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The immune system of the gastrointestinal (GI) tract manages the significant task of  
recognizing and eliminating pathogens while maintaining tolerance of commensal bac­
teria. Dysregulation of this delicate balance can be detrimental, resulting in severe inflam­
mation, intestinal injury, and cancer. Therefore, mechanisms to relay important signals 
regulating cell growth and immune reactivity must be in place to support GI homeostasis. 
Type I interferons (IFN­I) are a family of pleiotropic cytokines, which exert a wide range 
of biological effects including promotion of both pro­ and anti­inflammatory activities. 
Using animal models of colitis, investigations into the regulation of intestinal epithelium 
inflammation highlight the role of IFN­I signaling during fine modulation of the immune 
system. The intestinal epithelium of the gut guides the immune system to differentiate 
between commensal and pathogenic microbiota, which relies on intimate links with the 
IFN­I signal­transduction pathway. The current paradigm depicts an IFN­I­induced anti­
proliferative state in the intestinal epithelium enabling cell differentiation, cell maturation, 
and proper intestinal barrier function, strongly supporting its role in maintaining baseline 
immune activity and clearance of damaged epithelia or pathogens. In this review, we will 
highlight the importance of IFN­I in intestinal homeostasis by discussing its function in 
inflammation, immunity, and cancer.
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iNTRODUCTiON

The gastrointestinal (GI) tract has the greatest mucosal surface area of any organ system shared with 
the environment, interacting with a wide array of microbes and chemical irritants. These interactions 
with colonizing bacteria, especially early in life, are fundamental in developing proper gut health (1). 
The intestines of newborns are initially sterile (2), but become colonized immediately after birth, 
upon exposure to their new environment. The establishment of healthy intestinal microbiota can be 
hindered due to lack of exposure to commensal bacteria or upon treatment with antibiotic medica-
tions (3). This appears to be very important as there is mounting evidence that resident microbiota 
play an important role in shaping the function of the GI tract. The initiation and progression of 
human inflammatory bowel diseases (IBDs) are reliant on the dysregulation of complex interactions 
among genetic, environmental, and immune factors, as well as physical barriers within the intestinal 
mucosa. The physical barrier between the external environment and internal tissue is the first line 
of defense against microbial pathogens, toxins, and other environmental factors (4). This protective 
barrier is provided by the inner lining of the intestine, a single-cell layer of intestinal epithelial 
cells (IECs), and their specialized subtypes (e.g., Paneth, goblet, or enteroendocrine cells) (5). IECs 
serve an essential role as regulators of mucosal immune responses (6) and as cohabitants within  
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the intestinal environs, which can be colonized by commensal 
or pathogenic bacteria, fungi, and viruses (7). Paneth cells, in 
particular, play a vital role in gut homeostasis (8–10) at least 
via expression of IFN-I and interferon-stimulated genes (ISGs)  
(11, 12). Ingested antigens and constituents of commensal 
bacteria are constantly testing the immune system of the gut. 
Responses to antigens can be either positive or negative, inducing 
an antigen-specific state of immunity (13). Cytokines like IFN-I 
act as initial signaling mechanisms within this innate immune 
system determining the durability and specificity of the response. 
Together, a series of direct responses and feedback loops are in 
place for maintaining gut homeostasis—preventing tissue dam-
age, hyperplasia, malignancy, and ultimately cancer.

TYPe i iNTeRFeRONS (iFN-i)

The innate immune system is a remarkable network that has 
evolved to protect the host against disease. It has the ability to detect 
a wide range of microbial markers and, in response, rapidly acti-
vate a number of inflammatory and antimicrobial pathways. Part 
of this sophisticated system involves the family of IFN-I (IFN-α  
or IFN-β). These immunomodulatory cytokines are broadly 
expressed as α-helical cytokines transcribed from 13 homologous 
IFN-α genes (IFN-α1 and -α13 are the same) and a single IFN-β 
gene (14). They play a critical role as first line of defense by promot-
ing and shaping antiviral and antibacterial immunity. Constitutive, 
baseline expression of IFN-I is very low in the intestines, typical of 
most tissues (12, 15–18). IFN induction is a rapid event that can 
be triggered in response to viral attack (via recognition of cyto-
solic viral double-stranded RNA, 5′triphosphate single-stranded 
RNA, or viral DNA) and bacterial infections (via recognition of 
lipopolysaccharide, lipoprotein, or flagellin, for example) (19). 
Each response is activated by specific pattern-recognition recep-
tors (PRRs), like RIG-like helicases and toll-like receptors (TLRs), 
expressed by different cell types (20). Secreted IFN-I then activates 
autocrine and paracrine signaling cascades via the heterodimeric 
IFN-I receptor complex (14). IFN-I bind to and activate the cog-
nate cell surface receptor consisting of the IFNAR1 and IFNAR2 
chains, which induce downstream signaling via tyrosine phospho-
rylation of JAK kinases (JAK1 and TYK2). Activated JAKs then 
phosphorylate the transcription factors STAT1 and STAT2 in the 
cytoplasm that in association with IRF9 from the heterotrimeric 
complex ISGF3. ISGF3 translocates to the nucleus and binds to 
the promoters of IFN target genes and activates the transcription 
of many ISGs (21). These ISGs drive immunomodulatory antivi-
ral (22), antiproliferative (23), antibacterial (24), and antitumor 
actions (15) throughout the body, including the GI tract (18).

iFN-i AS ANTi-iNFLAMMATORY 
iMMUNOMODULATORS

Type I interferons not only function as signaling molecules of 
innate immunity but also promote the activation of adaptive 
immunity. It is well-established that systemic IFN-I can influ-
ence CD4+ T cell differentiation and function via their effects on 
dendritic cells (DCs). IFN-I drive DC activation and maturation 

(25), MHC II expression, and production of IL-12 (26, 27), to 
augment T helper (Th)1 cell responses. In addition, IFN-I can act 
directly on T cells to inhibit their expansion from lymph nodes, 
thus promoting DC–T cell interactions (28). Several studies also 
show that IFN-I enhance natural killer (NK), B, and CD8+ T cell 
activity (29, 30). By contrast, other studies present a different side 
of IFN-I—as key factors in the attenuation of an active immune 
response. Primarily, IFN-I increase the susceptibility of lym-
phocytes and macrophages to apoptosis (24, 31–34). IFN-I also 
inhibit the expression of IL-8, a chemotactic cytokine responsible 
for recruiting neutrophils and leukocytes to areas of inflamma-
tion (35, 36), and of IL-17, via inhibition of Th17 differentiation  
(37, 38). IFN-I antagonize the effects of local IL-17 by down-
regulating the expression of IL-1β, IL-23, and osteopontin, and by 
inducing the production of the anti-inflammatory cytokine IL-27 
in DCs (38, 39). Induction of IFN-I in macrophages by bacterial 
infection reduces IL-17A/F variant expression, followed by a 
decrease in IL-17A(+) γδ T cells, further highlighting the role of 
IFN-I on T cell populations during infection (40). Further, IFN-I 
can inhibit the secretion of IL-1β, both by inhibiting production 
of pro-IL-1β and blocking pro-IL-1β cleavage to mature IL-1β 
via impeding inflammasome activation (41). To suppress inflam-
mation, IFN-I also induce the secretion of anti-inflammatory 
cytokines (e.g., IL-10, IL-27, and IL-1RA) from phagocytes via 
expression of inhibitory feedback SOCS and PIAS proteins in 
T  cells and phagocytes (42–44). Additionally, IFN-I suppress 
IFN-γ-induced MHC II expression by downregulating IFNGR1 
levels as a negative feedback mechanism (45, 46), and high levels 
of IFN-I can inhibit IL-12 production during certain viral infec-
tions (47). IFN-I also inhibit inflammatory responses by inducing 
tristetraprolin, a strong suppressor of TNF-α and IFN-γ (48, 49).

Alterations to the IFNAR1 gene have been linked to suscepti-
bility for IBD and changes to microbiome populations (50, 51), 
thus providing supporting evidence that IFN-I contribute to 
immune defenses against conditionally pathogenic microbiota 
and intestinal inflammation (52). In a T  cell adoptive transfer 
model of colitis, signaling through host hematopoietic cell Ifnar1 
was necessary to deter development of colitis. Ifnar1−/−-recipient 
mice developed severe colitis, compared with Ifnar1+/+ mice, when 
inoculated with CD4+ T cells from a WT mouse (18). Phagocytes 
collected from the colonic lamina propria (LP) of Ifnar1−/− mice 
produced less IL-10, IL-1RA, and IL-27 than did cells from WT 
mice (18) demonstrating an important role for IFN-I signaling 
driving the expression of anti-inflammatory cytokines by gut 
phagocytes and maintenance of intestinal T  cell homeostasis. 
Oral administration of the colonic irritant, dextran sulfate sodium 
(DSS) is another well-established model of acute colitis as it pro-
duces submucosal inflammation and ulceration in the gut thereby 
providing a “leaky” epithelial cell-lining ideal for translocation 
of luminal microbiota into the LP (53). Ifnar1−/− mice are found 
more susceptible to DSS-induced colitis pointing to conventional 
DCs as critical players in attenuating inflammation (16, 18, 54, 
55). However, a later study found that deletion of Ifnar1 in LysM+ 
myeloid cells, but not in conventional DCs exacerbated DSS-
induced colitis (56). These differing results could be attributed 
to the mouse model employed. In the first study, Abe et al. used 
transgenic DTR mice with intact Ifnar1 to deplete CD11c+ DCs 
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via administration of diphtheria toxin. By contrast, Rauch et al. 
used mice with conditional deletion of Ifnar1 in DCs or in myeloid 
cells. Nevertheless, both studies agree on the protective effect of 
IFN-I by suppressing IL-1 production during inflammation of the 
gut. Altogether, IFN-I activate and orchestrate different programs 
to keep inflammation under control.

iFN-i ARe iNSTRUMeNTAL iN 
MAiNTAiNiNG HOMeOSTASiS iN THe GUT

Balance of the microbiome within the small and large intestine 
is important for not only maintenance of the intestinal epithe-
lium, proper digestion, and nutrient uptake but is also strongly 
tied to immunity, inflammation, and cancer risk (57, 58). Both 
pro- and anti-inflammatory cytokines are chief among these 
immunomodulatory agents, including IFN-I, in regulating the 
growth and renewal of IECs (59–61). IFN-I are constitutively 
expressed in the intestines by LP CD11c+ DCs (16, 18, 62). The LP 
is the layer of connective tissue underneath the intestinal epithe-
lium, enriched in immune cells. In the colon, CD11c+ DCs cells 
express mRNA for IFN-α5-, IFN-α9-, and IFN-I/ISGS3-induced 
genes thus indicative of active IFN-I production and signaling. 
Proper regulation of epithelial cell turnover in the intestinal lin-
ing is important for balance between replacement of damaged/
sloughed cells and hyperplasia, which leads to pre-cancerous 
polyp formation (61, 63). Secretion of IFN-α has been shown 
as an important regulator of epithelial apoptosis. IFN-α admin-
istration prevented epithelial cell apoptosis in an Escherichia 
coli-induced mouse model of disease (64). Basolateral IFN-α also 
polarized monolayers of IECs, protected these cells against apop-
tosis, and promoted disruption of epithelial tight junctions (54). 
Moreover, IFN-α can induce the expression of GBP-1 (64), shown 
to prevent apoptosis, and promote intestinal epithelial barrier 
integrity (65). Prevention of apoptosis by IFN-α-induced GBP-1 
subsequently inhibited endothelial cell angiogenesis (66, 67). In 
a study conducted in mice with deleted Ifnar1 in the intestines, 
loss of IFN-I signaling increased the number of Paneth cells and 
hyperproliferation of epithelial cells with no signs of spontaneous 
inflammation or enhanced susceptibility to DSS, when compared 
to littermate controls (50, 51). Most recently, Fuchs et al. reported 
that increased protein levels of IFNAR1 in  vivo [via deletion 
in the intestine of casein kinase 1α (CK1α), which controls 
the ubiquitination and degradation of both β-catenin and the 
IFNAR1] led to an increased ISG transcriptional signature (52) 
highlighting baseline IFN-I signaling in the intestinal epithelium. 
Deletion of CK1α in the intestines of Ifnar1−/− mice resulted in 
decreased levels of p21, inhibited p53 activation, and unrestricted 
IEC proliferation resulting in loss of gut barrier function and 
prompt animal death. Hence, IFN-I enable enhanced matura-
tion, differentiation, and establishment of the cohesive epithelial 
barrier in the gut highlighting the contribution of IFN-I signaling 
to the control of IEC proliferation and function. As such, IFN-I 
are vital in maintenance of the host-microbiota equilibrium and 
constraining IEC proliferation and viability.

The microbiome in the gut plays an important role in the 
pathogenesis of IBD. This is evidenced by a variety of animal 
models in which development of intestinal inflammation 

is completely abolished under germ-free conditions (68). 
In healthy individuals, the gut microenvironment exists in 
a continuous state of controlled inflammation, despite the 
presence of potent antigen-presenting cells, like DCs. DCs are 
important for controlling T  cell-mediated antigen response 
(69) and are the major source of TLR-driven IFN-I production 
(70). Conventional DCs have been attributed with inhibition of 
DSS-induced colitis, in part, to IFN-I production (14, 55). IFN-I 
regulated colonic recruitment of neutrophils and monocytes, 
as well as activation of pro-inflammatory macrophages (55). 
Additionally, Ifnar1 loss in myeloid cells promoted colitis via 
increased IL-1 production (56), a pro-inflammatory cytokine 
produced by activated macrophages (71). Interestingly, in 
celiac disease (an IBD driven by strong T cell activation toward 
gluten), the role of IFN-I appears reversed. In humans, mucosal 
DC populations are increased in celiac disease patients (72). 
Activated mature DCs from these patients maintained higher 
IFN-α transcripts, as well as for IL-18 and IL-23, two cytokines 
responsible for Th1 polarization and subsequent IFN-γ produc-
tion. Furthermore, IFN-α blockade inhibited IFN-γ transcripts 
in ex vivo-organ culture of celiac biopsy specimens challenged 
with gluten (72). Yet in mouse models of colitis pretreated with 
synthetic bacterial DNA, increased anti-inflammatory IL-10 
and decreased IFN-γ production were reported (73). Along 
these same lines, a human ulcerative colitis (UC) study showed 
a correlation between IFN-I response and Th17 differentiation 
and suppression of IL-17 production (74). Th17 cells are central 
effectors that produce pro-inflammatory cytokines, particularly 
IL-17 in the gut (75, 76). IL-17 then induces the secretion of 
chemokines and antimicrobial peptides to create a mucosal 
barrier to eliminate pathogens; however, excessive IL-17 pro-
duction exacerbates inflammation thereby promoting pathogen 
colonization (77).

T regulatory (Treg) cells play a central role in suppressing the 
development of intestinal inflammation and IBD (78–80). Tregs 
maintain intestinal homeostasis under conditions of continuous 
challenge with inflammatory microbes. Induction of Treg popu-
lations by recombinant bacterial DNA analogs was TGF-β- and 
IFN-I-dependent in a mouse model of IBD (81). Maintenance 
of the Treg population in the gut is mediated by IFN-I signaling 
driving the expression of Foxp3 in colonic Tregs (82). Continuous 
Foxp3 expression is necessary for the development and regulatory 
function of Tregs (83, 84). IFN-I limit inflammation by eliciting 
production of the regulatory cytokine IL-10 or by enhancing the 
activity of Treg cells (79, 85). Additionally, apoptotic resident 
intestinal DCs help regulate the populations of Tregs in the 
intestine via production of IFN-β (86). In IBD patients, Th1 and 
Th17 constitute a major driving force in the disease process in 
the inflamed mucosa characterized by high surface expression 
of activated CD69 (87, 88). Expression of CD69 is strongly 
induced by IFN-I (28). Several studies in mice indicate a role of 
CD69 in the regulation of arthritis (89), asthma (90), myocar-
ditis (91), pathogen clearance (92), and tumor immunity (93). 
Commensal bacteria in the intestinal tract are shown to induce 
CD69 expression in CD4+ T  cells. Secretion of the regulatory 
cytokine TGF-β1 by CD4+ T cells decreased, whereas production 
of the pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-21) 
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increased, upon deletion of CD69. CD69−/− cells showed impaired 
IFN-β1 induction by TLR3 ligand polyI:C. CD4+ T cells lacking 
CD69 expression were hindered in their ability to mature into 
Tregs (Foxp3+) leading to accelerated colitis (94).

iFN-i CONFeR PROTeCTiON  
AGAiNST COLiTiS

Toll-like receptors play an important role in innate immunity 
by recognizing structurally conserved bacterial and viral com-
ponents. TLRs are important transmembrane-signaling PRRs 
involved in inducing inflammation and are pivotal in the estab-
lishment of adaptive immunity. In addition to innate immune 
cells such as macrophages and DCs, IECs express a spectrum 
of TLRs (95). TLR signaling can induce strong production of 
several inflammatory cytokines, including IFN-I (96). TLR2 
and TLR4 recognize bacterial cell wall components at the cell 
surface, while TLR3, TLR7, and TLR9 recognize bacterial or 
viral nucleic acids in endosomes after phagocytosis of bacteria 
or viruses (97). Activation of DCs via TLRs contributes to both 
rapid anti-pathogen responses and maintenance of homeostatic 
protective immunity (98). This is partly mediated by the direct 
production of cytokines necessary for the development of down-
stream humoral and cell-mediated immunity. Imiquimod, a 
TLR7 agonist, has been shown to ameliorate DSS-induced acute 
colitis by inducing the expression of IFN-I in the colonic mucosa 
(99). When administered as a preventive measure, ligands for 
TLR9 (CpG) or TLR3 (polyI:C) also induced IFN-I and lessened 
disease severity of DSS-induced colitis (54, 100). Administration 
of neutralizing antibodies against IFN-I also impeded these 
downstream anti-inflammatory effects via TLR9, thus highlight-
ing the importance of IFN-I signaling in maintaining intestinal 
homeostasis and providing avenues for future therapeutics  
(54, 101). The activation of TLR9 by CpG dinucleotides initiates 
a cascade of innate and adaptive immune responses, at least 
partially mediated by secretion of IFN-I and IFN-γ, that results 
in cell-mediated Th1 and humoral immune reactions (102). The 
TLR9 signaling pathway can induce the production of inflam-
matory cytokines through nuclear factor κB and interferon 
regulatory factor (IRF)-5, and IFN-I through IRF7 (96). In 
other studies, comparison of transcriptome profiles from gno-
tobiotic mice, which lack commensal bacteria that constitute the 
microbiome, to three bacterial colonization models—specific 
pathogen-free mice, ex-germ-free mice with bacterial reconsti-
tution at the time of delivery, and ex-germ-free mice with bacte-
rial reconstitution at 5 weeks of age—showed that TLR-driven 
expression of Irf3, a crucial rate-limiting transcription factor in 
the induction of IFN-I, was essential for normal development of 
the host immune system (103). Commensal bacteria triggered 
the production of IFN-β via recognition of dsRNA by TLR3, 
which in turn protected mice from experimental colitis (104).

Inflammatory bowel disease is a group of intestinal chronic 
inflammatory conditions mainly UC and Crohn’s disease 
(CD) that affects part or the entire GI tract. The precise cause 
is unknown, but evidence overwhelmingly suggests symptoms 
arise from either pathogenic or commensal intestinal bacteria 
triggering an abnormal immune response. IFN-α-secreting 

DCs in gut-associated lymphoid tissues (GALTs) regulate dif-
ferentiation of Tregs (105). GALTs are primary locations of host 
encounter with exogenous antigens and pathogens. Interaction 
of GALT with microbiota regulates both the size and duration 
of systemic immune responses (106, 107). The commensal 
microflora constituting the microbiome of the intestinal tract 
is strictly entwined in the well-being of the host. In particular, 
the balance of bacterial populations is directly related to IBD, 
though additional host-driven genetic predispositions are also 
suspected. Genome-wide association studies have implicated the 
locus containing IFNAR1 as a genetic risk factor for developing 
human IBD (50). In patients with IBD, chronic inflammation 
is a major risk factor for the development of GI malignancies 
(108). Patients suffering from IBD typically use non-specific 
medications to manage the symptoms and include steroids, 
5-aminosalacylic acid derivative, immunosuppressants, or anti-
bodies against TNF-α (109). Systemic administration of IFN-I 
to treat IBD patients has been evaluated and the results vary in 
suppressing disease burden (110–113). UC is associated with 
increased expression of IL-13 in NK T  cells from the mucosa 
of the GI tract (114–116). IFN-I have been shown to deter IL-4/
IL-13 transcription and secretion (117) by, as well as blocking 
of signaling in, human CD4+ T cells (118). In one small study, 
the majority of UC patients treated systemically with interferon-
β-a1 showed reduced disease burden using rectal bleeding as a 
clinical measure. In the responder group, the clinical effect of 
IFN-I therapy correlated with decreased IL-13 production by 
LP mononuclear cells. By contrast, the non-responders had 
significantly higher production of IL-17 and IL-6 compared to 
responders (119). In cases where IFN-I therapy exacerbated the 
disease, parallel diseases in the patient may have complicated the 
correlated observations (111). Initial studies in an experimental 
model of colitis depicted the benefits of IFN-I in regulating intes-
tinal growth, via apoptotic turnover of old cells or constitution of 
the hematopoietic cell population in the gut (54), but subsequent 
studies could not produce a therapeutic effect from IFN-I in IBD 
patients (120, 121). In an animal study, the therapeutic potential 
of IFN-β-secreting Lactobacillus (La-IFN-β) by delivering IFN-β 
in the gut prior to the induction of colitis was evaluated (122). 
Unexpectedly, this preventive measure heightened sensitiv-
ity to DSS when compared to mice pretreated with control 
Lactobacillus. Colitic mice that received La-IFN-β had increased 
intestinal secretion of TNF-α, IFN-γ, IL-17A, and IL-13 and 
decreased Treg populations in their small intestine. Intestinal 
DCs from La-IFN-β-treated mice and bone marrow-derived 
DCs exposed La-IFN-β showed decreased IFNAR1 expression. 
The underlying causes for the differing results of these various 
studies have yet to be identified. Further muddying the waters, 
conventional DCs can either enhance or inhibit DSS-induced 
colitis, independently of T  cells, contingent on their manner 
of activation (55), emphasizing again the importance of IFN-I-
driven immunoregulation in the gut.

iFN-i iN COLOReCTAL CANCeR

Like many other cancer types, colorectal cancer development 
has an inflammatory component. In fact, the risk of patients 
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with IBD to develop CRC is strongly linked to the duration of the 
disease, anatomical extent, and severity of colonic inflammation 
(123). It is estimated that as much as 15% of all IBD patients will 
die of colitis-associated cancer (CAC), although early diagnosis 
and proper treatment of IBD symptoms can reduce the risk of 
CAC (124). IFN-I promote the recruitment and activation of 
tumor-parallel immune cells, the presence of which is believed to 
improve the prognostic pathological assessments of CRC (125). 
Aside from the immune-compartment-driven inflammation 
referenced earlier, genetic alterations within IFN-I signaling cas-
cades have been implicated in CRC. To model CAC in rodents, 
the axozymethane (AOM)/DSS protocol was developed and is 
widely used to study colorectal cancer (126). Mice are given a 
single intraperitoneal injection of the carcinogen AOM, which 
is known to cause activating mutations in β-catenin, Kras and 
upregulation of Cox2, and iNOS (127). Addition of DSS given 
in multiple cycles generates a chronic inflammatory environ-
ment that reliably accelerates the carcinogenic effect of a single 
dose of AOM by dramatically shortening the duration of time 
for tumors to arise. Using this model, loss of Ifnar1 in IECs 
was reported to increase inflammation and severity of colitis. 
This poses cancer risk as evidenced by Ifnar1-expressing mice 
displaying decreased GI tumor burden corresponding with 
decreased mucosal inflammation (51). However, findings from 
our lab employing the same CAC model revealed a distinct 
and unexpected phenotype, in that loss of Stat2 (an essential 
component in IFN-I signaling) reduced tumor burden and 
inflammation in the colon (128). To further establish the role 
of IFN-I in CRC, additional animal studies are warranted using 
the sporadic model of CRC, which also has a strong link to 
inflammation (129).

Another link to consider in CRC is the study of single-
nucleotide polymorphisms (SNPs) in IFN-I-related genes that 
include STAT1, JAKs, IRFs, IFN-γ, and IFN-γR, which have 
been associated with increased CRC risk and disease progression  
(130, 131). In stark contrast, SNPs in IFNA7 and IFNA14 
genes have been found associated with overall survival, more 
specifically in CRC patients without distant metastasis at time 
of diagnosis (132). These genes are located nearby several tran-
scription factor-binding sites, but remains unknown how IFNA7 
and IFNA14 directly influence overall survival, though they may 
still be regarded as potential CRC patient biomarkers. SNPs in 
IFNAR1 were also found associated with CRC risk (132), but how 
they affect IFN-I signaling and inflammation as a whole in the gut 
remains to be evaluated.

In humans, CRC tumor specimens show elevated mRNA 
expression of TLR9, IFNAR1, and IL-6, indicating that IFN-I-
signaling components and effectors may be good predictors for 
overall survival (133). Other contrasting studies, however, find 
that TLR9 expression is decreased in hyperplastic and villous 
polyps from patients who develop CRC, further supporting a 
possible protective role for TLR9 expression against malignant 
transformation in colorectal mucosa (134). To add to the 
complexity of the role of signaling components of IFN-I and 
gene products of IFN-I, a recent study reported that in  vitro 
formation of colorectal tumor spheroids, in the absence of IFN-I 
treatment, induced transcription of ISGs via IRF9/STAT2 (135).  
In vitro-tumor spheroids are characterized by non-proliferating, 
metabolically stressed cells in the hypoxic inner core, surrounded 
by actively proliferating cells in the outer layers. Knockdown of 
STAT2, but especially IRF9 inhibited accumulation of three ISGs: 
IFI27, IFITM1, and OAS1, whereas STAT1 knockdown had no 
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