 50, and 
27%, respectively. In terms of lung function, the mean FEV1% 
predicted values of the four groups were 109.1% (SD  =  14.9), 
90.0% (SD = 15.6), 90.4% (SD = 14.5), and 58.3% (SD = 15.4), 
respectively. The mean FEV1/forced vital capacity values were 
0.83 (SD = 0.07), 0.76 (SD = 0.10), 0.77 (SD = 0.09), and 0.67 
(SD = 0.13), respectively.

gene expression of TgFB1 in the airways 
is associated with cOl1a1 gene 
expression in refractory asthmatic 
subjects
Pairwise gene expression comparisons demonstrated a sig-
nificant correlation between TGFB1 and COL1A1 (ρ  =  0.59, 
p-value  =  2.4  ×  10−4) (Table  1). The correlation between 
TGFB1 and COL1A2 demonstrated a positive trend but was 
not significant after correction (ρ  =  0.32, p-value  =  0.06). No 
significant correlations or trends were observed between TGFB1 
and the other investigated collagen types in this study [COL3A1 
(ρ = 0.01, p-value = 0.95), COL5A1 (ρ = 0.07, p-value = 0.71), 
and COL5A2 (ρ = 0.01, p-value = 0.96)]. Therefore, COL1A1 gene 
expression positively correlated with TGFB1 gene expression in 
refractory asthmatics.

gene expression of aTg5 in the airways is 
associated with cOl5a1 gene expression 
in refractory asthmatic subjects
Pairwise gene expression comparisons demonstrated a sig-
nificant correlation between ATG5 and COL5A1 (ρ  =  0.72, 
p-value  =  2.9  ×  10−6) (Table  1). The correlation between 
ATG5 and COL1A1 demonstrated a positive trend but was 
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TaBle 1 | Pairwise correlations between gene expression of various collagen types and ATG5 and TGFB1 in bronchial biopsy tissues of refractory 
asthmatic individuals.

COL1A1 COL1A2 COL2A1 COL3A1 COL5A1 COL5A2 ATG5

TGFB1 ρ = 0.59, p* = 2.4 × 10−4 ρ = 0.32, p = 0.06 Did not analyze ρ = 0.01, p = 0.95 ρ = 0.07, p = 0.71 ρ = 0.01, p = 0.96 ρ = 0.22, 
p = 0.21

ATG5 ρ = 0.42, p = 0.01 ρ = 0.25, p = 0.14 ρ = −0.3, p = 0.08 ρ = 0.33, p = 0.05 ρ = 0.72, p = 2.9 × 10−6 ρ = 0.30, p = 0.08

*Bonferroni adjusted p-value threshold for statistical significance (i.e., 12 tests) is 0.004.
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not significant after correction (ρ  =  0.42, p-value  =  0.01). No 
significant correlations or trends were observed between ATG5 
and the other investigated collagen types in this study [COL1A2 
(ρ = 0.25, p-value = 0.14), COL2A1 (ρ = −0.3, p-value = 0.08), 
COL3A1 (ρ  =  0.33, p-value  =  0.05), and COL5A2 (ρ  =  0.30, 
p-value = 0.08)]. Therefore, COL5A1 gene expression positively 
correlated with ATG5 gene expression in refractory asthmatics.

Protein expression of aTg5 in the airways 
is not associated with asthma, asthma 
severity, or lung Function in asthmatic 
subjects
Since fibrosis is often associated with asthma severity and decline 
in lung function (6), and ATG5 gene expression demonstrated 
positive correlation with COL5A1 gene expression, the ATG5 
protein expression in the asthmatic airways was investigated to 
determine the association, if any, with asthma per se, severity, and 
lung function. ATG5 proteins were detected in the epithelium, 
airway smooth muscle cell bundles, and inflammatory cells in all 
asthmatic and non-asthmatic subjects (Figure 1). Pre-absorption 
of the ATG5 monoclonal antibodies with ATG5 peptides pre-
vented any positive staining of the biopsy tissues (Figure  1F). 
ATG5 protein expression in the submucosal area was measured 
and expressed as a proportion of positively stained tissue area. 
No significant difference was detected in the ATG5 expression 
between non-asthmatic control and asthmatic subjects (Wilcoxon 
p-value = 0.1) (Figure 2). When asthmatic subjects were stratified 
by severity (mild, moderate, and severe), no significant difference 
in ATG5 expression was observed among the three asthmatic 
severity groups and with the non-asthmatic group (p-value = 0.7 
Wilcoxon rank sums) (Figure  2). In terms of lung function in 
asthmatic subjects, ATG5 protein expression did not correlate 
with FEV1% predicted in asthmatic subjects [Spearman’s rank 
correlation coefficient (ρ) = 0.04, p = 0.83] or when stratified by 
asthma severity (0.3 < Spearman’s ρ < 0.8, 0.26 < p < 0.83) (data 
not shown).

DiscUssiOn

Albeit the genetic findings of association between ATG5 
polymorphism and various asthma-related traits in a number 
of independent populations, no association was found between 
the ATG5 protein level and either the presence of asthma per se, 
severity of asthma, or by lung function in this study. A number 
of factors may contribute to the lack of association at the protein 
level despite associations detected at the gene level. For example, 
genotypes of the bronchial biopsy tissues were not determined due 

to limited availability of archived tissues. Furthermore, elevated 
gene expression was observed in nasal mucosal cells of acute 
asthmatic children as compared to stable asthmatic and control 
children (27). The biological consequence may only be detectable 
in the downstream autophagic pathway. The detection of LC3B-II 
punctae using immunocytochemistry is often used to indicate 
the presence of autophagy (24); however, the use of archived 
formalin-fixed paraffin-embedded tissues in this study limited its 
use. In this study, the investigation was focused on ATG5 proteins 
in the submucosal area of the airways; hence, the impact of the 
genetic and gene expression association may not be carried to 
protein expression in different cell types. Finally, the phenotypes 
of interest were different from previous studies reporting genetic 
associations. Although the disease of investigation was asthma, 
the underlying mechanism for the genetic association with acute 
asthma in children or with FEV1% predicted in asthmatic subjects 
may, and likely be, different from that of severity.

Subepithelial fibrosis is a hallmark of asthmatic airways, and 
fibrosis can be primarily attributed to the deposition of collagen 
of types I, III, and V as well as fibronectin (6). The findings of 
positive association between the gene expression of various col-
lagens (i.e., COL5A1 and less significantly COL1A1) and ATG5 
supported the speculation that enhanced autophagy is associated 
with asthma pathogenesis and in particular collagen deposition. 
It has been suggested that TGFB1 is a pro-fibrotic element present 
in asthmatic tissues (6, 36), as evidenced by the gene expression 
data of the BOBCAT study. TGFB1 gene expression positively 
correlated with type 1 collagen gene expression in this study. This 
is in concordance with the observation that TGFB1 simultane-
ously promotes COL1A2 synthesis and autophagy induction in 
human atrial myofibroblasts, and ATG5 knockout of mouse 
embryonic fibroblasts is associated with a parallel decline in 
the fibrotic effect of TGFB1 when compared to wild-type cells, 
further stressing the role of autophagy in TGFB1-induced fibrosis 
(37). Interestingly, in this study TGFB1 gene expression did not 
correlate with COL5A1 and COL5A2, yet ATG5 gene expres-
sion correlated with the type V collagen gene expression. Type 
V collagen is a minor collagen that is intercalated within fibrils 
of the major lung collagen, type I collagen (38). Under normal 
conditions, the epitopes of the type V collagen are masked within 
the fibrils; yet in conditions with prominent tissue remodeling, 
the type V epitopes are exposed and have been shown to induce 
autoimmunity in a murine model of allergic airway disease (10), 
lung transplant-associated obliterative bronchiolitis (39), and 
idiopathic pulmonary fibrosis (40). In the context of asthma, an 
observational study of asthmatic subjects has detected higher lev-
els of type V collagen antibody in the serum of asthmatic subjects 
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FigUre 1 | representative staining patterns of aTg5 protein expression from each group were shown here: non-asthmatic control (a), mild (B), 
moderate (c), and severe (D). Monoclonal antibody for ATG5 was used as the primary antibody and developed with 3,3′-diaminobenzidine diaminobenzidine 
(brown). Nuclei were stained with hematoxylin (blue). Negative controls of ATG staining were performed using IgG1 isotype (e) and pre-absorption with ATG antigens 
(F). Pictures were taken at 200× magnification. Positive stainings could be detected in epithelial cells (black arrows), airway smooth muscle cells (white arrows), and 
inflammatory cells (red arrows). Enlarged staining patterns can be found in Figure S1 in Supplementary Material.
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than in non-asthmatic healthy subjects (10). Histopathological 
examination of a lung biopsy of an individual with fatal asthma 
also demonstrated greater type V collagen staining than normal 
lung biopsy (10). The murine model of allergic airway disease 
further demonstrated the positive association between anti-type 
V collagen antibody and IgE antibody production, and the 
protective effect of type V collagen-induced tolerance in airway 
resistance and airway hyperresponsiveness (10). Given that the 
BOBCAT study subjects are of moderate-to-severe asthma sever-
ity, airway remodeling is likely to be prevalent, and increased 
synthesis and deposition of type V collagen may be an important 
contributor to the associated fibrosis in these asthmatics.

Fibrosis in different organs has been associated with both 
autophagic upregulation as well as downregulation, emphasizing 
the diversity in the functional role of autophagy in tissue repair 
(41). On the one hand, it has been shown that in proximal epi-
thelial cells, ATG5-mediated autophagy reduced type I collagen 
deposition by blocking the G2/M phase arrest (42), a cell cycle 

phase whose arrest would initiate DNA repair and synthesis 
of pro-fibrotic factors (43). Furthermore, bleomycin-induced 
pulmonary fibrosis in a mouse model led to increased autophagy 
activation in the lungs as revealed by upregulated ATG5 protein 
expression levels and increased autophagosome formation (44). 
However, deficient autophagy in this model enhanced lung 
fibrosis, which was characterized by upregulation of collagens, 
COL1A2 and COL3A1. On the other hand, in human oral fibro-
blasts, suppression of autophagy led to reduction in type I collagen 
(i.e., COL1A2) gene expression, promotion of apoptosis, and sup-
pression of proliferation (45). Additionally, prolonged starvation 
of human embryonic lung fibroblasts triggered the simultaneous 
activation of myofibroblast differentiation, which was accompa-
nied by increased COL1A1 and COL3A1 at mRNA or protein 
levels, and autophagy (41). Autophagy inhibition was shown to 
prevent collagen mRNA and protein levels and myofibroblast dif-
ferentiation (41). These discrepancies clearly demonstrate tissue 
and cell specificity in the downstream effects of autophagy. Other 
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FigUre 2 | aTg5 protein expression, measured as proportion of 
positively stained area in the submucosa, is not associated with 
asthma per se (p = 0.1) or with asthma severity (p = 0.7).
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models of fibrosis suggested that autophagy may regulate fibrosis 
through a large number of pathways including the activation of 
the unfolded protein response (46), the activation of the IL-17A/
STAT3 signaling pathway (47), the suppression of mitochondrial 
reactive oxidative species–NF-κB-IL1α/β pathways (48), and the 
degradation of activated caspase-8 (49).

The mechanism behind the observed association between 
autophagy and type V collagen production is unknown and 
elusive. Angiotensin may be involved in tissue remodeling, and 
angiotensin II type I receptor signaling has been shown to induce 
autophagy in cardiomyocytes (50). Angiotensin II stimulation 
was observed to activate autophagy in rat cardiac fibroblasts 
both in  vitro and in  vivo, and ATG5 knockdown augmented 
angiotensin II-mediated accumulation of collagen type I (51). 
In another study, angiotensin II type I receptor antagonist, 
valsartan, suppressed types III and V collagen synthesis by 
modulating TGFB1 expression at the mRNA and protein levels 
(52), suggesting a plausible role of autophagy in type V collagen 
deposition via angiotensin II type I receptor signaling. In order 
to draw a mechanistic conclusion of the ATG5–type V collagen 
association in this study, further investigations involving various 
cell types such as fibroblasts, epithelial cells, and smooth muscle 
cells need to be studied separately. However, the findings that 

type V collagen and autophagy are associated in the lung tissues 
of moderate-to-severe asthmatic subjects are novel and exciting. 
Though there have been recent health authority approvals of two 
drugs to treat idiopathic pulmonary fibrosis, no pharmaceutical 
agents have yet been shown to directly ameliorate or reverse fibro-
sis. This finding supports ATG5 as a new target for anti-fibrotic 
drug development.
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