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Natural killer group 2, member D (NKG2D) is an invariant activatory receptor present on 
subsets of natural killer and T lymphocytes. It stimulates the cytolytic effector response 
upon engagement of its various stress-induced ligands NKG2D ligands (NKG2DL). 
Malignant transformation and conditioning treatment prior to hematopoietic cell trans-
plantation (HCT) are stress factors leading to the activation of the NKG2D/NKG2DL 
signaling in clinical settings. In the context of HCT, NKG2D-bearing cells can kill both 
tumor and healthy cells expressing NKG2DL. The NKG2D/NKG2DL engagement has 
therefore a key role in the regulation of one of the most salient issues in allogeneic HCT, 
i.e., maintaining a balance between graft-vs.-leukemia effect and graft-vs.-host disease. 
The present review summarizes the current state of our knowledge pertaining to the role 
of the NKG2D and NKG2DL in HCT.

Keywords: natural killer group 2, member D, NKG2D ligands, hematopoietic cell transplantation, graft-vs.-host 
disease, MHC class i chain-related gene, MiCA

iNTRODUCTiON

Hematopoietic cell transplantation (HCT) is a widely used curative treatment for a variety of both 
malignant and non-malignant hematological diseases (1). HCT involves the intravenous infusion 
of stem cells collected from bone marrow, peripheral blood, or umbilical cord blood, in order to 
reestablish hematopoietic function in patients whose bone marrow or immune system is damaged, 
defective or therapeutically ablated. Post-HCT reconstitution of the immune system is a crucial 
step for remission and involves, among other immunological cells, cytotoxic lymphocytes. Because 
of their ability to selectively kill malignant or infected cells, these lymphocytes are key players in 
immune surveillance. They include natural killer (NK) and T cells, which share the expression of 
the activatory natural killer group 2, member D (NKG2D) receptor. While important for killing 
malignant cells [graft-vs.-leukemia (GVL) effect] and protecting the immunosuppressed patient 
undergoing HCT against opportunistic infections, these cells can also provoke adverse outcomes 
where graft-vs.-host disease (GVHD) is the most dramatic.

Natural killer group 2, member D is a C-type lectin-like type II transmembrane protein encoded 
by the “killer cell lectin-like receptor K1” (KLRK1) gene, embedded within the NK-gene complex on 
human chromosome 12. It functionally assembles into a hexameric structure where each NKG2D 
monomer is associated with a DNAX-activating protein 10 (DAP10) dimer in man, an adapter protein 
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bearing a YXXM motif that recruits phosphoinositide 3-kinase. 
The NKG2D receptor is present on NK cells, CD8+ αβ, subsets of 
CD4+ αβ, as well as γδ T lymphocytes as well as NKT cells (2, 3). 
It is a genetically invariant (very few alleles have been reported) 
receptor that stimulates effector responses upon engagement of 
various stress-inducible ligands; hereafter called NKG2D ligands 
(NKG2DL). The function of NKG2D is therefore directly linked 
to the biology of its ligands, which expression is absent or low in 
most “normal” cells, but induced by cell stress, whether caused by 
infection, malignant transformation, or conditioning treatments 
prior to HCT (3–5).

In human, there are two families of NKG2DL: the “MHC class I 
chain-related genes” (MIC) and “UL16-binding proteins” (ULBPs) 
genes; the latter also known as retinoic acid early transcripts 1 
(RAET1). The first family includes the two non-conventional 
MHC-I loci MICA and MICB encoded within the MHC; at the 
centromeric extremity of the MHC class I region (6). These genes 
encode highly glycosylated MHC class I-like proteins, which are 
expressed at the cell surface independently of β2-microglobulin 
and cytosolic peptides. The genomic and protein structure of 
MICA and MICB is similar to those of conventional MHC class 
I genes and molecules. The proteins are composed of three extra-
cellular domains (α1, α2, and α3), a transmembrane region, and 
a cytoplasmic tail. Unlike other non-conventional MHC class I 
genes, a high degree of diversity has been documented for MICA 
and MICB genes: 106 alleles for MICA and 42 for MICB thus far 
(http://hla.alleles.org/data/index.html). MICA polymorphism 
has been associated with a number of diseases such as autoim-
mune disorders (7, 8) and cancer (9, 10), but also with allograft 
rejection and GVHD (11–16). The second NKG2DL family 
encompasses six functional genes: RAET1I/ULBP1, RAET1H/
ULBP2, RAET1N/ULBP3, RAET1E/ULBP4, RAET1G/ULBP5, 
and RAET1L/ULBP6. These genes are also localized on chromo-
some 6, but on its opposite arm with respect to the MHC, between 
cytogenetics bands 6q24.2 and 25.3. In contrast to MIC proteins, 
all ULBP/RAET1s lack an α3 domain, and RAET1I/ULBP1, 
RAET1H/ULBP2, RAET1N/ULBP3, and RAET1L/ULBP6 are 
attached to the membrane via a glycosylphosphatidylinositol 
anchor. ULBP/RAET1 genes appear to be less polymorphic as 
MICA and MICB. This may, however, not reflect the reality as 
only about 300 individuals have been sequenced thus far. In 
mice, there are three families of NKG2DL: Rae-1/RAET1 (five 
known proteins), H60 (three known proteins), and MULT-1 (one 
known protein) but as evidenced early-on no orthologous MIC 
genes (17).

Several converging lines of evidences indicate that the 
NKG2D–NKG2DL interaction is a key event in the regulation 
of the immune response following HCT, especially with respect 
to GVHD and GVL effect. First, NKG2DL proteins are mainly 
expressed in cells of fibroblastic and epithelial origin (18), which 
is in accordance with the localized tissues expression of GVHD 
(skin, liver, and gut). Second, in line with a possible involvement 
in the GVL effect, NKG2DL are known to be upregulated in 
tumor cells (19–21). Third, the systemic inflammatory response 
to conditioning regimens can serve as a danger/stress signal, 
which is needed to induce NKG2DL expression (22). Fourth, the 
DNA damage pathway that is activated in response to ionizing 

radiation and chemotherapy is central in the upregulation of 
NKG2DL (23). Fifth, neutralization of the NKG2D receptors by 
antibodies prevents graft rejection in mice (24, 25). Finally, block-
ade of the NKG2D/NKG2DL interaction by antibodies directed 
against NKG2D, attenuate GVHD while allowing CD8+ T cells to 
regain their GVL activity (26).

Here, we review the current knowledge of the role of 
both NKG2D and NKG2DL in HCT at the levels of genetic 
polymorphism, protein expression regulation, and antibody 
production.

GeNeTiC POLYMORPHiSM OF NKG2D 
AND NKG2DL

Both human NKG2DL gene families have been studied with 
respect to genotype–phenotype relationship in the context of 
HCT. While several recent publications have analyzed the influ-
ence of MIC genes in HCT, a single study focused on the role of the 
ULBP/RAET1 gene family. In this study, Antoun and coworkers 
used a cohort of 371 patient/donor pairs of HLA-matched related 
allografts to analyze a total of 18 single nucleotide polymor-
phisms (SNPs) in the four most polymorphic members of this 
gene family, i.e., RAET1N/ULBP3, RAET1E/ULBP4, RAET1G/
ULBP5, and RAET1L/ULBP6 (27). The only gene that could be 
related to clinical outcomes was RAET1L/ULBP6. Thanks to 
SNP haplotype structure analysis of this gene, the authors could 
associate the presence of the RAET1L*02 allele in patients with an 
improved overall survival (55% in patients with RAET1L*02 vs. 
39% in patients without RAET1L*02, P = 0.003) and relapse-free 
survival (44% in patients with RAET1L*02 vs. 25% in patients 
without RAET1L*02, P < 0.001). In addition, this allele was found 
to be associated with a reduced risk of relapse, with 11.5% of risk 
for RAET1L*02 homozygotes compared to 29.1% for RAET1L*01 
heterozygotes and 38.2% for the RAET1L*02 negative patients 
(P =  0.001 between the homozygous groups). Of note, neither 
the identity, nor the matching of the donors’ alleles had an impact 
on clinical outcomes.

With regards to MIC genes, in the last decade several genetic 
studies have collectively concluded to a potential role of MICA 
as a novel transplantation antigen. The very first hint toward a 
significant role of MICA/B matching in HCT came from an MHC 
“beta block” matching study (28). In this work, a small cohort of 
44 donor/recipient pairs of unrelated allogeneic HCT was used to 
determine the correlation of the so-called “beta block”—HLA-B, 
-C, MICA, and MICB—matching on patient survival. The “beta 
block” spans 300  kb, harbors the immunology-related genes 
HLA-B, HLA-C, MICA, and MICB genes, and represents one of 
the four “MHC blocks” including also the alpha (cluster around 
HLA-A), gamma (cluster around Bf and C4), and delta (cluster 
around HLA-DR and -DQ) blocks (29). Patients who were 
HLA-B and -C matched showed an increased survival when they 
were additionally matched for the MHC beta block (59 vs. 16%, 
P = 0.04) or MICA and MICB (66 vs. 25%, P = 0.05). In addition, 
as patients who were beta block matched were matched at both 
HLA-B and MICB but not HLA-C and MICA, the authors could 
show that in this subset of patients, MICA- and HLA-C-matched 
patients had a significantly improved survival of 69% (P = 0.05).
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Other studies have specifically analyzed the influence of the 
MICA gene by three different approaches: (i) focused analysis of 
the genotype of a single polymorphism at amino acid position 
129 in patients (12, 15), (ii) matching of donors and patients 
genotypes at the same position; 129 (14), and (iii) matching of 
donor and patients at the MICA allele level (13, 16, 30, 31).

The polymorphism at amino acid position 129 involving a 
substitution of a methionine for a valine is known to lower the 
binding affinity of MICA for NKG2D, probably through a con-
formational change since this position is not directly involved 
in NKG2D binding (32–34). Patients’ genotype at position 129 
was firstly analyzed in a cohort of 211 matched related allogeneic 
HCT patients, and it was shown that those bearing the MICA-
129 Val/Val genotype—i.e., the lower binding affinity variant—
were at a higher risk of developing chronic GVHD (63 vs. 45% 
at 3  years; P  =  0.03) (12). Moreover, the relapse incidence in 
patients with the MICA-129 Met/Met genotype was higher than 
in those with other genotypes (51 vs. 19%, P = 0.007). A second 
group analyzed 452 patients that underwent matched unrelated 
(67.9% of patients) and related (31.6% of patients) allogeneic 
HCT and evidenced that the patients with the MICA-129 
Met genotype had an increased probability of overall survival 
(HR = 0.77, P = 0.0445) and that the mortality specifically due 
to acute GVHD was reduced (HR = 0.57, P = 0.0400) (15). The 
improved survival of MICA-129 Met carriers was also observed 
in the subset of patients that received an MICA-129-matched 
transplant (n = 404, HR = 0.73, P = 0.0226). However, this study 
unexpectedly also reported an increased risk of acute GVHD 
(HR  =  1.92, P  =  0.0371) in MICA-129 Met/Met homozygote 
carriers, i.e., the higher binding affinity variant. As this was 
particularly the case for anti-thymocyte globulin (ATG) treated 
patients who have a lowered CD8+ T repertoire, the authors 
argued that the residual T CD8+ cells may be activated faster 
in the presence of two MICA-129 Met variants. In the case of 
heterozygote carriers, the beneficial effect was indeed attributed 
to the subgroup of patients not treated with ATG, indicating 
that such a faster activation may not matter if a full CD8+ T cell 
repertoire is present. Finally, a third publication by Askar et al. 
reported that neither the patient’s nor the donor’s genotype at 
position 129 had an impact on survival or GVHD (30). The 
authors could only detect an association between donor MICA-
129 non-Val/Val genotypes and slower platelet engraftment 
(HR = 1.4; 95% CI: 1.109–1.985; P = 0.02).

More recently, a group analyzed not only the MICA-129 geno-
type of the patient but also the one of the donor and by this mean 
the role of the matching of donor and recipients at this position 
with respect to various clinical outcomes after unrelated HCT (14). 
They analyzed 2,172 patients that underwent unrelated HCT with 
donors HLA-matched at various grades (10/10, 9/10, and 8/10). 
They showed that matching of MICA-129 genotypes between 
donors and patients was important to increase overall survival 
and disease free survival and to lower the risk for acute GVHD. In 
the 10/10 matched group, multivariate analysis revealed indeed a 
clear association of MICA-129 mismatches with overall survival 
(HR = 1.77, 95% CI: 1.22–2.57, P = 0.003), disease free survival 
(HR = 1.77, 95% CI: 1.26–2.50, P = 0.001), and acute grade III–IV 
aGvHD (prevalence of 16.3 vs. 11.0%).

Finally, the third type of analysis was to consider, as it is done 
for classical HLA genes, the matching of donors and recipients at 
the MICA allele level. By analyzing a cohort of 172 matched pairs 
of unrelated HCT, Parmar et al. showed a higher rate of grade 
II–IV acute GVHD in MICA-mismatched vs. -matched patients, 
taking only account of MICA mismatches in the GVHD direction 
(75 vs. 39%, P =  0.02) (16). Askar and coworkers also studied 
an equally small cohort of 177 10/10 matched donor–recipient 
pairs (31). They did find a link between MICA mismatches and 
grade II–IV acute GVHD but in univariate analysis only; this link 
was reenforced in patients with mismatches at both MICA and 
HLA-DPB1 who had a significantly greater risk to develop grade 
II to IV acute GVHD (HR = 2.51; 95% CI: 1.30–4.87; P < 0.01). 
More recently, we were able to definitely establish the role of 
MICA mismatches in HCT based on the analysis of a multicenter 
cohort of 922 10/10 HLA-matched HCT. MICA mismatches were 
significantly associated with an increased incidence of grade 
III–IV acute GVHD (HR = 1.83; 95% CI: 1.50–2.23; P < 0.001), 
chronic GVHD (HR = 1.50; 95% CI: 1.45–1.55; P < 0.001), and 
non-relapse mortality (HR = 1.35; 95% CI: 1.24–1.46; P < 0.001). 
The increased risk of GVHD was mirrored by a lower risk of 
relapse (HR  =  0.50; 95% CI: 0.43–0.59; P  <  0.001), indicating 
a possible GVL effect. A few weeks later in 2016, Askar and 
coworkers, however, published contradictory results using a 
cohort of 713 patients and their unrelated HLA-matched 10/10 
(n = 552) or 9/10 (n = 161) donors (30). They showed an absence 
of MICA mismatch effect on all major clinical outcomes apart an 
unexpected significantly higher incidence of relapse in MICA-
mismatched vs. -matched patients (HR = 1.7; 95% CI: 1.2–2.4; 
P = 0.003). In their data, there was, however, a clear trend for an 
association between MICA mismatches and a higher risk of acute 
GVHD grades II–IV (HR = 1.4; 95% CI: 1.1–1.9; P = 0.013). The 
various genetic studies on NKG2D/NKG2DL polymorphisms or 
donor/recipient matching in HCT and their main findings are 
summarized in Table 1.

Globally, these findings clearly support a role of MICA as a 
transplantation antigen in HCT. Concerning the pathophysi-
ological explanation of the observed associations, there are two 
non-exclusive possible molecular mechanisms that could be 
involved. Integrating the fact that MICA expression is upregu-
lated in intestinal tissues of GVHD patients and that NKG2D 
is induced on CD8+ and CD56+ cells after HCT (see next 
section); it is likely that a mismatch between donor/recipient 
MICA molecules directly affects the strength of recognition/
signaling and hence cytotoxicity by NKG2D bearing T/NK cells 
and/or the intestine-enriched Vδ1-bearing γδ T  cells (both 
receptors able to recognize MICA directly). While the direct 
link between MICA mismatches and increased expression 
needs to be experimentally demonstrated, two groups reported 
variable NKG2D-mediated NK-cell activation and T CD8+ co-
stimulation depending on specific MICA alleles. Tonnerre et al. 
showed a higher NK-cell activation by allogeneic endothelial 
cells expressing the MICA A5.1 alleles (35), and Isernhagen 
et  al. demonstrated an increased CD8+ T  cell co-activation 
in response to the MICA-129 Met variant (15). Alternatively, 
MICA could act as a minor histocompatibility antigen, i.e., a 
source for polymorphic peptides presented by cognate and/
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TAbLe 1 | Summary of genetic studies of natural killer group 2, member D (NKG2D)/NKG2D ligands polymorphisms or donor/recipient matching in 
hematopoietic cell transplantation (HCT).

effect Gene Alleles/genotypes Number and type of 
transplantationa

Reference

Risk of aGVHD MICA MICA-129 Met/Met in recipients 452 UD (15)

MICA MICA donor–recipient mismatchesb 236 UD (16)

MICA MICA-129 mismatches 2,172 MUD (14)

MICA MICA donor–recipient mismatches 922 MUD (13)

MICA MICA donor–recipient mismatchesc 713 MUD (30)

MICA and HLA-DPB1 MICA and HLA-DPB1 donor–recipient mismatches 227 UD (31)

Risk of cGvHD MICA MICA-129 Val/Val in recipients 211 MRD (12)

MICA MICA donor–recipient mismatches 922 MUD (13)

Improved overall survival MICA MICA donor–recipient matchesb 922 MUD (13)

MICA and MICB MICA and MICB donor–recipient matches 44 UD (28)

NKG2D rs1049174—HNK1 haplotype positive in donors 145 MUD (43)

MICA MICA-129 matches 2,172 MUD (14)

MICA MICA-129 Met/Val or Met/Met in recipients 452 UD (15)

RAET1L/ULBP6 RAET1L*02 in patients 371 MRD (27)

Decreased non-relapse mortality MICA MICA donor–recipient matches 922 MUD (13)

NKG2D rs1049174—HNK1 haplotype positive in donors 145 MUD (43)

Improved disease free survival MICA MICA-129 matches 2,172 MUD (14)

RAET1L/ULBP6 RAET1L*02 in patients 371 MRD (27)

Reduced risk of relapse MICA MICA-129 Met/Val or Val/Val in recipients 211 MRD (12)

MICA MICA donor–recipient matches 713 MUD (30)

MICA MICA donor–recipient mismatches 922 MUD (13)

RAET1L/ULBP6 RAET1L*02 homozygous in patients 371 MRD (27)

aTypes of transplantations are unrelated donor (UD), matched unrelated donor (MUD), and matched-related donor (MRD) HCT.
bOnly mismatches in the GVH direction were considered.
cTrend for association (P = 0.013).
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or donor MHC class I molecules and hence participate in the 
GVHD pathophysiology through its contribution to alloreac-
tivity. These two possibilities are schematized in Figure 1. Of 
note, NKG2D engagement by MICA could also play an indirect 
role in the enhancement of CD8+ T cytolysis, which is known to 
elicit GVHD (1). Although it has been shown that NKG2D may 
trigger cytotoxicity alone in expanded CD8+ T cells, cultured 
in the presence of IL-2 (36), several studies in human and in 
mouse reported that NKG2D rather acts as a co-stimulatory 
molecule in CD8+ T cells (26, 37–40). In T cells, NKG2D indeed 
associates with an adaptor protein, DAP10, where it provides 
a co-stimulatory signal by activating intracellular signaling 
pathways (37, 40, 41). By providing T  cell co-stimulation, 
NKG2D ligand engagement may therefore enhance CD8+ 
T cell-mediated cytotoxicity of recipient cells, thereby trigger-
ing GVHD (42).

To conclude this section, a single study on NKG2D receptor 
polymorphism has to be mentioned. As mentioned above and 
in contrast to its ligands, NKG2D is not polymorphic. Only two 
SNPs with a minor allele frequency >0.01 have been reported 
in the coding sequence of the gene: the synonymous rs1049172 
and the non-synonymous rs2255336. But the most studied SNP 
is the rs1049174 in the 3′-untranslated region of the gene, which 

enables to distinguish two haplotypes: HNK1 (high NK cytotox-
icity) and LNK1 (low NK cytotoxicity). The HNK1 haplotype has 
been associated with improved overall survival (HR = 0.44; 95% 
CI: 0.23–0.85; P =  0.01) as well as transplant related mortality 
(HR = 0.42; 95% CI: 0.21–0.86; P = 0.02) after unrelated HLA-
matched unrelated HCT (43).

UPReGULATiON OF NKG2D AND 
NKG2DLs

Besides the role of donor/recipient compatibility detailed in the 
previous chapter, the stress-induced upregulation of NKG2DLs 
in patient’s tissues may per  se contribute to the development 
of GVHD. In contrast to solid organ transplantation, where it 
is established that MIC antigens are expressed in transplanted 
organs and may cause early graft rejection (44, 45), only few 
studies analyzed NKG2DL protein expression in the context 
of HCT. By immunochemical staining, Dulphy et al. showed a 
strong expression of MICA on epithelial cells of intestinal biop-
sies from acute GVHD patients (46). Gannagé et al. confirmed 
this observation and also demonstrated that during GVHD, 
MICA/B expression was induced in skin and liver biopsies as 
well (5). In addition, they showed that in vitro, in immortalized 
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FiGURe 1 | Proposed mechanisms for the role of MICA mismatches in graft-vs.-host disease (GvHD). There are two non-exclusive possible molecular 
mechanisms involved in the development of GVHD in the context of MICA-mismatched transplants. Panel (A) illustrates how an increased MICA expression—
possibly induced by MICA mismatches—could lead to an increased cytolysis of recipient cells mediated by the natural killer group 2, member D (NKG2D) on donor 
natural killer cells and/or the TCR of donor Vδ1-bearing γδ T cells and/or donor T CD8+ cells as a co-stimulatory function. GVHD and graft-vs.-leukemia (GVL) can 
be triggered if the target cells of the recipients are healthy or malignant, respectively. Panel (b) illustrates how MICA could act as a minor histocompatibility antigen.  
If the donor is matched for MICA, the recipient MICA-derived peptides are recognized as «self» by donor cells. If the donor is mismatched for MICA, the presented 
recipient MICA-derived peptides are recognized as «non-self» and recipient cells are lysed by donor CD8+ T cells.
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human keratinocytes and colorectal carcinoma fibroblasts both 
MICA/B and ULBP1–3 were upregulated in response to TNF-α 
or γ-irradiation. Total body irradiation that is regularly used in 
HCT could therefore be a trigger for NKG2DL expression. But 
other types of pretransplant treatments such as chemotherapies 
could also play this role, e.g., the DNA-hypomethylating drug 
2-deoxy-5-azacytidine (decitabine), which has been shown 
to upregulate MICB in cell lines (22). Finally, cancer cells by 
themselves have a propensity for NKG2DL upregulation. This 
was demonstrated by Sconocchia and coworkers who found 
an MICA/B overexpression on chronic myelogenous leukemia 
CD34 cells but not on normal CD34 cells and showed that 
this upregulation correlated with the ability of soluble MICA 
(sMICA)/B to bind to the NKG2D receptor (47).

The latter mentioned soluble form of NKG2DLs corresponds 
to a well-known immune escape mechanism in cancer cells. 

NKG2DLs and especially MICA have indeed the ability to be 
released from the cell surface through various mechanisms 
including alternative splicing, phosphatidylinositol-specific 
phospholipase C-mediated cleavage, proteolytic shedding, or 
exosome secretion [reviewed in Ref. (17)]. The soluble form of 
NKG2DL downregulates NKG2D and thereby impairs the cytoly-
sis activity of NK and T effector cells (48). By doing so, tumor 
cells evade immune surveillance (48–50). Soluble MIC and ULBP 
proteins have been identified in the sera of patients with various 
tumor types including breast, lung, colon, and ovarian carcinoma, 
glioma, neuroblastoma, leukemia, and melanoma (48, 50–55). 
Following HCT, the serum levels of sMICA have been shown to 
increase and the presence of these molecules to confer suscep-
tibility to chronic GVHD (sMICA > 80 pg/mL associated with 
chronic GVHD incidences of 82 vs. 46%, at 3 years; P = 0.001) 
(12, 56). Opposite to this increase of the GVH effect on recipient 
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cells, high levels of sMICA were shown to decrease the GVL 
effect as shown by the higher rate of relapse (sMICA > 80 pg/mL 
associated with relapse rates of 37 vs. 17%, P = 0.05) (12). This 
trend toward a lowered cytolytic activity against cancer cells was 
confirmed in solid tumors (prostate cancer), where a higher level 
of sMICA has been associated with a decreased cytotoxicity of 
NK cells isolated from tumor biopsies (57).

The molecular mechanisms of expression regulation of 
NKG2DLs are still poorly understood. However, experimental 
data on two pathways are available: the DNA damage response 
and regulation by cellular and viral miRNA. Data from both 
mice and human indicate that NKG2DL are induced by DNA 
damaging agents such as 5-aza-2′-deoxycytidine (decitabine), a 
conditioning treatment used in myelodysplastic syndromes (22, 
23, 58). The upregulation is thought to be due to promoter DNA 
demethylation in combination with the activation of the DNA 
damage pathway involving the protein kinases ataxia telangiecta-
sia mutated (ATM) and ATM- and Rad3-related (23). For miRNA 
regulation, both viral (Cytomegalovirus) and cellular miRNA 
have been shown to modify the expression of various NKG2DLs 
and thereby to influence NK-cell responses (59–62).

For the ligand expressing cells to be efficiently targeted and 
killed, their receptor on effector cells must be expressed and active 
as well. Although the role of NKG2D in tumor immunity is not to 
be proven anymore as shown by the multiple studies demonstrat-
ing its involvement in NK cell-mediated killing of various cancer 
cells (63–65), its specific action in the context of HCT has only been 
scarcely analyzed. Only a handful of studies have indeed reported 
active NKG2D upregulation during HCT. Lu et al. firstly observed 
an increase in CD16+CD56− NK cells in peripheral blood of a cord 
blood transplanted patients (66). When cultured in vitro in pres-
ence of IL-2, these cells became CD16+CD56+NKG2D+ and were 
able to lyse the patient’s ULBP2-expressing leukemic cells. These 
results indicate that in vivo, after transplantation, mature NK cells 
derived from this NK-cell subset may contribute to the killing of 
leukemic cells expressing NKG2DL. Dulphy et  al. also showed 
an expansion of CD56bright NK cells shortly after HLA matched 
related and unrelated HCT (46). NKG2D was expressed on these 
cells, which were also shown to be functional as they produced 
high amounts of IFN-γ and were competent for degranulation. In 
line with these two reports, Picardi et al. showed an upregulation 
of NKG2D on CD8+ and/or CD56+ cells between 30 and 90 days 
posttransplant in HLA-matched allogeneic and autologous HCT, 
coinciding with the engraftment period (67). The authors suggest 
that this upregulation, together with a concomitant upregulation 
of inhibitory NKG2 receptors, is the sign of an immune “reeduca-
tion” and a general stress response to pretransplant chemotherapy 
and posttransplant repopulation. The regulation of NKG2D 
expression is thought to be modulated by cytokines such as IL-15, 
which ultimately control the levels of NK cytotoxicity (68). Of 
note, one study reports that NKG2D expression by NK cells was 
not affected after fully haplo-mismatched-related donor HCT, 
challenging the importance of the interaction between NKG2D 
and its ligands for the NK lysis of leukemic cells at least in this 
transplant setting (69).

Natural killer cells are the first lymphocyte population to be 
reconstituted following HCT and are important in mediating the 

GVL effect (70). NK cells could be subtyped into three categories 
based on the following surface makers: CD56dim/CD16+ (here-
after termed CD56dim), CD56bright/CD16+/− (hereafter termed 
CD56bright) and CD56−/CD16+ (hereafter termed CD56neg) 
NK  cells. The CD56dim cells represent up to 90% of circulating 
NK  cells and are considered as the most cytotoxic subset. The 
CD56bright subtype comprises up to 10% of circulating NK cells 
but is the major NK subtype in tissues and secondary lymphoid 
organs. This subset is conventionally known as the cytokine-
producing subset of NK  cells but can also become cytotoxic 
upon appropriate activation. CD56neg NK cells are found in small 
numbers in healthy individuals and at elevated levels in individu-
als chronically infected with HIV-1 and HCV. All three subsets of 
NK cells express NKG2D (71, 72). After allogeneic HCT, there is 
an early expansion of the cytokine-producing CD56bright NK-cell 
subset, followed by an expansion of the dominant CD56dim 
subset, characterized by its higher cytotoxic activity (46). In a 
study focusing on the immune-regulatory role of NK  cells, it 
was shown that NKG2D plays a major role in NK cell-mediated 
lysis of activated CD4+ T  cells. Using anti-NKG2D antibodies, 
the authors evidenced equivalent NKG2D-mediated degranula-
tion by CD56dim and CD56bright NK cells (73). In ovarian cancer 
patients, it was shown that CD56bright NK  cells had increased 
expression of NKG2D (74). Finally, CD56neg NK  cells were 
shown to be increased in cord blood recipients, suggesting that 
this subset may contribute to the killing of NKG2D expressing 
leukemic cells (66).

The function of NK cells is modulated by the balance between 
a number of activating (including NKG2D) and inhibitory recep-
tors. NKG2 and killer immunoglobulin-like receptors (KIRs) are 
the two main receptor families involved in this regulation and both 
encompass activatory and inhibitory receptors. KIR receptors 
interact with HLA class I molecules and, in contrast to NKG2D, 
are very diverse with regard to gene polymorphism and content, 
expression level, and expression pattern (75). In the context of 
HCT, KIR–ligand mismatches in the GVH direction were shown 
to trigger donor-vs.-recipient NK-cell alloreactivity (76). Overall, 
together with other receptors such as immunoglobulin-like 
receptors or leukocyte-associated immunoglobulin-like receptor, 
KIR and NKG2 receptors regulate the alloreactivity of NK cells 
during HCT (77). Altogether, these data strongly suggest that the 
induction of the NKG2D/NKG2DL axis might be involved in tis-
sue damage during GVHD or GVL reactions thanks to NKG2DLs 
and NKG2D expression by host or cancer cells, respectively. A 
summary of the impacts of NKG2DL and NKG2D upregulation 
during HCT is presented in Figure 2.

ANTi-MiCA ANTibODieS

In the field of transplantation, studies on antibodies against 
NKG2DL have so far exclusively focused on MICA. The presence 
of anti-MICA antibodies is a well-known risk factor for both 
acute and chronic rejection after transplantation of kidney (78, 
79), pancreas (45), or heart (80). In HCT, three groups have ana-
lyzed the role of anti-MICA antibodies. Boukouaci et al. showed 
that the presence of anti-MICA antibodies with concomitant 
low serum levels of sMICA (<80 pg/mL) was associated with a 
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lower incidence of chronic GVHD (35% when MICA antibodies 
positive and sMICA < 80pg/mL vs. 81% when MICA antibod-
ies negative or borderline and sMICA > 80 pg/mL, P = 0.0004) 
(12). The authors hypothesized that these antibodies have a 
neutralizing activity on sMICA and supported this theory by the 
observed trend for a protective effect of anti-MICA antibodies 
against relapse (3.26% when MICA antibodies negative vs. 6% 
when MICA antibodies positive, P  =  0.05). In a second study 
focusing on a cohort of 70 pediatric patients that received cord 
blood transplantation, Ansari et al. showed that the presence of 
anti-MICA antibodies was associated with a reduced platelet 
recovery after transplantation (26.5% when MICA antibodies 
negative vs. 80.5% when MICA antibodies positive, P  =  0.04) 
(81). Finally, Flaxa et  al. could observe immunization against 
MICA before and after transplantation in a small series of eight 
granulocyte transfused patients that underwent HCT, but those 
antibodies did not significantly affect overall survival or the 
incidence of GVHD (82).

In summary, in contrast to solid organ transplantation very 
limited MICA immunization data are available for HCT. Thus, 

at this stage, any definitive conclusion on the role of anti-MICA 
or more generally anti-NKG2DL antibodies in HCT cannot be 
drawn without performing further experiments. Several studies, 
however, confirm that such antibodies could be involved in GVL. 
Jinushi et al. demonstrated that MICA antibodies can efficiently 
opsonize and participate in the complement-mediated lysis of 
cancer cells (83). In a follow-up study, the same group showed 
that in monoclonal gammopathy of undetermined significance 
patients, high levels of anti-MICA antibodies antagonize sMICA 
and stimulate dendritic cell cross-presentation of tumor antigens 
(49). This observation had previously been made Groh et  al. 
in an in vitro assay: by loading dendritic cells with anti-MICA 
opsonized breast, melanoma, or ovarian tumor lines, tumor 
antigen cross-presentation was promoted and thereby primed 
antitumor effector CD4 and CD8 T cell responses (84).

In the field of organ transplantation, the production of anti-
MICA antibodies has been associated with donor/recipient 
MICA mismatching (85). Another study showed that the genetic 
variant MICA A5.1 (a microsatellite marker in exon 5 encoding 
the transmembrane region of the protein) increased the surface 
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expression of MICA and augmented the release of soluble and 
exosomal forms of MICA from endothelial cells (35). In addi-
tion, the authors demonstrate a significant association between 
donor/recipient MICA A5.1 mismatches and anti-MICA allo-
immunization, particularly when donors carry the MICA A5.1 
variant (P = 0.0104). In other fields of research such as cancer 
and infectious diseases, several MICA polymorphisms have been 
reported to affect MICA shedding including an SNP (rs2596542) 
in the promoter region (86–89), the microsatellite MICA A5.1 (35, 
90, 91), and the MICA-129 Met/Val dimorphism in α2 domain of 
the MICA protein (88, 92, 93).

CONCLUSiON

Despite some isolated conflicting results and sometimes scarce 
data, current research globally converges to the postulate that the 
NKG2D/NKG2DL axis is a new player in HCT. At the genetic 
level, most studies came to the conclusion that MICA mismatches 
between donor and recipients, either at amino acid position 129 
or at the allelic level are deleterious and that whenever possible, 
an MICA-matched donor should be chosen for transplantation. 
Upregulation of both NKG2DLs and NKG2D during HCT have 
been demonstrated by various groups and associated with GVHD 
and GVL effects. Finally, recent data suggest a possible protect-
ing role of anti-MICA antibodies via an antagonizing effect on 
sMICA that ultimately leads to promotion of GVL. Additional 
studies are, however, needed to definitely confirm these findings 

and to better understand the pathophysiological role of NKG2D 
and NKG2DLs in GVHD and GVL effect.
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