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EMR2/ADGRE2 is a human myeloid-restricted adhesion G protein-coupled receptor crit-
ically implicated in vibratory urticaria, a rare type of allergy caused by vibration-induced 
mast cell activation. In addition, EMR2 is also highly expressed by monocyte/macro-
phages and has been linked to neutrophil migration and activation. Despite these findings, 
little is known of EMR2-mediated signaling and its role in myeloid biology. In this report, 
we show that activation of EMR2 via a receptor-specific monoclonal antibody promotes 
the differentiation of human THP-1 monocytic cell line and induces the expression of 
pro-inflammatory mediators, including IL-8, TNF-α, and MMP-9. Using specific signaling 
inhibitors and siRNA knockdowns, biochemical and functional analyses reveal that the 
EMR2-mediated signaling is initiated by Gα16, followed by the subsequent activation of 
Akt, extracellular signal-regulated kinase, c-Jun N-terminal kinase, and nuclear factor 
kappa-light-chain-enhancer of activated B cells. Our results demonstrate a functional 
role for EMR2 in the differentiation and inflammatory activation of human monocytic cells 
and provide potential targets for myeloid cell-mediated inflammatory disorders.
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Abbreviations: aGPCR, adhesion GPCR; CM, conditioned medium; CTF, C-terminal fragment; DAG, diacylglycerol; DC, 
dendritic cell; ECD, extracellular domain; EMR2, EGF-like module-containing mucin-like hormone receptor-like 2; ERK, 
extracellular signal-regulated kinase; f-MLF, N-formyl-methionyl-leucyl-phenylalanine; GAIN, GPCR autoproteolysis-induc-
ing; GPCR, G protein-coupled receptor; GPS, GPCR proteolysis site; IP3, inositol triphosphate; JNK, c-Jun N-terminal kinase; 
LPA, lysophosphatidic acid; LPE, lysophosphatidylethanolamine; LPS, lipopolysaccharide; Mφ, macrophage; mAb, monoclo-
nal antibody; MAPK, Mitogen-activated protein kinases; MMP, matrix metalloproteinases; Mo, monocyte; Nφ, neutrophil; 
NF-κB, nuclear factor kappa-light-chain-enhancer of activated B  cells; NTF, N-terminal fragment; PLC, phospholipase C;  
PMA, phorbol 12-myristate 13-acetate; PI3K, Phosphoinositide 3-kinase; PIP2, phosphatidylinositol biphosphate; PIP3, phos-
phatidylinositol 3,4,5 trisphosphate; PTX, pertussis toxin; ROS, reactive oxygen species; SIRS, systemic inflammatory response 
syndrome; TNF, tumor necrosis factor; 7TM, seven transmembrane.
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inTrODUcTiOn

Professional phagocytes such as macrophages (Mφ), neutrophils 
(Nφ), and dendritic cells (DCs) are critical for the recognition 
and elimination of invading pathogens (1, 2). The processes of 
phagocytosis as well as the subsequent microbial killing and 
immune activation/resolution by these innate immune effector 
cells are largely mediated via a diverse array of receptors and their 
signaling reactions (1, 3). In this regard, one receptor of interest 
is EMR2/ADGRE2, a human myeloid-restricted adhesion G 
protein-coupled receptor (aGPCR) highly homologous to F4/80, 
the widely acclaimed surface marker that defines murine tissue 
Mφ (4–6).

As a human ortholog of F4/80, EMR2 similarly contains 
multiple epidermal growth factor-like modules in its extracellular 
domain (ECD), which binds to its endogenous ligand dermatan 
sulfate (4, 7, 8). Initially identified as a myeloid-restricted tran-
script expressed in monocytes (Mos)/Mφ, Nφ, and myeloid DC 
(4), EMR2 protein expression was later shown to be upregulated 
during the in  vitro differentiation of Mφ but downregulated 
following DC maturation (9). On the other hand, the strongest 
in vivo EMR2 protein signal was detected in CD16+ blood Mos 
and BDCA-3+ myeloid DC (10). Foamy Mφ in atherosclerotic 
vessels and splenic Gaucher cells are highly EMR2-positive, 
whereas multiple sclerosis brain foam cells express little if any 
EMR2 (11). The differential expression patterns of EMR2 in 
distinct myeloid populations strongly suggest a regulatory role of 
EMR2 in myeloid cell function (12, 13).

Indeed, binding and activation of EMR2 by a ECD-specific 
2A1 monoclonal antibody (mAb) strongly enhanced the inflam-
matory responses of Nφ to a panel of stimuli, while 2A1 treatment 
alone (without inflammatory stimuli) did not seem effective 
(14). In addition, 2A1-induced EMR2 activation was shown to 
modulate the production of multiple cytokines and survival of 
lipopolysaccharide-stimulated Nφ (15). Hence, EMR2 activation 
seems to have a priming effect on Nφ activation. Furthermore, 
upregulated EMR2 expression was identified in Nφ of patients 
suffering from systemic inflammatory response syndrome (SIRS), 
and a significant association was noted between the percentage 
of EMR2-expressing Nφ and the extent of organ failure in SIRS 
patients. As a result, EMR2 was proposed recently as a novel Nφ 
biomarker for SIRS (14, 16). A more recent study demonstrated 
that Nφ of liver cirrhosis patients with infection have higher 
EMR2 expression levels, which showed strong correlation with 
disease severity and predicted overall mortality (17). Likewise, 
we previously showed that Mφ activated by 2A1-induced 
EMR2 ligation promoted secretion of several pro-inflammatory 
cytokines (18). More recently, a missense EMR2-C492Y variant 
was identified as the disease protein responsible for the autosomal 
dominant vibratory urticaria, a dermal vibration-induced hives. 
It was shown that the disease-associated EMR2 variant was less 
stable and prone to sensitize mast cells for aberrant histamine 
release upon vibratory stimulation in the presence of dermatan 
sulfate or 2A1 (19).

Adhesion G protein-coupled receptors represent a selective 
group of seven transmembrane (7TM) receptors with a large ECD 
that usually contains multiple tandem repeats of cell adhesion-like 

protein motifs and a GPCR autoproteolysis-inducing (GAIN) 
domain (20–22). During receptor biosynthesis, aGPCRs are nor-
mally bisected at a consensus GPCR proteolysis site via the GAIN 
domain-mediated autoproteolytic reaction into a N-terminal 
ECD-fragment (NTF) and a C-terminal 7TM-fragment (CTF), 
which remain conjugated as a dual-subunit receptor (13, 
21). Recent advances indicate that aGPCR activation is likely 
mediated by ligand-induced NTF displacement, followed by 
the unfolding and binding of an internal agonist peptide to 
the 7TM core of CTF (23, 24). The mechanistic insights of the 
“tethered agonism” of aGPCRs are increasingly being unraveled, 
including the coupling of unique G proteins to distinct aGPCR 
members (21, 25–27). However, an orderly depiction of aGPCR-
mediated signaling pathways is currently lacking. In the present 
report, we investigated and identified the involvement of Gα16/
Akt/mitogen-activated protein kinase (MAPK)/nuclear factor 
kappa-light-chain-enhancer of activated B  cells (NF-κB) in 
EMR2 receptor-mediated signaling. Our results indicate that 
EMR2 activation/signaling plays a functional role in the dif-
ferentiation and inflammatory activation of human monocytic 
cells. The EMR2-induced signaling cascades reported here may 
help identify potential targets for the therapeutic management 
of inflammatory disorders, such as SIRS and vibratory urticaria.

MaTerials anD MeThODs

reagents and antibodies
All chemicals and reagents were purchased from Sigma-Aldrich 
(St. Louis, MO, USA) unless otherwise specified. Anti-mAbs 
used for Western blotting against extracellular signal-regulated 
kinase (ERK)1/2, p-ERK1/2, p38, p-p38 (Thr180/Tyr182), 
c-Jun N-terminal kinase (JNK), p-JNK (Thr183/Tyr185), IκB-α, 
p-IκB-α (Ser32), p-Ikkα/β (Ser176/180), and p-Akt (Ser473) were 
obtained from Cell Signaling Technology (Beverly, MA, USA). 
Anti-Gα16 mAb was from Abcam (Cambridge, UK). Anti-F(ab′)2 
fragment goat anti-mouse (GAM) IgG (H + L) was from Jackson 
ImmunoResearch (West Grove, PA, USA). Anti-CD11b-PE, anti-
CD62L-PE, anti-CD81-PE, anti-CD9-APC, and anti-CD4-FITC 
for flow cytometry and anti-phosphotyrosine, anti-β-actin mAb 
for Western blotting were purchased from BD Biosciences. The 
mAbs used for cell stimulation were 2A1 (EMR2-specific mAb) 
(AbD Serotec) and mouse monoclonal IgG1 (Clone 11711) (R&D 
System) as described previously (18).

cell culture
THP-1 (ATCC®TIB-202™), HL-60 (ATCC®CCL-240™), and 
U937 (ATCC®CRL-1593.2™) human monocytic cell lines were 
cultured in RPMI 1640 medium (Invitrogen) supplemented with 
10% fetal bovine serum (Thermo HyClone), 1% l-glutamate, 1% 
penicillin, and 1% streptomycin. All cells were cultured at 37°C 
in a 5% CO2 incubator. For the induction of Mφ-like differentia-
tion, THP-1 cells were treated with 10 nM PMA for up to 4 days. 
Peripheral blood mononuclear cells (PBMCs) were obtained 
from healthy donors’ blood by Ficoll-Plague PLUS gradient cen-
trifugation (Amersham Bioscience, Ltd.) as described previously 
(18). All procedures were approved by the Chang Gung Memorial 
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Hospital Ethics Committee (CGMH IRB No: 97-2288B) and 
performed according to the guideline set by the Committee. Mos 
were subsequently isolated from PBMCs by immunomagnetic 
separation using human CD14 MicroBeads MACS cell separa-
tion kit (Miltenyi Biotec, Inc.) and cultured in complete RPMI 
1640 medium. When required, cells were serum starved for 
16–20 h before experiment. When indicated, cell culture plates 
were pre-coated with appropriate mAbs (usually 10  µg/ml) in 
1 × PBS at 4°C for 16 h.

For treatment with inhibitors, cells were pre-incubated with the 
indicated reagents at 37°C: PD98059 (20 μM/90 min) (Cayman 
chemical), U0126 (10  μM/60  min) (Promega), Wortmannin 
(10 μM/60 min) (Cayman chemical), SB203580 (5 μM/15 min) 
(Cayman chemical), SP600125 (10 μM/60 min) (Sigma-Aldrich), 
LY294002 (20 μM/30 min) (Cayman chemical), and BAY11-7082 
(10 μM/30 min) (InvivoGen). For siRNA-mediated gene silenc-
ing, 200 nM of EMR2- and Gα16-specific siRNAs (Invitrogen) were 
delivered into THP-1 cells using DharmaFECT-2 Transfection 
reagent (GE Dharmacon) as suggested by the manufacturer and 
incubated for 24–48 h prior to the subsequent experiments. The 
sequence information of the siRNAs used is listed below: #1 
EMR2-siRNA: 5′GCU CGA CUG GAA UCA GGC ACA GAA 
A 3′, #2 EMR2-siRNA: 5′ CAG UGA UCC CGA GAC AGA AGG 
UGC U 3′, #3 EMR2-siRNA: 5′ GAA CAC AAG GAU GCU GGC 
AUU UAA A 3′, #1 GNA15-siRNA: 5′GGC CAG AAG UCA 
GAG CGU AAG AAA U 3′, #2 GNA15-siRNA: 5′CCA AGA 
GGU UCA UCC UGG ACA UGU A 3′, #3 GNA15-siRNA: 5′ 
GGA CUA UCC UGG AAC UAC CCU GGU U3′.

cell adhesion assay
THP-1 cells were serum starved in RPMI medium for 16 h, har-
vested, and re-suspended in complete RPMI medium at 2 × 105 
cells/100 μl/well in a 96-well plate pre-coated with mAbs. After 1 h 
at 37°C, cells were washed carefully at least six times with HBSS 
before being fixed with 2% glutaraldehyde for 20  min at room 
temperature. Cells were stained with 1% methylene blue for 30 min 
and lysed with 100 µl of 75% ethanol after excess dye was washed 
off with water. Eighty microliters of lysate samples were transferred 
into a new ELISA plate, and absorbance was measured at OD595 nm.

Flow cytometry assay
Cells were harvested and fixed with fresh 2% paraformaldehyde 
solution at 4°C for 20 min. Cells (1 × 106 cells/ml) were suspended 
in blocking buffer (1× PBS containing 1% BSA and 5% normal 
goat serum) at 4°C for 1 h. Cells were subsequently incubated with 
appropriate concentration of first Ab in blocking buffer at 4°C for 
1 h, washed thoroughly with blocking buffer, and incubated with 
appropriate fluorophore-conjugated second Ab (1:200 in PBS) 
at 4°C for 1 h. Following extensive washes with cold PBS buffer, 
cells were analyzed by FACScan flow cytometer (BD Biosciences). 
Data were analyzed using FlowJo software (Flowjo).

Phenotypic analysis of neutrophil 
activation
Peripheral blood Nφ were isolated from fresh venous blood 
donated by healthy volunteers using the Ficoll Hypaque 

gradient centrifugation method as described previously (15). 
For the morphological analysis, Nφ (5  ×  105 cells/ml) were 
incubated at 37°C for 10  min with f-MLF (1  ×  10−7 M) or 
conditioned medium (CM) of THP-1 cells under various 
stimulated conditions as indicated. Cell images were recorded 
under a light microscope at a magnification of 400×. For 
flow cytometry analysis of the expression of cell adhesion 
molecules, Nφ (2 × 106 cells/ml) were incubated at 37°C with 
the CM of THP-1 cells in the absence or presence of f-MLF 
(1 × 10−7 M) for 15 min. Cells were fixed with 2% paraform-
aldehyde/PBS at 4°C for immunostaining with anti-CD11b-
PE or anti-CD62L-PE as described elsewhere and analyzed 
using CellQuest software (BD Biosciences). For the detection 
of reactive oxygen species (ROS) generation, Nφ (2  ×  106 
cells/ml) were incubated with 2  µM dihydrorhodamine-123 
(DHR123; Molecular Probes) or 4  mM CM-H2DCFDA 
(Molecular Probes) for 25  min at room temperature. Cells 
were then incubated for 20–30  min with the CM of THP-1 
cells stimulated as indicated. The accumulation of H2O2 was 
immediately analyzed by flow cytometer as described (14). 
For chemotactic cell migration assay, Boyden chamber-type 
transwells (Millipore) with a polycarbonate filter of 5.0  µm 
pore size were employed. Nφ (5 × 105 cells/ml) were seeded 
into the upper chambers in a total volume of 100 µl RPMI1640 
containing 0.5% BSA. Relevant CM samples (400  µl) were 
added to the lower chambers. When necessary, f-MLF 
(1 × 10−7 M) was added in CM and used as a positive control. 
The transwell chamber was incubated at 37°C for 50  min, 
and cells migrated to the lower chambers were harvested and 
analyzed.

gelatin Zymography
Gelatin zymography assay was performed as described 
previously (28). In brief, serum-starved THP-1 cells (2 ×  106 
cells/200  μl/well) were cultured in serum-free medium in 
12-well plates pre-coated with or without mAbs at 37°C for 
16  h. Culture medium was then collected by centrifugation 
at 1,500 rpm for 5 min at 4°C. Supernatant was collected and 
diluted 1:1 (v/v) with 2× sample buffer, heated for 30 min at 37°C 
before being subjected to gel electrophoresis in 8% SDS-PAGE 
gels containing 1 mg/ml gelatin. Following electrophoresis, gel 
was washed with 2.5% Triton X-100 for 10  min at RT twice, 
transferred into developing buffer (50 mM Tris–HCl, pH 7.4, 
0.2 M NaCl, 5 mM CaCl2) with constant shaking at 25 rpm for 
15 min at RT. Fresh developing buffer was replenished to allow 
for a further 48  h incubation at 37°C. Gel was subsequently 
transferred into fixing buffer (5% methanol, 10% acetic acid) 
with constant shaking at 25 rpm for 15 min at RT. Finally, gel 
was stained with 0.1% Coomassie brilliant blue in fixing buffer 
at RT, followed by destaining with fixing buffer with constant 
changing of the fixing buffer every 15 min until digested bands 
are clear.

cytokine elisa assay
Cells were seeded at 2  ×  106 cells/well into 12-well plates pre-
coated with or without mAbs and incubated at 37°C for 16  h. 
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After incubation, medium was collected by centrifugation at 
1,500 rpm for 5 min at 4°C. Supernatant was transferred into new 
1.5-ml eppendorf tubes. The levels of human IL-8 and TNF-α 
were measured by DuoSet® ELISA Development Systems (R&D 
System) according to the protocol suggested by the manufacturer.

Western Blotting analysis
Cell lysate proteins for Western blot analysis were collected at 
indicated time points. In brief, cells were harvested by centrifuga-
tion at 1,500 rpm for 5 min at 4°C, washed once with ice-cold 
1× HBSS, and lysed in 100-µl ice-cold modified cell lysis buffer 
as described previously (29). Proteins were quantified using 
Bicinchoninic acid protein assay kit (PIERCE, Rockford, IL, USA) 
by reading absorbance at 550 nm. Protein samples were separated 
in SDS-polyacrylamide gels by electrophoresis and transferred 
to polyvinylidene fluoride (PVDF) membranes (Millipore, MA, 
USA). Blotted PVDF membranes were blocked for 1 h in blocking 
buffer (5% of BSA in washing buffer) with agitation, then incu-
bated for 1 h with the indicated first Ab (2–4 µg/ml in blocking 
buffer). Following extensive washes, membranes were incubated 
with appropriate horseradish peroxidase (HRP)-conjugated 
second Ab (1:2,000–1:5,000 in blocking buffer). Finally, mem-
branes were extensively washed before detection of bound HRP 
by chemilluminescence (ECL, Amersham Life Science Ltd. or 
SuperSignal West Pico Plus, Pierce) for 5 min.

statistical analysis
Quantitative analysis was performed based on results of six 
independent experiments unless indicated otherwise. Differences 
between groups were determined by Student’s t-test using the 
Prism 5 software and shown as mean ± SD. In all cases, a prob-
ability value of p value  <  0.05 was accepted to reject the null 
hypothesis. The statistical significance of p was set at *p < 0.05, 
**p < 0.01, and ***p < 0.001.

resUlTs

ligation and activation of eMr2 receptor, 
a novel surface Marker of Mφ 
Differentiation, Promotes Mφ-like 
Differentiation in ThP-1 cell
Consistent with our previous findings (9), EMR2 expression was 
indeed persistently upregulated during the in vitro differentiation 
of PMA-treated THP-1 cells, which gradually displayed charac-
teristic Mφ-like phenotypes such as increased cell adherence, 
enlarged cell size and granularity, and expressional changes of 
specific differentiation/maturation markers including CD4, 
CD9, CD11b, and CD81 (Figure S1 in Supplementary Material) 
(30). Notably, the upregulated EMR2 expression levels correlated 
very closely with those of Mφ phenotypic markers. Therefore, 
EMR2 might be considered a novel surface marker of human Mφ 
differentiation.

Interestingly, a similar Mφ-like phenotype akin to that of 
PMA-treated cells was detected when THP-1 cells were cultured 
on plates pre-coated with the EMR2-specific 2A1 mAb, which 
bound and ligated surface EMR2 receptor (Figure 1; Figure S2 

in Supplementary Material). Importantly, no such phenotypic 
changes were noted in cells cultured on plates coated with control 
mIgG1 or in the presence of soluble 2A1 mAb (Figure 1; Figure 
S2 in Supplementary Material and data not shown). Finally, 
enhanced cell adherence induced by the immobilized 2A1 was 
greatly diminished in cells transfected with siRNAs that silenced 
EMR2 expression, confirming the specific effect of EMR2 liga-
tion on inducing THP-1 differentiation (Figure 1E). These results 
indicate clearly a functional role of EMR2 activation and signaling 
in promoting the Mφ-like differentiation of THP-1 cells.

eMr2 receptor activation in Mos induces 
inflammatory responses
Monocyte/macrophage activation usually results in dynamic 
changes in the surrounding milieu, further recruiting and 
modulating the activities of other immune cells. To explore the 
functional significance of EMR2 activation, CM of 2A1-ligated 
THP-1 cells (2A1-CM) was collected and tested for its ability to 
activate peripheral blood Nφ, one of the first-line innate immune 
effector cells. Interestingly, chemotactic cell migration assay 
showed that 2A1-CM was able to induce Nφ chemotaxis as well 
as f-MLF (Figure  2A). Cell adhesion and spreading was also 
observed in Nφ cultured in the presence of 2A1-CM, similar to 
cells treated with f-MLF (Figure 2B). By contrast, CM of THP-1 
cells cultured alone or with the control mIgG1 did not induce such 
morphological changes in Nφ. These results strongly suggested 
that 2A1-CM specifically activated Nφ, which was subsequently 
ascertained by the identification of phenotypic changes including 
the upregulation of CD11b and shedding of CD62L on the cell 
surface (Figure 2C). Intriguingly, these phenotypic changes were 
more profound in Nφ under combined treatment of 2A1-CM and 
f-MLF than those treated singly with 2A1-CM or f-MLF, suggest-
ing a possible synergetic effect. Moreover, it was found that while 
2A1-CM treatment by itself did not activate ROS production in 
Nφ, combined treatment of 2A1-CM and f-MLF generated much 
more ROS than did cells treated with f-MLF alone (Figure 2D). 
Taken together, we conclude that 2A1-mediated EMR2 ligation 
activates THP-1 cells, which in turn induces inflammatory 
responses on Nφ, most likely due to the production of pro-
inflammatory mediators.

eMr2 receptor activation in Mos 
Promotes il-8, TnF-α, and MMP-9 
Production
In good agreement with our previous results (18), enhanced 
levels of TNF-α, IL-8, and MMP-9 were detected in 2A1-
CM from THP-1 cells, as well as that of two other EMR2-
expressing HL-60 and U937 cell lines (Figure 3; Figure S3 in 
Supplementary Material). More importantly, EMR2 ligation-
induced pro-inflammatory mediator production was shown 
to be 2A1 dose-dependent, cell number-dependent, and 
time-dependent (Figures 3A,B; Figure S3B in Supplementary 
Material). Finally, the specificity of 2A1-induced functional 
effect was confirmed by two independent experiments. The 
first is to incubate cells first with soluble 2A1, followed by the 
addition of the F(ab′)2 fragment of a GAM Ab to cross-link 
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FigUre 1 | ligation of eMr2 receptor induces macrophage (Mφ)-like differentiation in ThP-1 cell. (a,B) Microscopic observation (a) and flow cytometry 
analysis (B) of morphological changes of THP-1 cells incubated with immobilized 2A1 monoclonal antibody (mAb) (10 µg/ml) at day 4. mIgG1 was a negative control 
and PMA-treated cells were a positive control. Scale bar: 10 µm. SSC: side scatter for cell granularity; FSC: forward scatter for cell size. (c,D) Flow cytometry 
analysis of specific surface marker expression of 2A1-ligated THP-1 cells shows a macrophage-like phenotype. Cells were treated with or without immobilized 2A1 
mAb (10 µg/ml) for 4 days. mIgG1 was included as a negative control and PMA-treated cells were a positive control. CD4, CD9, CD11b, and CD81 were used as 
cell surface markers of Mφ-like differentiation of THP-1 cells. Data are one representative of three independent experiments with similar results. (e) The effect of 
EMR2 ligation and activation on THP-1 cell adhesion was evaluated by cell adhesion assay in cells transfected without or with EMR2-specific siRNAs and incubated 
with immobilized 2A1 mAb (n = 6, mean ± SD; *p < 0.05).
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receptor-bound 2A1. Interestingly, cells under this Ab-cross-
linking condition also displayed similar inflammatory 
phenotypes as observed in those cultured with plate-bound 
immobilized 2A1, while cells treated with soluble 2A1 alone 

or GAM F(ab′)2 only did not (Figure  3C; Figure S3C in 
Supplementary Material and data not shown). The second 
strategy is to use THP-1 cells whose EMR2 expression was 
knocked down (KD) by siRNA-mediated gene silencing 
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FigUre 2 | eMr2 ligation and activation in ThP-1 cells induces inflammatory responses. (a) Chemotactic cell migration analysis of neutrophils (Nφ) was 
performed using Boyden chamber-based transwells in which the bottom wells were loaded with conditioned medium (CM) of THP-1 cells stimulated with none 
(THP-1 CM) (lane 1), with immobilized mIgG1 control (10 µg/ml) (IgG1-CM) (lane 2), with immobilized 2A1 (10 µg/ml) (2A1-CM) (lane 3), or THP-1 CM plus f-MLF 
(100 nM) (lane 4) as chemoattractants. The bottom pictures showed Nφ that have migrated across the membrane (n = 3, mean ± SD; **p < 0.01). (B) CM of 
2A1-stimulated THP-1 cells induces morphological changes of Nφ. Nφ were incubated with 10 µg/ml soluble 2A1 (panel 2), 100 nM f-MLF (panel 4), or THP-1 CM 
(panel 1), IgG1-CM (panel 3), 2A1-CM (panel 5), or soluble 2A1 (10 µg/ml) (panel 6). Microscopic images are of 400× magnification. (c,D) Flow cytometry analysis of 
Nφ activation by detecting the expression levels of CD11b and CD62L (c) and ROS generation (D). Nφ were treated without (top panels) or with (bottom panels) 
100 nM f-MLF in the absence or presence of IgG1-CM or 2A1-CM.
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(Figure  3D). As shown in Figures  3E,F, EMR2-KD THP-1 
cells displayed reduced MMP-9 and IL-8 production, as well as 
lower CD9 and CD81 levels in comparison to those transfected 
with a scrambled control siRNA. These results indicate that 
EMR2 activation cannot be achieved simply by the binding 
of 2A1, but requires receptor ligation (cross-linking) brought 
about by immobilized 2A1, which eventually leads to THP-1 
cell differentiation and production of pro-inflammatory 
mediators.

eMr2 activation in Mos induced specific 
MaPK Phosphorylation
As an aGPCR, EMR2 activation is expected to turn on specific 
signaling pathways, including in principle G protein(s). To 
explore the EMR2-induced signaling cascades, we first examined 
the status of global tyrosine phosphorylation of THP-1 cell 
lysate following EMR2 engagement (Figure S4 in Supplementary 
Material). Indeed, EMR2 ligation induced fast and transient 
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FigUre 3 | eMr2 ligation and activation in ThP-1 cells promotes il-8, TnF-α, and MMP-9 secretion. (a,B) Ligation of EMR2 on THP-1 by immobilized 
2A1 mAb promoted MMP-9 and TNF-α production in a dose-dependent and cell number-dependent manner (n = 3, mean ± SD; *p < 0.05, **p < 0.01). (c–F) The 
specific effect of 2A1-activated EMR2 on THP-1 cells was confirmed alternatively by incubating cells at 4°C with 2A1 for 30 min followed by cross-linking with or 
without the F(ab′)2 fragment of a Goat anti-mouse Ab (5 µg/ml) as indicated. (c), or by EMR2-knock down in THP-1 cells that were transfected with EMR2-specific 
siRNAs (EMR2-siRNA#1, #2, or #3) (D). Reduced EMR2 expression was demonstrated by flow cytometry analysis of surface EMR2 levels (left panel) and Western 
blot analysis of lysates (right panel) of transfectant cells. The specific effect of EMR2 knockdown on THP-1 cell phenotype was shown by reduced MMP-9 
production [(e) left panel], decreased expression of macrophage-like differentiation markers (CD9 and CD81) [(e) right panel], and reduced IL-8 secretion (F) in cells 
cultured on immobilized 2A1 for 4 days. Nos. 1–7 in panel (e) represented cell treatment conditions as listed in panel (F). In all experiments, mIgG1 and 
lipopolysaccharide (LPS) were used as a negative and a positive control, respectively (n = 6, mean ± SD; *p < 0.05, **p < 0.01, ***p < 0.001).
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tyrosine phosphorylation of cell lysate proteins, reaching the 
peak at ~5 min and returned to the basal levels after ~30 min. 
This result clearly suggests the activation of unique signaling 
molecules and prompts us to survey the possible candidates 
using a wide range of selective signaling inhibitors. As shown 
in Figures  4A,B, EMR2 activation-induced IL-8 and MMP-9 
production was mitigated agreeably by many inhibitors tested, 
including PI3K inhibitors (Wortmannin and LY294002), MAPK/
ERK kinase inhibitors (PD98059, U0126), and JNK inhibitor 
(SP600125). By contrast, the p38 inhibitor (SB203580) in fact 
further enhanced IL-8 production induced by EMR2 activation. 
These results strongly suggest that 2A1-mediated EMR2 ligation 

activates multiple signaling pathways, some of which might be 
involved in a negative feedback loop.

As the MAPK signaling cascade is a well-known inflamma-
tion-associated signaling pathway and down stream targets 
of many GPCRs (31–34), we next confirmed EMR2-induced 
activation of specific MAPKs by Western blotting. Consistent 
with earlier results with the use of selective inhibitors, increased 
phosphorylation of ERK and JNK, but not p38, was detected 
following 2A1-mediated EMR2 ligation in a Ab dose-dependent 
and time-dependent fashion (Figures  4C–E). Importantly, 
EMR2 activation-induced phosphorylation of ERK and JNK 
was comparably detected in THP-1 cells as well as in primary 
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FigUre 4 | eMr2 activation in ThP-1 and primary monocytes (Mos) induced specific phosphorylation of Mitogen-activated protein kinases 
molecules. (a,B) THP-1 cells were pretreated with different signaling inhibitors as indicated, followed by incubation with immobilized 2A1 (10 µg/ml) for 16 h. 
Culture supernatant was collected for the detection of IL-8 (a) and MMP-9 (B). Lane #1, control with no 2A1 coating; #2, DMSO; #3, Wortmannin (40 µM); #4, 
LY294002 (50 µM); #5, SB203580 (20 µM); #6, PD98059 (20 µM); #7, SP600125 (40 µM); and #8, U0126 (10 µM) (n = 6, mean ± SD; ***p < 0.001). (c) Western 
blot analysis of indicated signaling molecules in THP-1 cells incubated with or without 2A1 as indicated. β-actin is a loading control for the immunoblotting.  
(D,e) Western blot analysis of EMR2 activation-induced extracellular signal-regulated kinase (ERK) phosphorylation in THP-1 cell (D) and primary Mos (e) incubated 
with immobilized 2A1 at the indicated time points. In all experiments, mIgG1 and lipopolysaccharide (LPS) treatment was a negative and positive control, 
respectively.
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blood Mos. As expected, phosphorylation of the two MAPK mol-
ecules was efficiently inhibited by specific inhibitors in a dose-
dependent manner, again both in THP-1 cell and primary Mos 
(Figures  4D,E; Figures S5 and S6 in Supplementary Material). 
Simultaneously, EMR2 activation-induced pro-inflammatory 
mediator production was inhibited by these inhibitors (Figures 
S5 and S6 in Supplementary Material). We hence conclude that 
2A1-mediated EMR2 ligation in Mos induces phosphorylation 
and activation of specific MAPK molecules, including ERK and 
JNK.

eMr2-induced signaling is Mediated in 
Part via nF-κB activation
In addition to the MAPK signaling pathway, NF-κB is another 
major signaling molecule critical for the induction of inflamma-
tory reactions (35, 36). In essence, NF-κB activation involves the 
phosphorylation and subsequent degradation of IκB, which is ini-
tiated in turn through phosphorylation of the IκB kinases (IKK) 
α/β (37). As shown, increased phosphorylation of IKK α/β and 
IκB proteins and the concurrent loss of IκB were readily detected 
following 2A1-mediated EMR2 ligation in THP-1 cells, again in 
a Ab dose-dependent and time-dependent fashion (Figure  5; 
Figure S7 in Supplementary Material). Furthermore, EMR2 

ligation-induced NF-κB activation was specifically mitigated in 
THP-1 cells pretreated with two independent IKK inhibitors, 
namely BAY 11-7082 and TPCA-1. Coincidentally, production 
of IL-8, TNF-α, and MMP-9 in 2A1-stimulated THP-1 cells was 
dose-dependently inhibited by the treatment of BAY 11-7082 and 
TPCA-1 (Figure 5; Figure S7 in Supplementary Material). These 
data reveal clearly the induction of NF-κB signaling pathway by 
EMR2 ligation and activation in THP-1 cells.

eMr2 activation in Monocytic cells 
signals via the gα16/Plc/akt Pathways
Several aGPCRs have recently been shown to signal through 
specific G proteins (21, 38); however, very little is known for 
EMR2. CD97/ADGRE5, a close homolog of EMR2, was reported 
to heterodimerize with the lysophosphatidic acid (LPA) receptor 
1 and signal via Gα12/13 to induce LPA-dependent Rho and ERK 
activation in prostate cancer cells (39). On the other hand, the 
CD97-LPAR1 heterodimer was shown to mediate the lysophos-
phatidylethanolamine-induced intracellular Ca2+ increase in 
MDA-MB-231 breast cancer cells by the pertussis toxin (PTX)-
sensitive Gαi/o protein and phospholipase C (PLC) (40). In a 
transient over-expression system in heterologous HEK293 cells, 
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FigUre 5 | eMr2-induced signaling in ThP-1 cells is mediated in part via nuclear factor kappa-light-chain-enhancer of activated B cells (nF-κB) 
activation. (a) Western blot analysis of NF-κB activation of THP-1 cells incubated with or without 2A1 (10 µg/ml) at different time points as indicated. Blots were 
probed to detect phospho-IKKα/β, phospho-IκB, IκB, and β-actin level. (B) Western blot analysis of NF-κB activation of THP-1 cells pretreated with different 
concentrations of Bay11-7082 for 1 h, followed by incubation with 2A1 (10 µg/ml) for 1 h. Blots were probed to detect phospho-IκB, IκB, and β-actin level.  
(c,D) Culture supernatants of THP-1 cells treated with indicated conditions for 16 h were collected for the detection of TNF-α and IL-8 by ELISA (c) and MMP-9 
activity by gelatin zymography (D). (e) THP-1 cells were pretreated with different concentrations of TPCA-1 for 1h, followed by incubation with 2A1 (10 µg/ml) for 
16 h. Culture supernatants were collected for the detection of IL-8 by ELISA. In all experiments, mIgG1 and lipopolysaccharide (LPS) treatment was a negative and 
positive control, respectively (n = 6, mean ± SD; **p < 0.01, ***p < 0.001).
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Gupte et al. have shown that co-transfection of EMR2 and Gα15 
resulted in constitutive signaling (41).

To delineate the G protein(s) involved in EMR2-mediated 
signaling in monocytic cells, we first showed that PTX is 
ineffective in inhibiting EMR2 activation, thus excluding the 
involvement of Gαi/o proteins (Figure S8A in Supplementary 
Material). Next, the role of Gα16 (human ortholog of murine 
Gα15) was examined using Gα16-specific siRNAs that effec-
tively dampened its expression (Figure S8B in Supplementary 
Material). Interestingly, EMR2 ligation-induced IL-8 production 
was diminished when Gα16 expression was KD (Figure  6A), 
suggesting that Gα16 is indeed involved in EMR2-mediated 
signaling. Gα15/16 proteins are known to couple GPCRs to PLC-
β, which hydrolyzes phosphatidylinositol biphosphate (PIP2) 

into inositol triphosphate (IP3) and diacylglycerol (42, 43). We, 
therefore, incubated THP-1 cells in the presence of U73122, 
a potent inhibitor of G protein–PLC coupling and activation. 
As expected, production of IL-8 and MMP-9 was inhibited 
dose-dependently in cells treated with U73122 (Figure 6B). In 
addition, diminished ERK and NF-κB activation was observed 
in U73122-treated cells, which is consistent with the idea that 
PLC-β activation is upstream of MAPK and NF-κB signaling 
(Figure 6B). These results show for the first time the coupling of 
EMR2 to PLC-β activation via Gα16.

Finally, the role of PIP2 metabolism by PLC-β and the fact that 
two PI3K inhibitors (Wortmannin and LY294002) were effec-
tive in modulating EMR2 activation (Figure 4) prompted us to 
investigate the involvement of Akt in EMR2-mediated signaling 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 6 | eMr2 activation in monocytic cells signals via the gα16/Plc/akt pathways. (a) The role of Gα16 in EMR2-mediated signaling was evaluated in 
THP-1 cells that were transfected with Gα16-specific siRNAs (Gα16-siRNA#1, #2, or #3). IL-8 levels resulted from EMR2 ligation were compared as described.  
(B) The involvement of PLC-β in EMR2-mediated signaling was evaluated in THP-1 cells that were pretreated with different concentrations of U73122 for 1 h, 
followed by incubation with 2A1 (10 µg/ml). Conditioned medium (CM) was analyzed for IL-8 by ELISA and MMP-9 activity by gelatin zymography, respectively (top 
panels). Western blot analyses were performed to detect phospho-extracellular signal-regulated kinase (ERK), IκB, and β-actin levels (lower panels). (c,D) Western 
blot analysis of EMR2 activation-induced Akt phosphorylation in THP-1 cells. Cells were pretreated without (c) or with different concentrations of LY294002 (D) for 
1 h, followed by incubation with 2A1 (10 µg/ml) as shown. Blots were probed to detect phospho-Akt, phospho-ERK, and β-actin levels. (e) The effect of the PI3K 
inhibitor (LY294002) on EMR2 activation in THP-1 cells was analyzed by comparing IL-8 levels and MMP-9 activities of CM from cells pretreated without or with 
LY294002 as described. In all experiments, mIgG1 and lipopolysaccharide (LPS) treatment was a negative and positive control, respectively (n = 6, mean ± SD; 
**p < 0.01, ***p < 0.001).
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cascade. The PI3K-Akt pathway is initiated by activated PI3K 
that phosphorylated PIP2 to phosphatidylinositol 3,4,5 trispho-
sphate (PIP3), which then recruited and activated Akt (44, 45). 
Importantly, PI3K can be activated by many cell surface recep-
tors, including GPCRs, primarily via dissociated Gβγ subunits 
(46, 47). As shown in Figure 6C, activated/phosphorylated Akt 
was indeed identified in THP-1 cells cultured with immobilized 
2A1 in a time-dependent manner very similar to ERK activation. 
Moreover, Akt activation and production of IL-8 and MMP-9 
were dose-dependently reduced by LY294002 in 2A1-treated 
THP-1 cells (Figures 6D,E), suggesting that the PI3K-Akt path-
way is also involved in EMR2-mediated signaling. Taken together, 
we conclude that the Gα16/PLC/Akt pathways are coupled and 
activated by the ligated EMR2 receptor in monocytic cells.

DiscUssiOn

The identification of EMR2/ADGRE2 as the vibratory urticaria-
inducing molecule attests to the functional importance of this 
myeloid-restricted aGPCR (19). While accumulating evidence is 
emerging for a signaling role of EMR2 in myeloid cells, the actual 
pathways and significance of EMR2-mediated signaling are not 
understood. Herein, we show that EMR2 receptor is a novel sur-
face marker of Mφ differentiation and EMR2 activation is mainly 
coupled to the Gα16 protein, which subsequently activates the PLC 
and Akt/PI3K pathways, eventually leading to the MAPK and 
NF-κB signaling (Figures 4–6; Figures S1–S8 in Supplementary 
Material). EMR2 activation promotes Mφ-like differentiation of 
THP-1 cells and evokes inflammatory responses by stimulating 
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the production of pro-inflammatory mediators (Figures 1–3). In 
summary, EMR2 is a previously uncharacterized surface protein 
regulator of the differentiation/maturation process and inflam-
matory activation of Mφ subpopulations.

The coupling of Gα16 protein to EMR2 is one of a limited num-
ber of specific aGPCR–G protein partnership identified to date, 
but it is in line with previous results. First, it was shown recently 
that co-transfection of EMR2 and murine Gα15 in heterologous 
cells specifically induced cellular activation (41). Second, human 
Gα16 protein (and murine Gα15) are known to be restricted to cells 
of certain hematopoietic lineages, including myeloid cells (48). 
Finally, Gα16/Gα15 proteins belong to the PTX-insensitive Gαq 
subfamily and are known to couple many GPCRs to activate PLC-
β (42, 43). Due to the fact that EMR2 and Gα16 are co-expressing 
in human Mos and that EMR2 activation is impaired by siRNA-
induced Gα16 downregulation and a pharmacological inhibitor of 
PLC but is unresponsive to PTX, the coupling of EMR2 activation 
to Gα16 in Mos is the most likely signaling pathway (Figure 6; 
Figure S8 in Supplementary Material). Nevertheless, the possibil-
ity of the involvement of other G proteins in EMR2-mediated 
signaling is not completely excluded.

Interestingly, the homologous CD97 receptor was shown 
to couple separately to Gα12/13 or Gαi/o proteins in response to 
different stimuli in distinct cancer cell types (39, 40). Hence, 
it is possible that other Gα proteins might also be involved in 
EMR2-mediated signaling depending on the nature of EMR2 
stimulation. Likewise, it remains to be determined whether the 
similar Gα16-mediated signaling cascades is employed in EMR2 
activation in different myeloid cell types such as Nφ, mast cell, 
and DC.

G protein-coupled receptor-induced Akt activation is known 
to be mediated by all four major Gα protein subfamilies via dis-
tinct mechanisms (47, 49). The involvement of PI3K/Akt pathway 
in EMR2-mediated signaling suggested the possible participation 
of the dissociated Gβγ subunits and/or other means such as 
increased intracellular Ca2+ brought about by Gα16-induced PLC-
β activity (47). Regardless of the exact mechanism, the inclusion 
of PLC-β/Akt-signaling pathways described here clearly indicates 
that phosphinositide-dependent metabolism is a significant com-
ponent of EMR2-induced signaling events. This idea is further 
ascertained by the identification of EMR2-activated MAPKs 
(ERK and JNK) and NF-κB, which are validated downstream 
targets of the PLC-β and Akt-signaling pathways and many 
GPCRs (50–53).

Both MAPKs and NF-κB are well-established signaling 
molecules involved in the induction of inflammatory responses 
(31, 32, 35, 54). Thus, the activation of ERK/JNK and NF-κB by 
the Gα16/PLC/Akt pathways is consistent with the role of EMR2 
in promoting Mφ-like differentiation and production of pro-
inflammatory mediators. Hence, it seems that EMR2-activated 
signaling pathways are rather similar to the ones occurred in Mφ 
under inflammatory conditions. However, due to the fact that 
multiple signaling pathways normally cross-talk and that phago-
cytes usually encounter and require numerous stimuli to achieve 
optimal cellular activation (55), in the future it will be interesting 

to investigate how the EMR2-mediated signaling cross-interact 
and contribute to the overall Mφ activity in the presence of other 
stimuli.

The recent revelation of the tethered agonistic activation 
mechanism of aGPCRs strongly hints at the notion that some 
aGPCRs might function as a mechanical sensor because a physical/
mechanical signal is likely needed for the dissociation of aGPCR-
NTF from its CTF (38, 56, 57). Indeed, this idea was substantiated 
by several lines of evidences recently. These include the findings 
of the enhanced vibration-induced NTF-CTF dissociation of the 
less stable EMR2-C492Y variant in vibratory urticaria patients 
and the shear stress-induced shedding of CD97-NTF from leu-
kocytes that interacted with its CD55 ligand (19, 58). While we 
did not directly address this issue in the present study where all 
experiments were performed in a static condition, it is interesting 
to note that the 2A1-induced EMR2 activation only occurs when 
the mAb is immobilized, presumably to provide enough contact/
interaction to cross-link the receptor. In the future studies, it will 
be interesting to examine whether EMR2-NTF is dissociated 
from cell surface under this static condition or alternatively to 
test whether vibration can further enhance 2A1-induced EMR2 
signaling in Mos. It will be also of interest to know whether the 
EMR2-C492Y variant induces stronger and/or faster signaling 
in Mos, apart from enhancing mast cell degranulation. Taken 
together, our systematic analysis of EMR2-mediated signaling 
not only provides a direct evidence for its role in the differentia-
tion and inflammatory reaction of Mos but also a starting point 
to investigate the activation mechanism and possible manipula-
tion of aGPCR function in diseases, such as SIRS and vibratory 
urticaria.
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